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Abstract This study investigates the implications of various electromagnetic force models in macroscopic
situations. There is an ongoing academic discussion which model is “correct,” i.e., generally applicable. Often,
gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work,
three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent
predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing
with experimental data, insight is gained regarding the applicability of themodels. First, the total force between
two cylindricalmagnets is computed. Then a sphericalmagnetostriction problem is considered to showdifferent
deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor
oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are
drawn and further work is motivated.
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List of symbols

General quantities

x Position vector in current placement (m)
X Position vector in reference placement (m)
v Barycentric velocity (m/s)
v I Barycentric surface velocity (m/s)
w Velocity of a singular surface (m/s)
w⊥ Normal velocity of a singular surface (m/s)
n Normal vector (1)
Pn nth Legendre polynomial (1)
K Complete elliptic integral of the first kind (1)
E Complete elliptic integral of the second kind (1)
� Complete elliptic integral of the third kind (1)
B Incomplete beta function (1)
2F1 A hypergeometric function (1)
R Characteristic radius of a problem (m)
H Characteristic length of a problem (m)
d End-to-end distance between magnets (m)
κ Normed end-to-end distance between magnets, κ = d/R (1)
r Radial spherical coordinate (m)
r̃ Dimensionless radial spherical coordinate, r̃ = r/R (1)
ϑ Polar spherical angle, ϑ ∈ [0,π] (1)
x Cosine of polar spherical angle (1)
ξ Radial cylindrical coordinate (m)
ξ̃ Dimensionless radial cylindrical coordinate, ξ̃ = ξ/R (1)
z Axial cylindrical coordinate [m]
z̃ Dimensionless axial cylindrical coordinate, z̃ = z/R (1)
ϕ Azimuthal angle, ϕ ∈ [0, 2π) (1)
V Volume in current placement (m3)
V0 Volume in reference placement (m3)
u Displacement field (m)
uI Surface displacement field (m)
û Scale of surface displacement (m)
ũP Dimensionless pole displacement (1)
ur Radial displacement component w.r.t. er (m)
uϑ Polar displacement component w.r.t. eϑ (m)
F Deformation gradient F = 1 + u ⊗ ∇X (1)
J Determinant of deformation gradient (1)
(·)I Indicates interior domain of a problem
(·)O Indicates exterior domain of a problem
˜(·) A normalized dimensionless function (1)

(·)I Interface quantity
(·)S Refers to silicone oil
(·)C Refers to castor oil
ez Cylindrical axial unit vector (1)
eξ Cylindrical radial unit vector (1)
1 Unit tensor of rank two (1)
1I Interface projector, 1I = 1 − n ⊗ n (1)
∇ Nabla operator, (1/m)
∇I surface nabla, ∇I = 1I · ∇ (1/m)

Continuum mechanics

σ Cauchy stress tensor (N/m2)
p Pressure (N/m2)
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σ I Cauchy surface stress tensor (N/m)
σI Surface tension (N/m)
ε Linear strain tensor (1)
ε I Linear surface strain tensor (1)
m Mass of a body (kg)
ρ Mass density (kg/m3)
ρI Surface mass density (kg/m2)
λ LamÉ’s first parameter (N/m2)
μ LamÉ’s second parameter (N/m2)
λI First elastic surface parameter (N/m)
μI Second elastic surface parameter (N/m)
ν Poisson’s ratio (1)
ψ Gravitational potential (m2/s2)
G Gravitational constant G = 6.67408 � 10−11 m3/(kg s2)
g Gravitational specific force density (m/s2)
Ftot. Total force acting on a body (N)
f Volumetric force density (N/m3)
f I Surface force density (N/m2)
f̂ Scale of surface force density (N/m2)
q Heat flux (N/(ms))
r̂ Specific heating (m2/s3)
u Specific internal energy (m2/s2)
χv Compressibility factor (1)
ev Relative volume change (1)
γ Pressure-related factor (1)

Electrodynamics

B Magnetic flux density (T)
H Potential of total electric current (A/m)
H Potential of free electric current (A/m)
M Minkowski magnetization (A/m)
E Electric field (V/m)
D Potential of total electric charge (C/m2)
D Potential of free electric charge (C/m2)
P Polarization (C/m2)
V Electric disturbance potential (V)
V Scaled electric disturbance potential (1)
E0 External electric field (V/m)
Edist. Electric disturbance field (V/m)
E0 External electric field strength (V/m)
M0 Magnetization strength of a magnet (A/m)
β Direction factor of magnetization (1)
μ0 Vacuum permeability (N/A2)
μr Relative permeability (1)
ε0 Vacuum permittivity A2s2/(Nm2)
εr Relative permittivity (1)
q Total electric charge density (C/m3)
qf Free electric charge density (C/m3)
qr Bound electric charge density (C/m3)
qfI Singular free electric charge density (C/m2)
qrI Singular bound electric charge density (C/m2)
J Total electric current density (A/m2)
J f Free electric current density (A/m2)
J r Bound electric current density (A/m2)
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J I Singular total electric current density (A/m)
J fI Singular free electric current density (A/m)
J rI Singular bound electric current density (A/m)
j f Free diffusive electric current density (A/m2)
j fI Singular free diffusive electric current density (A/m)

Coupling of mechanics and electromagnetism

σ (EM) Electromagnetic stress tensor (N/m2)
g(EM) Electromagnetic momentum density (N/m2)
f (EM) Electromagnetic volumetric force density (N/m3)
f (EM)
I Electromagnetic surface force density (N/m2)

(·)L Quantity of generalized Lorentz force model
(·)Ai Quantity of an Abraham force model
(·)Mi Quantity of a Minkowski force model
(·)EL Quantity of Einstein–Laub force model

In problems of multiphysics, symbols often carry multiple meanings. For example, the letter μ refers to
Lamé’s second elastic parameter in elasticity and to magnetic permeability in electromagnetism. In order to
avoid confusions regarding the meaning of the symbols in this work, we list all symbols together with their
corresponding meaning and SI unit.

1 Introduction

The goal of this paper is to give insight into the force coupling of mechanics and electromagnetism by
analyzing selected problems. In literature, there are many suggestions which model of the electromagnetic
force is “correct.” Hopefully a model can be found, which holds for arbitrary matter and dynamical contexts.
However, the existence of such a model is by no means guaranteed. In the ongoing discussion in academia,
many gedankenexperiments are used in order to push certain models. These are often based upon the dynamics
of light waves or considerations of photons.

It is the believe of the authors of this work that real experiments can give insight into the applicability of the
individual force models. Such experiments should be conducted on bodies of finite size, which can be modeled
by using continuum physics. When considering bodies at the macroscopic scale, every electromagnetic force
model implies

– an acting total force and
– distributions of local force densities.

This is an important issue, as for example, two models may yield the same total force but different local forces.
In continuummechanics it is clear that even if two loadings yield the same total force on a body, the deformation
may vary considerably, depending on the distribution of the load. Therefore, measurement of total forces and
of the deformations may give insight to the applicability of a force model. It is probably not possible to
prove mathematically that a certain force model is “correct.” However, by conducting many experiments with
different matter and loading scenarios, it should be possible to reduce the number of force models. Hopefully,
this way a most generally applicable force model can be found. In this sense, we consider an electromagnetic
forcemodel to be “correct,” if its predictions of the total force that acts on a body as well as of the distribution of
the local force agree with experiments. In contrast to total forces acting on bodies, distributions of force cannot
be measured directly. However, their implications can be measured, e.g., displacement figures are observable.
For example, it is possible that various electromagnetic force models yield the same prediction of total force,
even though they imply different displacement fields. In this paper, these differences are demonstrated with a
few selected force models in context of some static problems.

The underlying assumption of all electromagnetic force models is that mechanical linear momentum is
not a conserved quantity. The electromagnetic force is considered a production quantity. For example, neither
kinetic energy nor internal energy is a conserved quantity. However, the sum of both energies is conserved
as the production terms in form of the inner friction cancel out. This motivates the assumption that there
exists a balance of linear electromagnetic momentum. The sum of this balance with the (classical) mechanical
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momentum balance should not possess a production term, i.e., the electromagnetic force will cancel out. The
“proper” form of the electromagnetic momentum balance introduces a density of electromagnetic momentum,
an electromagnetic stress tensor and the electromagnetic force density. It will be shown that the form of the
local equation within a body also implies the form of the electromagnetic force on interfaces.

From the point of view of continuum physics, it is known that the interfaces between bodies must be treated
with special care. Here fields may possess high gradients that cannot be resolved on the continuum scale.
Therefore, at such surfaces, fields are modeled as discontinuities. Depending on the materials in contact, there
may be distributed mass, stress, etc. on such an interface. This implies that there are additional local balance
equations for interfaces. Consideration of these equations and of the interface form for every electromagnetic
model-dependent force is important in the analysis. This will be detailed in this work.

There are many electromagnetic force models in the literature. Hence, for conciseness, only a few selected
ones are introduced and exemplified in this chapter. In this paper, these models are not derived and also not
discussed in detail (from a theoretical point of view)—there are many investigations of the various theories,
e.g., [16]. Here, the used models are only stated briefly and their implications are investigated. In order to
gain insight into the applicability of the various considered force models, the following static problems are
considered:

1. The total force between two coaxial equal cylindrical magnets will be computed with the considered
models. Depending on the direction of the magnetization of the magnets, they can either attract or repel
each other. By using the various models, the total force will be computed. The results are compared with
conducted experiments using a microtensile testing machine.

2. As an example for local effects, an elastic and homogeneously magnetized sphere is considered. The
magnetic self-field interacts with the magnetization, allowing for a model-dependent prediction of elec-
tromagnetic forces. These cause magnetostriction of the sphere, which can be computed for small strains
by using themethod of Hiramatsu andOka.With different forcemodels employed, varying deformation
figures will result. However, no experimental data are currently available for this problem. The results
may motivate future experiments in this field, either for this or for a similar problem.

3. A second example is considered to show local effects of the models. A (spherical) drop of silicone oil
is submerged in castor oil, and the setup is placed in a homogeneous electric field. Due to the different
permittivities of the oils, a (model-dependent) deformation is to be expected. On the interface between the
oils there exists a surface stress. This stress is modeled here for small displacements. The resulting field
equations on the interface are solved for the surface displacement. Since this experiment was previously
reported in the literature, the computed displacements can be compared with experimental photographs.

By investigating all aforementioned problems, the applicability of the considered force models can be ana-
lyzed. As these are static problems, this classical three-dimensional mechanical momentum equation (that is
Euclidean invariant) can be used in the analysis.

This paper starts with a gedankenexperiment on gravitation. It serves well to show a fundamental difficulty
in the formulation of electromagnetic force models, where there is certain freedom in the relation between the
electromagnetic volume and surface force densities. In the next section, the general coupling of continuum
mechanics and electromagnetism is introduced and discussed, independent of a force model. Here, the relation
between volume and surface force is detailed.Next, a few selected electromagnetic forcemodels are introduced,
and the individual momentum densities, stress measures, and force densities are shown. In the subsequent
three sections, the aforementioned problems are mathematically examined and, with the exception of the
magnetostriction problem, compared to experimental data. Last, the findings are summarized and discussed.

2 A gedankenexperiment with gravitation

To become familiar with the problems that are related to electromagnetic force models, let us re-investigate
Newton’s law of gravitation:

�ψ(x) = 4πGρ(x), g(x) = −∇ψ(x).

Let us now investigate a body without any external influences, e.g., a body in empty space (say). Here, the
total force of the body reads

Ftot. =
∫

Ω

f dV, f = ρg.
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Of course without any external influences, this force vanishes. However, for the sake of the argument, let us
not assume so a priori. As a special case, we consider a homogeneous and constant mass density, ρ = ρ0.
Then, one can write via Gauss’ law

Ftot. =
∫

Ω

f dV = −
∫

Ω

ρ0∇ψ dV = −
∮

∂Ω

ρ0ψn dA. (2.1)

Even though this reformulation is mathematically correct, it can be exploited to state an (absurd) gravitational
force model. Define a surface force density

f I = −ρ0ψn

and claim that this is the “true” density of force; hence there is no volumetric force density. Obviously, the
global force is the same, i.e., zero. However, different local effects can be observed. As an example, let us
analyze an isotropic linear-elastic sphere of radius R with these two gravitational force models. First, the
Poisson equation for ψ readily yields

ψ(x) = 2
3πGρ0(r

2 − 3R2)

in the interior, unique up to a constant. With the mass of the sphere, m = 4π/3R3ρ0, the force densities of the
two models are

f = −ρ0
mG

R3 rer , or f I = mGρ0

R
er .

Employing Hooke’s law of linear elasticity,

σ = λtr(ε)1 + 2με, ε = 1
2 (∇ ⊗ u + u ⊗ ∇),

the first model implies for the equilibrium

∇ · σ = − f , (er · σ )r=R = 0, (G1)

where u is the displacement and σ the Cauchy stress tensor. The second model yields

∇ · σ = 0, (er · σ )r=R = f I , (G2)

using the same stress measure. Of course, the displacements are unique only up to rigid body modifications.
Due to spherical symmetry, u = ur (r)er , these problems are readily solved. With r̃ = r/R there follows

u(1) = ρ0mG

μ
r̃
(2 + 3 λ

μ
)r̃2 − 6 − 5 λ

μ

10(2 + λ
μ
)(2 + 3 λ

μ
)
er , u(2) = ρ0mG

μ

r̃

2 + 3 λ
μ

er .

The radial displacements are normalized by ur = ρ0mGμ−1ũr and visualized in Fig. 1. Clearly, the results
are very different from one another, even though both models yield a vanishing total force acting on the sphere.
The local forces and, consequently, the displacements are not equal. What went wrong here? In the context of
Eq. (2.1), the localization theorem was violated, and therefore, any subsequent analysis is invalid.

Why did we consider this example? It can be seen that different distributions of volume and surface forces
lead to differently deformed objects, even if the total force acting on the body is equal. With electromagnetic
force models, there are certain degrees of freedom w.r.t. volume and surface forces. In contrast to the example
considered here, it is not intuitively clearwhichmodel is physically correct. Thiswill subsequently be discussed.
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(a) (b)

Fig. 1 Normed radial displacements of both gravitational models. For visualization, the ratio λ/μ = 1 was employed. aNewton’s
gravitation. b Absurd gravitation model

3 Coupling of mechanics and electrodynamics

In continuum mechanics, additive quantities are balanced. In balances of conserved quantities, there may be
supply terms (that can be deactivated, in theory) but no so-called production terms. A production term models
some kind of reaction that cannot be controlled directly. Let us consider the classical balance of kinetic energy
(without any electromagnetic influences)

ρ
d

dt

(v · v

2

)
− ∇ · (v · σ ) = −(v ⊗ ∇) ·· σ + v · ρ f .

In this equation, σ is the (Cauchy) stress tensor, ρ the density of mass, v the barycentric velocity, and f is the
specific volume force. The double contraction ( ·· ) of two tensors of rank two is given by A ·· B = Ai j Bi j , if
the components are given in an orthonormal basis. The specific body force is due to long range (gravitational)
effects. In theory, if a body is moved far away from other masses, it is possible to deactivate this term. Hence,
v · ρ f can be interpreted as a supply term of kinetic energy. However, σ models short-range effects and can
therefore not be deactivated directly, and hence −(v ⊗ ∇) ·· σ is a production term. This production is called
internal friction. Therefore, kinetic energy is not conserved. However, there is also a balance of internal energy.
Without electromagnetic influences, it reads

ρ
du

dt
+ ∇ · q = (v ⊗ ∇) ·· σ + ρr̂ ,

where u is the specific density of internal energy, q is the heat flux, and r̂ a specific radiation density. It is
commonly assumed that r̂ can be controlled. Adding these balances yields

ρ
d

dt

(v · v

2
+ u

)
+ ∇ · (−v · σ + q) = v · ρ f + ρr̂ ,

and there is no production term anymore. This is the local balance of total energy, a conserved quantity. Let
us now consider the balance of linear momentum with electromagnetic influences

ρ
dv

dt
− ∇ · σ = ρ f + f (EM) ⇔ ∂

∂t
(ρv) + ∇ · (ρv ⊗ v − σ ) = ρ f + f (EM),

where f (EM) is a force density due to electromagnetic field. This density can also not be directly controlled and
must therefore be considered as a production term. Linear (mechanical) momentum in not a conserved quantity
from this viewpoint. As in the case of the energy balances, one suspects that there exists a total momentum bal-
ance without any production term to model some kind of conserved yet undefined total momentum. Therefore,
another balance should exist of the form

∂

∂t
(g(EM)) − ∇ · σ (EM) = − f (EM), (3.1)
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Fig. 2 Transition zone between two regular domains. High gradients may exist in a small transition zone that cannot be resolved
on a macroscopic scale. The situation is handled in an idealized manner by using discontinuous functions w.r.t. the “singular”
surface I . The transition zone Ωδ is determined by I and a characteristic width δ

so that
∂

∂t
(ρv + g(EM)) + ∇ · (ρv ⊗ v − σ − σ (EM)) = ρ f

is a balance of a conserved momentum quantity. Regretfully, the densities and the flux (and even the force
on the right-hand side) in the balance (3.1) are not known in general. The flux σ (EM) is commonly referred
to as electromagnetic stress tensor. There is a vast number of possible candidates resulting in many ongoing
academic disputes. This point will be discussed in detail in the next section.

Note that Eq. (3.1) already determines the structure of the surface force. For a small volumetric region
containing the boundary of a body, one can define the surface force density for the region considered in Fig. 2.
The considered volume Ωδ has two large plane surfaces parallel to the boundary of the original bodies. The
distance between the two planes is given by a smallness parameter δ. By shrinking δ, the connecting side
surfaces of Ωδ tend to zero, and the volume degenerates to the mid-sectional plane I . By making use of this
idea, a surface force w.r.t. the plane I can be defined through

∫

I

f (EM)
I dA := lim

δ↘0

∫

Ωδ

f (EM) dV = lim
δ↘0

∫

Ωδ

(
−∂ g(EM)

∂t
+ ∇ · σ (EM)

)
dV

= − lim
δ↘0

d

dt

∫

Ωδ

g(EM) dV + lim
δ↘0

∮

∂Ωδ

n · (w ⊗ g(EM) + σ (EM)) dA

=
∫

Aleft

n · (w ⊗ g(EM) + σ (EM)) dA +
∫

Aright

n · (w ⊗ g(EM) + σ (EM)) dA

=
∫

I

n · [[w ⊗ g(EM) + σ (EM)]] dA.

In the calculation, Reynolds’ transport theorem and Gauss’ theorem were employed. This analysis holds for
an arbitrary surface region, and we find that

f (EM)
I = n · [[w ⊗ g(EM) + σ (EM)]] ∀x ∈ ∂Ω. (3.2)

For a definition of the jump brackets [[·]] and also of the mean value brackets 〈·〉, see Eqs. (A.1).
It can be noted that there are other approaches to model the electromagnetic interaction. For example,

Kovetz proposed in [18] an entropy-based procedure to model the interaction in a material-dependent manner.
In the presented procedure, he postulated the form of an extended energy flux. Recently, [35] examined these
postulates and derived Kovetz’ equations, e.g., the non-standard form of the Clausius–Duhem inequality.
This derivation is based on first principles of continuum mechanics and electromagnetism. Therein, the forms
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of the electromagnetic force as well as of the power are assumed a priori. There is another interesting point
raised in [35] in context of domains where all electromagnetic fields are sufficiently smooth. In those regions,
there is no surface force, i.e., the total electromagnetic force is then given by F = ∫

Ω
f (EM) dV . If in this case

the total force agrees with measurements, one can argue that f (EM) is the correct local distribution of force
due to the localization theorem. However, in most technical applications, there are singular surfaces, e.g., the
surface of a magnet or of a capacitor. This is due to abrupt changes of material properties on very small scales
at the boundary of most technically relevant bodies. Here, it cannot be assumed a priori that f (EM) is the correct
force distribution as the total force in such a case is given by F = ∫

Ω
f (EM) dV +∫

∂Ω
f (EM)
I dA. Solely the value

of F can be compared to experiments. Here, the localization theorem cannot be applied as the integral types
do not agree.

4 Electromagnetic force models

Over the years many force models have been introduced in the literature. The discussion began with the models
presented in the papers of Einstein andLaub [9],Minkowski [24], andAbraham [1]. Another famousmodel
was presented later byChu et al. [6]. Othermodels are outlined in [15,26,39], e.g., a generalizedLorentz force
model. In [16] modeling of the electromagnetic force is detailed bymany examples, based on thermodynamical
principals.

There is one specific case where everybody agrees upon the force: If magnetization and polarization
vanish, the force density is given by the Lorentz law in the form w.r.t. free charges and currents. This was
well discussed in the work of Truesdell and Toupin [39, Sect. 284]. There is no consensus in academia
which model is “correct” if magnetization and polarization are present; see the discussions in [3,5,12,21–
23,28,33,40], among others. Often, this discussion is referred to as “Abraham–Minkowski controversy.”
However, this discussion may be misleading as it is by no means certain that any of these two models gives a
correct prediction in an arbitrary situation.

Due to the vast number of models introduced in the literature, we only consider a selection of few. Most
force models are based upon an initial postulate of the linear electromagnetic momentum density, g(EM). Then,
identities of vector calculus and Maxwell’s equations are used to find an identity of the form shown in
Eq. (3.1). However, any such identity is not a unique representation. It is possible to transfer parts of the flux
into the force density and vice versa. This will be demonstrated in a few examples. This is important to note
as different identities imply different volume and surface force densities. The impact which this can have was
demonstrated with local deformations in the gedankenexperiment of Sect. 2.

4.1 Generalized LORENTZ force model

In the work of Truesdell and Toupin [39, Sect. 284], the density of linear electromagnetic momentum was
set to be g(EM) = D×B in the absence of anymagnetization and polarization, so that a symmetric stressmeasure
is obtained. A generalized Lorentz force model assumes that this density is also valid if magnetization and
polarization are present. The physical motivation behind this extension is the concept that the forces due to free
and bound charges as well as currents are indistinguishable. More precisely, one assumes that the Lorentz
force model of free charges and currents is generalized by setting

qfE + J f × B → qE + J × B.

This concept is commonly used in the work of I.Müller and followers; see, e.g., [26, Sect. 9.5], [27], or [13].
Using Maxwell’s equations, the Maxwell–Lorentz æther relations, and identities of vector calculus,

the following identity can be obtained in an inertial frame:

∂

∂t
(gL) − σL = − f L, with gL = D × B, f L = qE + J × B,

σL = − 1
2 (ε0E · E + 1

μ0
B · B)1 + ε0E ⊗ E + 1

μ0
B ⊗ B.

(4.1a)

As discussed before, a postulate of the momentum density does not yield a unique representation. However,
without magnetization and polarization, the force must be qfE + J f × B. One now demands that the form of
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the force remains, i.e., qf is exchanged by q and J f by J . The flux defined above satisfies this requirement
and is generally used in this model. One can also note that the obtained flux is symmetric.

By using the singular forms of Maxwell’s equations in Table2 and some vector identities, one can find
by evaluating Eq. (3.2) that

f LI = qI 〈E〉 + J I × 〈B〉. (4.1b)

The computations needed to obtain these representations of the forces are simple yet tedious. For this force
model, the procedure is shown in AppendixC. For the following models, the computations are similar and
therefore omitted.

4.2 ABRAHAM momentum density

The momentum density postulated by Abraham reads

gA = D × μ0H.

By usingMaxwell’s equations, the following relation can be derived:

gA = D × μ0H = D × (B − μ0M) = gL − μ0D × M.

For the fixed density, we can find infinitely many identities of the form

∂

∂t
gA − ∇ · σAi = − f Ai .

The index i was introduced to distinguish the different choices for the flux and force density. For each choice,
the flux and the force must be compatible, but it is always possible to transform parts of the flux to the force
and vice versa. Therefore, there is no unique representation. In the following, we investigate two possibilities
with an arbitrary symmetric and non-symmetric flux.

1. The symmetric choice of the flux σA1 = σL yields the fixed forces:

f A1 = qE + J × μ0H + (∇ × B) × M + μ0D × ∂M
∂t

,

f A1
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] + (n × [[B]]) × 〈M〉.

2. The second choice made is to set σA2 = σL − M ⊗ B, and the result reads:

f A2 = qE + J × μ0H − ∇ · (M ⊗ B) + μ0D × ∂M
∂t

,

f A2
I = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]]+

+ (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉].

4.3 MINKOWSKI momentum density

The density proposed by Minkowski reads

gM = D × B = gL + P × B.

Again, there are infinitely many identities of the form

∂

∂t
gM − ∇ · σMi = − fMi .

Analogously to the Abraham density above, we investigate an arbitrary symmetric and non-symmetric flux.
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Fig. 3 Cross section and geometry of the analyzed cylindrical magnets

1. The symmetric choice of the flux: σA1 = σL yields the fixed forces

fM1 = qE + J f × B + (∇ × M) × B − (∇ × E) × P,

fM1
I = qI 〈E〉 + J fI × 〈B〉 + 〈P〉 × (n × [[E]]) + (n × [[M]]) × 〈B〉.

2. The second choice made is to set σM2 = σL + P ⊗ E − B ⊗ M, and there results

fM2 = qf E + J f × B − (∇ ⊗ M) · B + (∇ ⊗ E) · P,

fM2
I = qfI 〈E〉 + J fI × 〈B〉 + n(〈P〉 · [[E]] − 〈B〉 · [[M]]).

4.4 EINSTEIN–LAUB force model

The Einstein–Laub force model defines the momentum density, the flux, and the force by

gEL = D × μ0H = gL − D × μ0M,

σEL = − 1
2 (ε0E · E + μ0H · H)1 + D ⊗ E + B ⊗ H,

f EL = qf E + J f × μ0H + P · (∇ ⊗ E) + ∂ P
∂t

× μ0H + μ0M · (∇ ⊗ H) − μ0
∂M
∂t

× D.

Due to Eq. (3.2), this also fixes the surface force. One finds that

f ELI = fM2
I + n[[B · M − μ0

2 M · M]] − w⊥[[D × μ0M + P × μ0H]].
Note that this force model employs the same momentum density as the Abraham models.

5 An example of global effects: total force between two magnets

We consider two cylindrical ideal magnets possessing a constant homogeneous axial magnetization of strength
M0. Both cylinders have the same geometry and are coaxially aligned.We are interested in the total force acting
between the two magnets as a function of the end-to-end distance d , cf. Fig. 3.

In this section, the force is computed employing each introduced force model above. The theoretical results
are compared to each other and with conducted experimental data.

First, all force models are specialized for the magnetostatic case. At this stage, we are not interested in
the deformation of the magnets and therefore ignore the self-field of a considered magnet. Such fields do not
contribute to the total force, i.e., a perpetuum mobile is not possible. It can be shown that their contributions
vanish.

The magnetic fields of hollow cylinders, which are axially magnetized, are computed in [31]. The result
can be specialized to a solid cylinder. For the magnetization direction, a factor β is introduced

β =
{

+1, M · ez = +M0,

−1, M · ez = −M0.



244 F. A. Reich et al.

The magnetic field of one cylinder reads

B(x̃) = μ0M0β
1
π

1∑
γ=0

(−1)γ 1√
H2

γ

[
1
k2γ

{
(k2γ − 2)K(k2γ ) + 2E(k2γ )

}
eξ + Zγ

2

{
1−ξ̃

1+ξ̃
�(m2, k2γ ) + K(k2γ )

}
ez

]
,

with

Zγ (z̃) = z̃ + (−1)γ H̃ , H2
γ (ξ̃ , z̃) = 1 + 2ξ̃ + ξ̃2 + Z2

γ , k2γ (ξ̃ , z̃) = 4ξ̃
H2

γ
, m2(ξ̃ ) = 4ξ̃

(1+ξ̃ )2
.

All quantities herein marked with tildes are normalized by R, e.g., ξ̃ = ξ/R, where ξ is the cylindrical radial
coordinate. The occurring complete elliptic integrals are defined by

K(k) =
π
2∫

ϕ=0

1√
1 − k2 sin2 ϕ

dϕ, E(k) =
π
2∫

ϕ=0

√
1 − k2 sin2 ϕ dϕ,

�(m, k) =
π
2∫

ϕ=0

1

(1 − m sin2 ϕ)
√
1 − k2 sin2 ϕ

dϕ.

Subsequently, we are interested in the magnetic field of the second magnet observed in the system of the first.
Therefore, a coordinate transformation w.r.t. the axial direction is performed: z2 = z1 − (2H + d). Defining
κ = d/R, the magnetic field of the second magnet w.r.t. the coordinate system of the first reads

B(2)(ξ̃ , z̃1) = B(ξ̃ , z̃1 − 2H̃ − κ).

Note that ξ̃ is equal in both coordinate systems as the cylinders are coaxial.

5.1 Magnetostatic force specialization

In this situation, all time derivatives vanish. Furthermore, there are no polarization, no free charges, and no
free currents. Because the magnetization is homogeneous corresponding spatial derivatives vanish. Also, the
polarization charge qr = −∇ · P , the polarization current ∂ P/∂t, and the magnetization current ∇ × M vanish.
Therefore, q = 0 and J = 0 in the magnets.

Since there is no polarizable medium outside the magnets, qrI = 0. Since the magnets do not move, the
surface polarization current −[[P]]w⊥ vanishes also. However, there is a surface current due to magnetization,
i.e., n × [[M]]. Note that there are no electric charges in any region, and therefore, E ≡ 0 everywhere.

SinceMaxwell’s equations in a body at rest are linear, the totalmagnetic field can be decomposedw.r.t. the
individual fields of the two cylinders. The superimposed field at any point in space reads B(12) = B(1) + B(2).
Since we are only interested in the total force acting on the first cylinder and not in the deformation of that
cylinder, only the field B(2) is of interested. This simplifies the analysis, and on the surface of the first cylinder,
we have

[[B(2)]] = 0, and 〈B(2)〉 = B(2), ∀x ∈ ∂Ω1.

Also, in Ω1, B(2) = μ0H(2). Therefore, ∇ × B(2) = 0 in this region. In what follows, we use a normalization
B(2) = μ0M0 B̃(2). Furthermore, the jump of the magnetization on the surface of the first cylinder ∂Ω1 is a
priori known as [[M]] = −M0ez , where the magnetization of the first cylinder is always set in the positive
z-direction.
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The above stated force relations reduce to

f L = 0,

f LI = (n × [[M]]) × 〈B〉 = μ0M
2
0 (ez × n) × B̃(2),

f A1 = 0,

f A1
I = (n × [[M]]) × 〈B − μ0M〉 + (n × [[B]]) × 〈M〉

= μ0M
2
0 (ez × n) × (B̃(2) − 1

2 ez),

f A2 = −∇ · (M ⊗ B) = −μ0M
2
0∇ · (ez ⊗ B̃(2)),

f A2
I = (n × [[M]]) × 〈B − μ0M〉 + (n × [[B]]) × 〈M〉 − n · ([[M]] ⊗ 〈B〉 + 〈M〉 ⊗ [[B]])

= μ0M
2
0 [(ez × n) × (B̃(2) − 1

2 ez) + (n · ez)B̃(2)],
fM1 = 0,

fM1
I = (n × [[M]]) × 〈B〉 = μ0M

2
0 (ez × n) × B̃(2),

fM2 = 0,

fM2
I = −(〈B〉 · [[M]])n = μ0M

2
0 B̃

(2)
z n,

f EL = M · (∇ ⊗ μ0H) = ∇ · (M ⊗ μ0H) = ∇ · (M ⊗ B)

= μ0M
2
0∇ · (ez ⊗ B̃(2)),

f ELI = fM2
I + n[[B · M − μ0

2 M · M]] = −(〈B〉 · [[M]])n + (〈B〉 · [[M]])n − nμ0
2 [[M · M]]

= μ0M
2
0
1
2n.

5.2 Theoretical axial force predictions

Now we proceed to compute the axial force for the individual models.

Generalized LORENTZ: The volume force density vanishes, and the surface density is only different from zero
at the lateral surface. Therefore, we obtain

FL = μ0M
2
0 R

2

2π∫

ϕ=0

H̃∫

z̃1=−H̃

eϕ × B̃(2) dϕ dz̃1 = −μ0M
2
0 R

22πez

H̃∫

z̃1=−H̃

B̃(2)
ξ (ξ̃ = 1, z̃1) dz̃1,

where any forces in the lateral directions were ignored because they cancel out due to azimuthal symmetry.
In the following, we employ normalized forces, i.e., F = μ0M2

0 R
2 F̃. Therefore, we have a normalized axial

force

F̃L
z = −2π

H̃∫

z̃1=−H̃

B̃(2)
ξ (ξ̃ = 1, z̃1) dz̃1.

This integral will be computed later.

Symmetric MINKOWSKI: For this special case, we immediately obtain

F̃M1
z = F̃L

z ,

since the force densities in both models are equal.
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Asymmetric MINKOWSKI:We find that only the surface density at the base areas do not vanish

F̃M2
z = 2π

1∑
γ=0

(−1)γ
1∫

ξ̃=0

B̃(2)
z (ξ̃ , z̃1 = (−1)γ H̃)ξ̃ dξ̃ .

However, this integral can be rewritten using Gauss’ law and noting that

0 =
∫

Ω1

∇ · B̃(2) dV =
∮

∂Ω1

n · B̃(2) dA

= 2πR2

H̃∫

z̃1=−H̃

B̃(2)
ξ (ξ̃ = 1, z̃1) dz̃1 + 2πR2

1∑
γ=0

(−1)γ
1∫

ξ̃=0

B̃(2)
z (ξ̃ , z̃1 = (−1)γ H̃)ξ̃ dξ̃ . (5.1)

Therefore, we obtain again the same result,
F̃M2
z = F̃L

z .

Symmetric ABRAHAM: In this problem, only a force density on the lateral surface exists. Ignoring force com-
ponents in the lateral directions as they cancel out by integration, we obtain

F̃A1
z = F̃L

z .

Asymmetric ABRAHAM: First, we investigate the volume force
∫

Ω1

f A2 dV = −μ0M
2
0

∫

Ω1

∇ · (ez ⊗ B̃(2)) dV = −μ0M
2
0

∮

∂Ω1

n · (ez ⊗ B̃(2)) dA

= −μ0M
2
0 R

22πez
1∑

γ=0

(−1)γ
1∫

ξ̃=0

B̃(2)
z (ξ̃ , z̃1 = (−1)γ H̃)ξ̃ dξ̃ = −μ0M

2
0 R

2 F̃L
z ez,

in which lateral components are neglected. The analysis of the surface force yields

∮

∂Ω1

f A2
I dA = −μ0M

2
0 2πR2ez

H̃∫

z̃1=−H̃

B̃(2)
ξ (ξ̃ = 1, z̃1) dz̃1

+μ0M
2
0 2πR2

1∑
γ=0

(−1)γ
1∫

ξ̃=0

B̃(2)
z (ξ̃ , z̃1 = (−1)γ H̃)ξ̃ dξ̃ = 2μ0M

2
0 R

2 F̃L
z ez,

owing to Eq. (5.1). Hence,
F̃A2
z = F̃L

z .

EINSTEIN–LAUB:By comparing the volume force densities of this model with the corresponding expression of
the asymmetric Abraham case studied above, we immediately have

∫

Ω1

f EL dV = μ0M
2
0 R

2 F̃L
z ez .

On the surface, the integrated force vanishes. Hence,

F̃EL
z = F̃L

z .
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5.3 Analytical solution

Remarkably, all force models yield the same total force acting on the considered magnet. That the total
electromagnetic force that acts on a body is the same for many electromagnetic force models in many situations
has been noted in the literature before, cf. [29] and [16, Chap.3]. Here, the analytical solution of all models
reduces to computing the integral

F̃z = −2π

H̃∫

z̃1=−H̃

B̃(2)
ξ (ξ̃ = 1, z̃1) dz̃1, or: F̃z = 2π

1∑
γ=0

(−1)γ
1∫

ξ̃=0

B̃(2)
z (ξ̃ , z̃1 = (−1)γ H̃)ξ̃ dξ̃ .

In the following, the former integral is considered. The normalized radial field component of the secondmagnet
is given by

B̃(2)
ξ (ξ̃ , z̃1) = B̃ξ (ξ̃ , z̃1 − 2H̃ − κ), B̃ξ (ξ̃ , z̃) = β

1
π

1∑
γ=0

(−1)γ 1√
H2

γ

1
k2γ

{
(k2γ − 2)K(k2γ ) + 2E(k2γ )

}
.

On the lateral surface, we have ξ̃ = 1, and find

Zγ (z̃) = z̃ + (−1)γ H̃ , k2γ (1, z̃) = 4
H2

γ
, H2

γ (1, z̃) = 4 + Z2
γ = 4

k2γ
,

so that √
H2

γ (1, z̃)k2γ (1, z̃) = 2
√
k2γ (1, z̃).

In this special case, the modulus k2γ is only a function of z̃, so we can set hγ (z̃) := k2γ (1, z̃). With this, the
integral reads

F̃z = −β

1∑
γ=0

(−1)γ
H̃∫

z̃1=−H̃

1√
hγ (z̃2)

{
(hγ (z̃2) − 2)K(hγ (z̃2)) + 2E(hγ (z̃2))

}
dz̃1, where z̃2 = z̃1 − 2H̃ − κ.

This integral F̃z can be transformed by using

dhγ = ∂hγ

∂Zγ

∂Zγ

∂ z̃2

∂ z̃2
∂ z̃1

dz̃1 =
√
h3γ − h4γ dz̃1 ⇔ dz̃1 = 1√

h3γ −h4γ
dhγ ,

where the proper sign has been determined by noting that Zγ (z̃2(z̃1)) < 0 for z̃1 ∈ [−H̃ , H̃ ]. Therefore,

F̃z = −β

1∑
γ=0

(−1)γ
�γ 1∫

hγ =�γ 0

{
(hγ − 2)K(hγ ) + 2E(hγ )

} 1

h2γ
√
1 − hγ

dhγ , (5.2)

where

�γδ = 4

4 + (−(−1)δ H̃ − 2H̃ − κ + (−1)γ H̃)2
= 4

4 + ([(−1)δ − (−1)γ + 2]H̃ + κ)2
.

The integral can be solved by using the series representations of the elliptic integrals, i.e.,

K(h) = π

2

∞∑
n=0

P2
2n(0)h

n, E(h) = π

2

∞∑
n=0

P2
2n(0)

1 − 2n
hn,
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where Pn denotes the nth Legendre polynomial; see [11]. By acknowledging the series representation,
the integral reads

F̃z = −β
π

2

∞∑
n=0

P2
2n(0)

1∑
γ=0

(−1)γ
�γ 1∫

hγ =�γ 0

{
hγ + 4n

1 − 2n

} hn−2
γ√

1 − hγ

dhγ .

Noting that

artanh(x) = 1
2 [ln(1 + x) − ln(1 − x)],

the arising integrals can be solved by analyzing the cases n = 0 and n = 1 first,

(n = 0) :
�γ 1∫

hγ =�γ 0

h−1
γ√

1 − hγ

dhγ = −
1∑

δ=0

(−1)δ[ln(1 − √
1 − �γδ) − ln(1 + √

1 − �γδ)]

= 2
1∑

δ=0

(−1)δ artanh(
√
1 − �γδ),

(n = 1) :
�γ 1∫

hγ =�γ 0

{hγ − 4} h−1
γ√

1 − hγ

dhγ = 2
1∑

δ=0

(−1)δ[√1 − �γδ − 4 artanh(
√
1 − �γδ)].

For n > 1, we employ a coordinate transformation gγ = 1 − hγ , so that

(n > 1) :
�γ 1∫

hγ =�γ 0

{
hγ + 4n

1 − 2n

} hn−2
γ√

1 − hγ

dhγ = −
1−�γ 1∫

gγ =1−�γ 0

{
1 − gγ + 4n

1 − 2n

} (1 − gγ )n−2

√
gγ

dgγ

=
1∑

δ=0

(−1)δ
1−�γδ∫

gγ =0

{
1 − gγ + 4n

1 − 2n

} (1 − gγ )n−2

√
gγ

dgγ .

The integral in the so-obtained form can be solved in terms of incomplete beta functions, defined by

B(x; a, b) :=
x∫

u=0

ua−1(1 − u)b−1 du, x ≤ 1 ∧ a > 0.

By using this function, we find that for any n > 1

1∑
δ=0

(−1)δ
1−�γδ∫

gγ =0

{
1 − gγ + 4n

1 − 2n

} (1 − gγ )n−2

√
gγ

dgγ

=
1∑

δ=0

(−1)δ[B(1 − �γδ; 1
2 , n) + 4n

1−2nB(1 − �γδ; 1
2 , n − 1)].

Hence, the problem is solved. However, for a more convenient representation, it is advantageous to introduce
the hypergeometric function 2F1 by

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! ,
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where (·)n denote Pochhammer symbols; see [2, p. 256]. The incomplete beta functions are related to this
function by

B(x; a, b) = xa

a
2F1(a, 1 − b; a + 1; x), so that

B(1 − �γδ; 1
2 , n)

2
√
1 − �γδ

= 2F1( 12 , 1 − n; 3
2 ; 1 − �γδ),

B(1 − �γδ; 1
2 , n − 1)

2
√
1 − �γδ

= 2F1( 12 , 2 − n; 3
2 ; 1 − �γδ).

Also, we can note that

2F1( 12 , 0; 3
2 ; x) = 1,

√
x 2F1( 12 , 1; 3

2 ; x) = artanh(
√
x).

Therefore, we obtain the scaled force function as

F̃z(κ) = −βπ

∞∑
n=0

1∑
γ=0

1∑
δ=0

(−1)γ+δP2
2n(0)

√
1 − �γδ(κ) �

�
[
2F1( 12 , 1 − n; 3

2 ; 1 − �γδ(κ)) + 4n
1−2n 2F1( 12 , 2 − n; 3

2 ; 1 − �γδ(κ))
]
, (5.3a)

where the geometry function is given by

�γδ(κ) = 4

4 + ([(−1)δ − (−1)γ + 2]H̃ + κ)2
. (5.3b)

The symbol � in Eq. (5.3a) is typeset to indicate that a scalar multiplication of the two lines is performed.
The factor β is +1 if the magnetizations of the two magnets show in the same direction, i.e., attraction
forces are considered. For repelling forces, set β = −1. In order to obtain the force in physical dimensions,
multiply F̃z(κ) by the force amplitude μ0M2

0 R
2. To employ distances in physical dimensions, substitute

κ = d/R and H̃ = H/R.

To analyze this series solution, we consider a numerical solution F̃num
z obtained by means of numerical

integration of Eq. (5.2) with Mathematica, cf. [41]. In practical computations with the series solution, the sum
over n is cut off at some nmax. In Fig. 4a, it can be seen that series solution converges fast to the numerically
obtained solution in the far field. However, in order to obtain a good result for the contact force, a high number
nmax must be chosen. In order to evaluate convergence in this region, the relative error

erel(nmax) =
∣∣∣F̃z(κ = 0, nmax) − F̃num

z (κ = 0)
∣∣∣
∣∣∣F̃num

z (κ = 0)
∣∣∣−1

is shown in a double-logarithmic plot in Fig. 4b. It can be seen that the order of convergence is approximately
1/2 in this region.

5.4 Comparison to experiment

In order to verify formula (5.3), measurements with equal cylindrical neodymium magnets were conducted,
cf. [20]. The cylinders are axially magnetized as used in the analytical scenario above. The relevant properties
of the magnets are listed in Table1.

The total force for varying distances between the magnets is to be measured. Here, a microtensile testing
machine MTS TytronTM 250 is used, cf. [25]. In order to limit near-field magnetic disturbances, the magnets
are fixed inside plastic holders with epoxy resin. The holders are connected to rigid aluminum distance rods
that are connected to the testing machine. This way, the disturbances of the immediate neighborhood of the
magnets are negligible. The experiment is shown in Fig. 5.
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(a) (b)

Fig. 4 Visualization of the analytical series solution and numerical integration solution of the axial force. They are plotted for
varying κ in a. In b, the convergence of the contact force (κ = 0) is investigated. a Series solution of the axial force of Eq. (5.3)
with different nmax and the result of the numerical integration of Eq. (5.2). b Relative error of the analytical contact force w.r.t.
the numerical solution

Table 1 Selected properties of the magnets according to [20]

Property Value

Total axial length 2H 34.00mm
Diameter 2R 20.00mm
Geometrical tolerance ±0.10mm
Remanence μ0M0 (1.32–1.37)T

Fig. 5 Visualization of the axial force measurement. a A magnet in a plastic holder, connected to an aluminum distance rod. b
Measurement of the forces with a microtensile testing machine

Fig. 6 Visualization of a reduced number of measurement points and the a priori estimation with the analytical solution

Both magnets are installed unidirectionally w.r.t. the magnetization in order to obtain (positive) traction
forces, i.e., β = 1 in Eq. (5.3). For a first test of the formula, a mean remanence of 1.35T is used, and
R = 10mm. Hence, the force amplitude can be estimated to be ≈ 145N. According to the table, H̃ = 1.7.
With this estimated force amplitude and geometry, the force between themagnets can be computed via Eq. (5.3).
In Fig. 6, measured forces and the analytical estimations are plotted.

It can be seen that the estimation yields good results if the magnets are not too close to each other. In order
to obtain better results for small gaps between the magnets and to see whether the form function of Eq. (5.3)
describes the problem accurately, we assume that (a) the amplitude μ0M2

0 R
2 differs from the estimated value
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(a) (b)

Fig. 7 Visualization of a reduced number of measurement points and the analytical solution with fitted parameters in (a). In b,
the residuals of the measured data and the fitted solution are shown. In order not to clutter the plots, only a limited number of
measurement points is shown. aMeasured data and the best fit solution. b Residuals to measured data

and that (b) there may be a (small) axial position error. This error may be introduced in the measurement or
can be caused by manufacturing tolerances, as given in Table1. The assumption (b) is important as the form
function is steep for small values of d . Therefore, we introduce the following function with two degrees of
freedom:

Ffit
z (d,A,X ) = AF̃z((d−X )/R),

where A is the (unknown) force amplitude and X is an (unknown) axial position error. We take R = 10mm
as given by Table1. A nonlinear model fit is performed with Mathematica to obtain these parameters using
the measured data. The best fit result yields A = 128.2N and X = −0.12mm. The fitted force function is in
good agreement with the measured data as can be seen in Fig. 7. In order to evaluate the quality of the result,
an absolute residual rabs = Ffit

z − Fmeas.
z is regarded also in the figure.

As can be seen in the figure, the form of the force function given in Eq. (5.3) describes the physical
situation well. Even in the near-field, the residuals are small in comparison with the total force values. In
this region, many errors may accumulate: angle and position errors in the measurement, the magnets may not
be homogeneous as assumed, the magnetization of the material may possess a small field dependency, etc.
However, if the forces are not of interest for small gaps between the magnets, the a priori estimation obtained
via Table1 and Eq. (5.3) yields good results, as can be seen Fig. 6.

5.5 Discussion of the axial force analysis

From the computations and measurements performed in this section, we conclude for the considered example
of the magnets that

1. all considered models yield the same theoretical prediction, and
2. the prediction is in good agreement with the measurements.

The fact that in many situations various force models yield the same total force has been noticed in the
literature before, e.g., [4]. This gives rise to the question as to whether the total electromagnetic force is
equal for all conceivable force models for every material and every (dynamical) situation. This question is not
investigated any further here.

Since many force models lead to the same total force, the exact local force structure is often deemed
unimportant. However, from the perspective of continuum mechanics, it is clear that, in general, different
loading distributions for the same total force yield different deformations. Therefore, we shall analyze in the
following sections the local effects of the force models.

6 An example of local effects: magnetostriction with selected force models

In order to analyze local effects of the previously introduced electromagnetic force models, we investigate
another problem of magnetostatics. A permanent magnetic sphere of radius R with uniform magnetization,
M = M0ez , is considered. Also, this magnet is isotropically linear-elastic, with Lamé parameters λ and μ.
Depending on the considered force model, the magnetic field of the magnet gives rise to local forces acting
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Fig. 8 Streamlines of the fieldsH and B of a uniformly magnetized sphere. Colors indicate the norm of the corresponding field.
The geometry of the sphere is outlined in black. a Free current potentialH. bMagnetic flux density B

in the volume and on the surface. Because the magnet cannot accelerate itself, the total force is zero for all
models.

The solution of the magnetic field is well known,

BI = 2

3
μ0M0

(
P1(x)er + dP1(x)

dϑ
eϑ

)
= 2

3
μ0M0(cosϑer − sin ϑeϑ), (6.1a)

BO = 2

3
μ0M0r̃

−3
(
P1(x)er − 1

2

dP1(x)

dϑ
eϑ

)
= 2

3
μ0M0r̃

−3(cosϑer + 1
2 sin ϑeϑ), (6.1b)

where r̃ = r/R is the dimensionless radial spherical coordinate and x = cosϑ . The index I denotes the interior of
the magnet and O the exterior of the magnet. This solution is obtained in many textbooks on electromagnetism,
e.g., [10,17,37]. A visualization of the fields is given in Fig. 8.

6.1 Specialization of the local force densities

For the considered case of static magnetostriction, one can start by noting that the magnetic flux and free
current potential are linear in the magnetization and therefore also homogeneous in the interior:

BI = 2
3μ0M, HI = − 1

3M ;
therefore, any derivative of these fields vanishes. We can also note that the charge and current densities reduce
to

q = qf − ∇ · P = 0, qI = qfI − n · [[P]] = 0,

J = J f + ∂ P
∂t

+ ∇ × M = 0, J I = J fI − [[P]]w⊥ + n × [[M]] = n × [[M]].
In the first step, the force densities of the models introduced in Sect. 4 are reduced by using the relations from
above to read

f L = 0, f LI = (n × [[M]]) × 〈B〉,
f A1 = 0, f A1

I = (n × [[M]]) × μ0〈H〉 + (n × [[B]]) × 〈M〉,
f A2 = 0, f A2

I = (n × [[M]]) × μ0〈H〉 + (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉],
fM1 = 0, fM1

I = (n × [[M]]) × 〈B〉,
fM2 = 0, fM2

I = −n(〈B〉 · [[M]]),
f EL = 0, f ELI = −n(〈B〉 · [[M]]) + n[[B · M − μ0

2 M · M]].
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(a) (b) (c)

Fig. 9 Qualitative representations of the surface force densities. In c, arrows are suppressed for small force magnitudes

We note that all volumetric force densities vanish. However, the local force densities on the surface may differ.
In the next step, the contained jump and mean value operators are specialized for the considered case and yield

〈B〉 = 1
6μ0M0(4 cosϑer − sin ϑeϑ), [[B]] = μ0M0 sin ϑeϑ ,

〈H〉 = M0

6
(cosϑer + 2 sin ϑeϑ), [[H]] = M0 cosϑer ,

〈M〉 = 1
2M0ez, [[M]] = −M0ez, [[B · M − μ0

2 M · M]] = − 1
6μ0M

2
0 .

By using these relations, the surface densities reduce and read with n = er , explicitly

f LI = 1
6μ0M

2
0 (sin2ϑer + 4 sin ϑ cosϑeϑ) = f (1)

I ,

f A1
I = 1

6μ0M
2
0 (sin2ϑer + 4 sin ϑ cosϑeϑ) = f (1)

I ,

f A2
I = 1

6μ0M
2
0 (1 + 3 cos2ϑ)er = f (2)

I ,

fM1
I = 1

6μ0M
2
0 (sin2ϑer + 4 sin ϑ cosϑeϑ) = f (1)

I ,

fM2
I = 1

6μ0M
2
0 (1 + 3 cos2ϑ)er = f (2)

I ,

f ELI = 1
2μ0M

2
0 cos

2ϑer = f (3)
I .

In this special case, all models with (the same) symmetric stress measure yield the same surface force density.
Interestingly, the considered non-symmetricAbraham andMinkowskimodels also coincide for thismagnetic
problem. The Einstein–Laub model is distinct from the others. However, it can be seen that f ELI = f A2

I −
1
6μ0M2

0 er ; hence, these models only differ by a constant radial (pressure) offset. Qualitative representations
of the surface force densities are shown in Fig. 9.

Furthermore, one can note that all models with a non-symmetric stress measure yield purely radial surface
force densities in this problem. Interestingly, whereas the radial force components of the non-symmetricmodels
attain their maxima at the poles, the symmetric models attain them at the equator. The maxima of the surface
force norm, divided by μ0M2

0 , read

max
ϑ∈[0,π/2]‖ f̃

(1)
I ‖ = 4

3
√
15

≈ 0.34, max
ϑ∈[0,π/2]‖ f̃

(2)
I ‖ = 2

3
, max

ϑ∈[0,π/2]‖ f̃
(3)
I ‖ = 1

2
.
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6.2 Magnetostriction effects

Note that all considered electromagnetic force models yield vanishing volumetric force densities and only
surface densities remain. For this problem, gravitational body forces can be neglected. Then the balance of
linear momentum in regular points reduces and reads ∇ · σ = 0, where σ is the mechanical stress tensor. For
linear elasticity with small deformations and isotropic media, Hooke’s law in the form

σ = λ(∇ · u)1 + μ(∇ ⊗ u + u ⊗ ∇)

can be employed. Here, u is the displacement field and λ, μ denote Lamé’s parameters. Note that it is
assumed that the mechanical stress has no direct dependency on the electromagnetic fields. Of course, the
stress is indirectly influenced by the electromagnetic fields due to the electromagnetic force distributions. If
the considered material possesses a direct dependency upon the electromagnetic fields, then there would be
too many unknowns. In this case, both the mechanical stress tensor and the electromagnetic force model need
to be determined simultaneously via experiments, which is not possible.

Insertion of the Hooke’s law into the momentum equation yields the homogeneous Lamé–Navier equa-
tions,

(λ + μ)∇(∇ · u) + μ�u = 0.

For problems with spherical geometry and azimuthal symmetry, these equations were solved in a general
manner by Hiramatsu and Oka, cf. [14]. Their solution for the displacements (and therefore also for the
stresses) is given by means of series containing powers of the spherical radial coordinate and Legendre

polynomials,

ur (r̃ , ϑ) = R
∞∑
n=0

[
−n λ

μ
+ n − 2

2(2n + 3)
Anr̃

n+1 + nBnr̃
n−1

]
Pn(x),

uϑ(r̃ , ϑ) = R
∞∑
n=1

[
− (n + 3) λ

μ
+ n + 5

2(n + 1)(2n + 3)
Anr̃

n+1 + Bnr̃
n−1

]
dPn(x)

dϑ
,

in which Pn(x) denotes the nth Legendre polynomial. We assume that there is no relevant pressure outside
the sphere so that σ ext = 0. The jump condition of linear momentum for this scenario, Eq. (B.4), reads for any
electromagnetic force model

n · [[σ ]] = − f (EM)
I ⇒ n · σ = f (EM)

I .

Due to azimuthal symmetry, we can decompose the force densities to read

f (EM)
I = f (EM)

r er + f (EM)

ϑ eϑ .

Hence, the jump equation yields two (non-trivial) relations. With σrr = er · σ · er and σrϑ = er · σ · eϑ , they
read

σrr (r̃ = 1, ϑ) = f (EM)
r (ϑ), σrϑ(r̃ = 1, ϑ) = f (EM)

ϑ (ϑ).

By inserting the series solution of the displacements, one finds that σrr depends upon the Legendre polyno-
mials Pn(x). Furthermore, one can see that the shear stress σrϑ depends upon derivatives of these polynomials,
dPn(x)/dϑ. As demonstrated in [30], an expansion of f (EM)

r w.r.t. Pn(x) and f (EM)

ϑ w.r.t. dPn(x)/dϑ is convenient.
The expansions of the obtained force densities read

f (1)
I (x) = μ0M

2
0 ([ 19 P0(x) − 1

9 P2(x)]er − 2
9
dP2(x)
dϑ eϑ),

f (2)
I (x) = μ0M

2
0 [ 13 P0(x) + 1

3 P2(x)]er ,
f (3)
I (x) = μ0M

2
0 [ 16 P0(x) + 1

3 P2(x)]er .

Then, with the relations of orthogonality of the Legendre polynomials, the coefficients An and Bn are readily
obtained; see [30]. Only a few obtained series coefficients are non-trivial; hence, the series degenerates to a
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(a) (b) (c)

Fig. 10 Qualitative visualization of the surface displacements for the three electromagnetic force results. The ratio λ/μ = 1.27
was used in order to model steel. a u(1) . b u(2) . c u(3)

finite sum. By using the normalization Ai
j = μ0M2

0
μ

Â(i)
j , and analogously for B(i)

j , the non-trivial coefficients
are obtained as

Â(1)
0 = 1

6 + 9 λ
μ

, Â(1)
2 = 7

14 + 19 λ
μ

, B̂(1)
2 = − 7

18

1 + 2 λ
μ

14 + 19 λ
μ

,

Â(2)
0 = 1

2 + 3 λ
μ

, Â(2)
2 = 7

14 + 19 λ
μ

, B̂(2)
2 = 1

6

7 + 8 λ
μ

14 + 19 λ
μ

,

Â(3)
0 = 1

4 + 6 λ
μ

, Â(3)
2 = 7

14 + 19 λ
μ

, B̂(3)
2 = 1

6

7 + 8 λ
μ

14 + 19 λ
μ

.

As the series degenerate, closed-form displacement solutions are obtained. The displacement results for the
three models are depicted in Fig. 10.

From the figure, one can see that all force models result in a (differently) deformed spheroid. Note that
the poles flatten for the symmetric models, i.e., the displacement is negative there. In contrast to that, the
displacements of the other results are positive at the poles. At the equator, the displacements are distinct for
all three solutions. In the first result, one can observe that the two equal half axes increase in length. For the
second result, no measurable displacement can be observed. In the third result, the equatorial half axes shrink
visibly. In order to ensure that this does not depend upon the chosen value λ/μ = 1.27 in the visualization of
Fig. 10, the ratio ur (r̃ = 1, ϑ = π

2 )/ur (r̃ = 1, ϑ = 0) is analyzed. Noting that λ
μ

= 2ν
1−2ν , this displacement

ratio is plotted over a range of common values for Poisson’s ratio ν for metals in Fig. 11. One can see that for
realistic values of ν the equatorial displacement is negligibly small in the second result.

6.3 Discussion of the results

In conclusion, the first solution yields an oblate spheriod, the other two prolate spheroids. The two prolate
spheroids can be distinguished by measuring the equatorial displacement—one solution shows no measurable
equatorial displacement, whereas the other yields a negative equatorial displacement. This difference may be
explained by the fact that the two forces differ by a constant radial force.

All resulting displacements are small. First, one can note that the dimensionless amplifying functions
of the displacements are of order 10−1 for all models. As an example, consider a spherical magnet with
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Fig. 11 The displacement ratio ur (r̃ = 1, ϑ = π
2 )/ur (r̃ = 1, ϑ = 0) for the three force results. This ratio is plotted against

Poisson’s ratio in a common range of metals

Fig. 12 A silicone oil drop in castor oil. The experiment is placed in an external homogeneous static electric field

R = 10mm, μ0M0 = 1 T and μ = 80GPa. Then, the amplitude of the displacements for this scenario is

‖u‖ = μ0M2
0

μ
‖ũ‖R ≈ 10 nm. Other geometries and remanences do not significantly change the obtained dis-

placement scale. Therefore, in order to (in)validate certain force models, high-precisionmeasuring instruments
are required. Note that the scale of the displacements can be increased, if a linear-magnetic sphere is placed
in an external magnetic field; see [30].

7 Another example of local effects: a drop of silicone oil in castor oil

Another example to demonstrate local effects of the force models is the examination of a spherical silicone oil
drop of radius R in oxidized castor oil, placed in an homogeneous electric field E0 = E0ez . This experiment
was conducted in [38]. We assume linear polarization laws with the relative dielectric constants of silicone oil
εSr ≈ 2.8 and of castor oil εCr ≈ 6.3. The values are taken from an experiment in [38, Table. 1, system 16].
Also, the densities of the oils are nearly equal. Hence, gravitational effects can be neglected. The experiment
is sketched in Fig. 12.

The results of the experiments conducted in [38] recentlymotivated [7] to compare forcemodels. In contrast
to the demonstrated problem of magnetostriction, the deformations in this experiment can be large, depending
on the external field strength, and are clearly observable. The authors of [7] computed the forces for different
models, and their force results can be classified in two groups. In the first group, there are no forces at the poles
and large pressure forces at the equator. In the second group, there are pressure forces at the poles and no forces
at the equator. As the conducted experiment of [38] shows a prolate spheroid with an applied electric field, they
dismissed the models corresponding to the first group—this is a reasonable conclusion. For the second group,
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they compared the calculated force distributions to the deformation figure of the experimental photographs
of [38]. They refrained from actually computing the surface deformations. From the force distribution alone,
they argued that a “Lorentz” tensor of the form

σL,alt = − 1
2 (ε0E · E + μ0H · H)1 + ε0E ⊗ E + μ0H ⊗ H,

predicts the experiment well.
However, the mechanics is more complicated, even in the static case. The oils do not mix, i.e., there is

some mechanical surface stress that balances the electromagnetic forces. It is not immediately clear how the
forces correspond to the displacement figure. Therefore, an attempt is made here to model the surface stress
in order to calculate the resulting deformation figure. As with magnetostriction, we restrict the calculations
to small deformations, i.e., a small applied electric field strength. Then, the predicted displacements can be
compared with experimental photographs of [38] and reliable conclusions can be drawn.

First, we briefly solve the electric problem and proceed with the computation of the resulting force densities
for the previously discussed models in this work. Then, surface stresses and deformations are investigated.
The displacements are computed for all force models and compared to experimental results from [38].

7.1 Electric field computation

Due to the linearity of Maxwell’s equations, the electric field can be decomposed as E = E0 + Edist., where
the external field E0 is homogeneous. Then, Faraday’s law of induction in Table2 reduces to

∇ × Edist. = 0, n × [[Edist.]] = 0, which is solved by Edist. = −∇V, [[V ]] = 0.

Scaling the lengths in the system by R and the distortion potential by E0R, so that V = E0RV and ∇ = 1
R ∇̃,

the above is equal to
E = E0(ez − ∇̃V), [[V]] = 0.

Denoting VS for the potential function in the silicone drop, and VC for the function in the exterior castor oil
domain, the polarizations and the free charge potentials read

PS = ε0(ε
S
r − 1)ES = E0ε0(ε

S
r − 1)(ez − ∇̃VS), PC = ε0(ε

C
r − 1)EC = E0ε0(ε

C
r − 1)(ez − ∇̃VC),

DS = ε0ε
S
r E

S = E0ε0ε
S
r (ez − ∇̃VS), DC = ε0ε

C
r E

C = E0ε0ε
C
r (ez − ∇̃VC).

Since the free macroscopic charge density vanishes in the problem, the free charge potentials are solenoidal.
Therefore, both VS and VC satisfy the Laplace equation, i.e.,

�̃VS = 0, and �̃VC = 0.

The solutions of these Laplace problems with azimuthal symmetry that satisfy conditions of integrability and
finiteness read

VS =
∞∑
n=0

anr̃
n Pn(x), VC =

∞∑
n=0

bnr̃
−(n+1)Pn(x),

where x = cosϑ , r̃ = r/R, and Pn denote Legendre polynomials. It is easy to see that the condition of
continuity, [[V]] = 0, is satisfied by setting an = bn . The second transition condition, with n = er and
cosϑ = P1(x), reads

n · [[D]] = 0 ⇔ εCr
∂VC

∂ r̃
− εSr

∂VS

∂ r̃
= (εCr − εSr )P1(x).

One finds that

a1 = b1 = − εCr − εSr

2εCr + εSr
,

and all other coefficients are zero. The series degenerates and the distortion potentials are

VS = − εCr − εSr

2εCr + εSr
r̃ cosϑ, VC = − εCr − εSr

2εCr + εSr
r̃−2 cosϑ.
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(a) (b)

Fig. 13 Qualitative representation of the computed force results for the oil drop experiment. For visualization, the values εSr = 2.8

and εCr = 6.3 are employed. Note that the external electric field is in the horizontal direction. a Surface force f (4)
I . b Surface

force f (5)
I

7.2 Force densities

Through an analogous investigation of the force models as for the spherical magnetostriction problem, one
finds that the volumetric force density vanishes for every considered model. Furthermore, one obtains for the
surface densities that

f (4)
I = f LI = f A1

I = f A2
I = fM1

I = −(n · [[P]])〈E〉
= − 9

2ε0E
2
0

εCr −εSr
(2εCr +εSr )2

[(εCr + εSr ) cos2ϑer − 2εCr cosϑ sin ϑeϑ ],
f (5)
I = fM2

I = f ELI = n(〈P〉 · [[E]]) = − 9
2ε0E

2
0

εCr −εSr
(2εCr +εSr )2

(2εCr εSr − εCr − εSr ) cos2ϑer .

As before, one result shows shear as well as normal stresses, whereas the other yields pure normal stresses.
The force results are depicted in Fig. 13.

7.3 Surface deformation

In order to gain insight as to which force model(s) concur with experiments, the mechanical surface stress
tensor has to be modeled. Before an electric field is activated, it can be assumed that the spherical drop is
subjected to a purely tension dependent surface stress of the form

σ 0
I = σI1I , 1I = 1 − er ⊗ er .

Here, σI is the surface tension between the two oils. As the two oils are at rest, the volumetric stresses are
given by

σC = −pC1, σ S
0 = −pS01.

Notation wise, the pressure of the castor oil is not given an extra index for the unloaded situation as it can be
assumed that this pressure will remain constant. For this initial state, the balance of momentum for interfaces
in Eq. (B.3) reads

−σ I · ∇I = [[σ ]] · n ⇒ pS0 = pC + 2σI
R ,

where R is the radius of the sphere in this initial state. Here, it is assumed that the interface does not carry
mass, i.e., ρI = 0. This result for the pressure jump is well-known in the literature, e.g., [26, Sect. 7.2]. If an
electric field is applied, a model-dependent force density acts on the sphere. From experiments it is known that
small electric fields do not cause the droplet to burst. However, it deforms. As the deformation is bounded,
there must be some kind of mechanical reaction that balances the electromagnetic force. We shall assume that
the interface of the two oils possesses isotropic elastic behavior and state the surface stress in the form

σ I = (σI + λIε I ·· 1I )1I + 2μIε I , ε I = 1I · 1
2 (uI ⊗ ∇I + ∇I ⊗ uI ) · 1I ,
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motived by relations given in [19,32]. Here, uI is the surface displacement field. Note that analogously to
the magnetostriction problem, no direct dependency of the mechanical stress on the electromagnetic fields is
assumed. The following analysis is restricted to small deformations only. This is sufficient to gain insight into
the nature of the resulting deformation figure. Hence, variables and base vectors of the initial and of the current
placement of the droplet are not distinguished here. Due to azimuthal symmetry of the loading, the surface
displacement is of the form

uI = û(ũr (ϑ)er + ũϑ(ϑ)eϑ),

where û contains the scale and dimension of the displacement field. The forces are also stated in scaled form,

f (EM)
I = f̂ ( fr (ϑ)er + fϑ(ϑ)eϑ), f̂ = 9

2ε0E
2
0

εCr −εSr
(2εCr +εSr )2

.

The scale f̂ is a common factor of the densities f (4)
I and f (5)

I . However, the functions fr and fϑ must be taken
from the analyzed force result. Independently of the applied force model, the divergence of the surface stress
is as follows:

σ I · ∇I = −2μI
R

û
R [ RσI

ûμI
+ 2(1 + λI

μI
){ũr + cotϑ ũϑ + ũ′

ϑ }]er
+μI

R
û
R [−(1 + λI

μI
+ cos 2ϑ) csc2ϑ ũϑ + 2(1 + λI

μI
)ũ′

r + (2 + λI
μI

){cot ϑ ũ′
ϑ + ũ′′

ϑ }]eϑ .

It is used in the singular balance of momentum containing electromagnetic surface forces, i.e.,

σ I · ∇I + [[σ ]] · n + f (EM)
I = 0.

This vector equation yields two linearly independent component equations, viz.

−2μI
R

û
R [σI R

ûμI
+ (1 + λI

μI
){2ũr + cot ϑ ũϑ + ũ′

ϑ }] + pS − pC + f̂ fr = 0, (7.1a)

μI
R

û
R [2(1 + λI

μI
)ũ′

r − (1 + λI
μI

+ cos 2ϑ) csc2ϑ ũϑ + (2 + λI
μI

){cot ϑ ũ′
ϑ + ũ′′

ϑ }] + f̂ fϑ = 0. (7.1b)

It is helpful to take the derivative w.r.t. ϑ of Eq. (7.1a), yielding

−2 μI

f̂ R
û
R (1 + λI

μI
){2ũ′

r − csc2ϑ ũϑ + cot ϑ ũ′
ϑ + ũ′′

ϑ } + f ′
r = 0. (7.2)

This equation and also Eq. (7.1b) motivate the choice of displacement scale,

û = f̂ R
μI

R,

so that Eqs. (7.2) and (7.1b) simplify to

−2(1 + λI
μI

){2ũ′
r − csc2ϑ ũϑ + cot ϑ ũ′

ϑ + ũ′′
ϑ } + f ′

r = 0, (7.3a)

2(1 + λI
μI

)ũ′
r − (1 + λI

μI
+ cos 2ϑ) csc2ϑ ũϑ + (2 + λI

μI
){cot ϑ ũ′

ϑ + ũ′′
ϑ } + fϑ = 0. (7.3b)

Both equations contain the radial displacement only in form of ũ′
r , and hence, it can be eliminated; this yields

−2[(1 − cot2ϑ)ũϑ + cot ϑ ũ′
ϑ + ũ′′

ϑ ] = 2 fϑ + f ′
r . (7.4)

Remarkably, this relation does not depend upon the elastic moduli. From symmetry of the analyzed forces,
one has ũϑ(ϑ = 0) = ũϑ(ϑ = π/2) = 0. The right-hand side of Eq. (7.4) is a given function of the force
model. Hence, this equation can be solved for the function ũϑ , depending on the force model. As the current
pressure in the silicone oil is unknown, Eq. (7.1a) cannot be used directly to obtain ũr . Rather, Eq. (7.3a) is to
be used. At this point, ũϑ is a known function, and hence, Eq. (7.3a) is an ordinary differential equation for ũr .
However, for this function, there is no symmetry argument available in order to obtain a functional value at
any point. The (unknown) displacement of the pole is introduced as a parameter by setting ũP := ũr (ϑ = 0)
instead. The equation is consequently solved by using this parameter. From the previously computed forces,
one can assume that this parameter is negative, i.e., an oblate deformation occurs. In order to obtain ũP, a
constitutive relation is needed for the pressure of the silicone oil drop. This oil is compressible, the relation
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between pressure and relative volume change is in general nonlinear. However, as only small deformations are
regarded, it is reasonable to employ a linear relationship,

pS = pS0 (1 + χS
v e

S
v) = (pC + 2σI

R )(1 + χS
v e

S
v), eSv = V S

0 −V S

V S
0

,

where V S
0 and V S are the volumes of the oil drop in the undeformed and deformed state, respectively. Here,

one can denote

V S
0 = 4

3πR3 = R

3

∮

∂ΩS
0

er · dA0, V S =
∫

ΩS

dV = 1

3

∫

ΩS

x · ∇dV = 1

3

∮

∂ΩS

x · dA = 1

3

∮

∂ΩS
0

(X + u) · J F−T · dA0.

As the integrand does not possess azimuthal dependency after projection, one can write

dA0 = er2πR2 sin ϑ dϑ.

Formally, one obtains

eSv = 1

2R

π∫

ϑ=0

[R − (X + u) · J F−T · eR] sin ϑ dϑ.

It is convenient to linearize this relation, applicable for small volume changes. One obtains that

eSv ≈ −1

2

û

R

π∫

ϑ=0

[3ũr + cot ϑ ũϑ + ũ′
ϑ ] sin ϑ dϑ = f̂ R

μI
ẽSv .

This value can be computed symbolically, still containing the unknown factor ũP. The pressure jump then
reads

pS − pC = (pC + 2σI
R )(1 + χS

v e
S
v) − pC = pCχS

v e
S
v + 2σI

R (1 + χS
v e

S
v).

Insertion of this relation with the previously chosen displacement scale in Eq. (7.1a) shows that

−2(1 + λI
μI

){2ũr + cot ϑ ũϑ + ũ′
ϑ } + γ ẽSv + fr = 0, γ := (

pCR
μI

+ 2σI
μI

)χS
v = pS0 R

μI
χS
v .

From this equation, ũP follows and the problem is formally solved.

Computation with f (4)
I , where the force functions are given by

f (4)
r = −(εCr + εSr ) cos2ϑ, f (4)

ϑ = εCr sin 2ϑ.

By using these, the polar displacement follows as

ũ(4)
ϑ = 1

8 (3ε
C
r + εSr ) sin 2ϑ,

and, by using this result, the radial displacement reads

ũ(4)
r = ũ4P + (16{1 + λI

μI
})−1[εSr (5 + 3 λI

μI
) + εCr (11 + 9 λI

μI
)](1 − cos 2ϑ).

In order to obtain the displacement ũ(4)
P , the relative volume change is computed with the constitutive law for

the pressure, yielding

ẽS,(4)
v = −3ũ(4)

P − 3
4 (3ε

C
r + εSr ) − εCr +εSr

2(1+ λI
μI

)
.

With this result and the pressure-related factor γ , the displacement ũ(4)
P follows as

ũ(4)
P = −1

4
(3εCr + εSr ) − 1

6

εCr + εSr

1 + λI
μI

− 1

3

εCr + εSr

4 + 3γ + 4 λI
μI

.

This result is strictly negative, and hence, this force result yields an oblate deformation figure.



An investigation into electromagnetic force models… 261

Computation with f (5)
I , where the force functions read

f (5)
r = −(2εCr εSr − εCr − εSr ) cos2ϑ, f (5)

ϑ = 0.

The polar displacement follows as

ũ(5)
ϑ 5 = 1

8 (2ε
C
r εSr − εCr − εSr ) sin 2ϑ,

and the radial displacement in terms of ũ(5)
P reads:

ũ(5)
r = ũ(5)

P + 5 + 3 λI
μI

16(1 + λI
μI

)
[2εCr εSr − εCr − εSr ](1 − cos 2ϑ).

The scaled relative volume change is obtained as

ẽS,(5)
v = −3ũ(5)

P − 1

4

5 + 3 λI
μI

1 + λI
μI

(2εCr εSr − εCr − εSr ),

and the pole displacement subsequently reads

ũ(5)
P = −(2εCr εSr − εCr − εSr )

(
1
4 + 1

6
1

1+ λI
μI

+ 1
3

1

4+3γ+4
λI
μI

)
.

This force results also in an oblate deformation.

Comment on the parameters. The parameters γ , λI , and μI are unknown. However, it is reasonable to assume
that the scales of λI and μI are equal. Hence, λI/μI ≈ 1 should be a good approximation. The effect of the
parameter γ which is related to the compressibility of the system can also be analyzed. This parameter only
influences the constant part of the radial displacements, i.e., it does not control the qualitative deformation
figure. From the solutions for the displacements of the poles, ũ(4)

p and ũ(5)
p , it can be seen that the magnitudes

of the displacements do not change significantly with the parameter γ ∈ [0, ∞[.

7.4 Comparison to experiment and discussion

For the static setting analyzed here, the authors in [38] conducted experiments. Their results are depicted in
Fig. 14c. In the figure, it can be seen that for increasing electric field strength, the drop deforms as an oblate
spheroid.

In Fig. 13, the theoretical surface force predictions of the models are qualitatively shown. Both f (4)
I and

f (5)
I clearly suggest that the drop should deform to an oblate form. This can be observed in the experimental

photographs in Fig. 14c as well. Intuitively, the surface force f (4)
I may result in the correct deformation

figure. The force f 5I may cause “buckled” poles, deviating from a spheroid form. This can be observed in the
deformation figure in Fig. 14. The two distinct force results both yield oblate deformation figures. However, the
magnitudes of the displacements as well as the qualitative deformation figure differ. The models with the force
f (4)
I yield a smooth deformation figure depicted in Fig. 14a which is in good agreement with the experimental

results in Fig. 14c. The deformation figure due to the models with the force f (5)
I possesses a different curvature

near the poles. Hence, the deformed body is not an oblate spheroid. However, this form is not observable in
the experimental photographs. Therefore, it is reasonable to conclude that the models with force f (5)

I yield
unphysical results, i.e., the asymmetric Minkowski and the Einstein–Laub models are unlikely.
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(a) (b) (c)

Fig. 14 Deformation figures of the oil droplet. The two solutions of the surface displacement are qualitatively shown in a and b,
where the parameters εSr = 2.8, εCr = 6.3, γ = 1 and λI/μI = 1 are used. Note that for visualization a scaling of the displacements
is applied. Experimental photographs taken from [38, Fig. 7] are shown in (c). The electric field is directed vertically in all images.
In c, the electric field strength is increased from the lowest to the highest photograph. a Surface displacement u(4)

I . b Surface

displacement u(5)
I . c Static case of [38, Fig. 7]

8 Conclusion

In this paper, the coupling of continuum mechanics and electromagnetism was investigated. The principal
question of this work is: “Does an electromagnetic force model exist, which yields correct predictions for
arbitrary matter and arbitrary (dynamical) situations?” As examples a few selected electromagnetic force
models were analyzed in this work. Using these, three coupled problems of mechanics and electromagnetism
were investigated, viz.

1. the total force between two magnets,
2. magnetostriction effects of a spherical magnet, and
3. deformation of a silicone oil drop in castor oil.

In all three analyzed problems, the total force is equal for all considered models. In the latter two problems
of local effects, this force is zero. In the problem with the two magnets, the force was computed analytically
and compared with experimental findings. It was shown that the analytical findings are in good agreement with
the measured force. Overall, this leads one to suspect that the total force of a body is correctly predicted with
most (perhaps all) force models that are based on a balance of electromagnetic momentum.

In the problem of magnetostriction, deformations were analytically computed for the considered force
models. Overall, three different deformations were obtained using the method of Hiramatsu andOka. As the
resulting displacement amplitudes are on the nanometer scale, high-precision (laser) measurement instruments
are needed to draw conclusions on the applicability of the force models. By considering a modified problem
of a linear-magnetic sphere in an external field, the displacement amplitudes can be increased. This way, force
model restrictions can be found from a coupled elastic and magnetic problem.

In the problem of a silicone oil drop in castor oil, an electric field causes deformations. They can be large,
depending on the applied field strength. In order tomake a theoreticalmodel-dependent prediction of the surface
displacements, the surface stresswasmodeled. The resulting differential equationswere solved analytically and
the deformations compared to experimental photographs. It can be concluded that the considered asymmetric
Minkowski andEinstein–Laubmodels do not reproduce the findings of this experiment. Hence, thesemodels
are not applicable in arbitrary situations.

In summary, the presented problems and experimentsmotivate to conceive and conduct further experiments.
The few problems shown here merely scratch the surface of the problem to find a “correct” electromagnetic
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force model. By varying the used materials, electromagnetic loadings, and the time dependency, it is reason-
able to assume that further restrictions w.r.t. force models can be found. The last problem with the oil droplet
further suggests that for fluids with electromagnetic dependencies, any general flow prediction may signifi-
cantly depend on the used force model. Perhaps such (dynamical) experiments with fluids are preferable to
investigations with solids. Hopefully, a force model can be found that agrees with any conducted experiment.

Acknowledgements The authors wish to thank Mr. Arion Juritza for his valuable assistance in the conduction of the axial force
measurements.

Appendix A: MAXWELL’s equations

In this section, a brief overview of Maxwell’s equations is given. This presentation is an extension of that
given in [30]. In problems of continuum physics, steep gradients of fields may occur at the boundary of a
body, (say). These are modeled by so-called singular surfaces at which the fields are modeled as discontinuous
functions. These surfaces are often referred to as interfaces and points on them as singular. In these points,
the differential equations of the surrounding (continuous) bulk do not apply. This also holds in the theory of
electromagnetism, i.e., Maxwell’s regular equations do not hold everywhere. The governing equations can
be derived from balance equations in a rational manner, as described in [39]. In a domain containing a singular
surface, the balances of electric charge and magnetic flux are analyzed by virtue of generalized integral and
flux theorems. Limit processes yield equations for singular points that are particularly helpful in formulating
boundary and transition conditions.

The results of this approach are compiled in Table2. Interface densities are marked by the index I . The
symbol w⊥ denotes the normal component of the interface velocity, i.e., n · w. Double brackets denote the
jump operator, which is defined as follows. An interface I dissects a domain in two regions, �− and �+. Let
χ be a continuous field in the domains �±. The jump of this field is then

[[χ(x I , t)]] := χ+(x I , t) − χ−(x I , t), χ±(x I , t) := lim
x±→x I

χ(x±), x± ∈ �±, x I ∈ I. (A.1a)

Of course, there is some arbitrariness which side is referred to as + or −. However, this causes no problems
when applying the chosen definition everywhere. In this paper, we employ the convention that − and + refer
to the inside and outside of a considered domain, respectively. The direction of the normal vector is defined at
a point from the − into the + domain. Another interface operator is the mean value, given by

〈χ(x I , t)〉 := 1
2 (χ+(x I , t) + χ−(x I , t)), χ±(x I , t) := lim

x±→x I
χ(x±), x± ∈ �±, x I ∈ I. (A.1b)

In the context of continuum physics, the symbols in the equations of Table2 are identified in this paper as
follows. The fields E and B are referred to as the electric field and the magnetic flux density, respectively. They

Table 2 Maxwell’s equations in multiple forms

Regular points Singular points

Faraday’s law of induction
∂B
∂t

+ ∇ × E = 0 −[[B]]w⊥ + n × [[E]] = 0

Gauss’ law for magnetism ∇ · B = 0 n · [[B]] = 0

Ampère’s law
∂D

∂t
− ∇ × H = −J f −[[D]]w⊥ − n × [[H]] = − j fI

Gauss’ law ∇ · D = qf n · [[D]] = qfI

Total electric current
∂D
∂t

− ∇ × H = −J −[[D]]w⊥ − n × [[H]] = −J I

Total electric charge ∇ · D = q n · [[D]] = qI

Non-free electric current − ∂ P
∂t

− ∇ × M = −J r [[P]]w⊥ − n × [[M]] = −J rI

Non-free electric charge − ∇ · P = qr −n · [[P]] = qrI
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are not independent of each other. Rather, they are parts of a four-dimensional space–time tensor. The same
holds for the fields (D, H) and (D, H). In continuum electromagnetism, the fields D and D are referred to
as charge potentials w.r.t. total and free charge, respectively. Analogously, H andH are the current potentials
w.r.t. total and free electric current. Their definitions are based on the balances of total and free electric current.
Further, q and qf are the total and free charge density, J and J f the total and free electric current density.
If the index “f” is exchanged with “r”, densities w.r.t. the balance of bound electric charge will result. This
balance gives rise to potential fields P and M, which are properly called bound charge potential and bound
current potential, respectively. In this work, they are referred to by their more common names, i.e., polarization
and (Minkowski) magnetization. The presentation of Maxwell’s equations and the fields contained within
follows [18]. It can be noted that there are other formulations of Maxwell’s equations in the literature, e.g.,
the Chu formulation. A thorough review of various formulations is given in [16].

Since the balances of total, free, and bound electric charge are not independent of each other, the following
relations hold everywhere:

q = qf + qr, J = J f + J r, H = H + M, D = D − P, H = 1
μ0

B, D = ε0E. (A.2a)

The two last formulæ are called Maxwell–Lorentz aether relations. They connect the potentials of total
electric charge and of total electric current with the fields E and B, inside and outside of matter. It can often
be beneficial to decompose the free electric current density into a diffusive ( j f) and a non-diffusive part (qfv),
that can loosely be referred to as non-convective and convective electric current densities, respectively:

J f = qfv + j f, J fI = qfIv I + j fI . (A.2b)

Here, v denotes the barycentric velocity of a medium. A theory of mixtures in context of electromagnetism is
detailed in [13]. For a review of continuum electromagnetism see [18].

Appendix B: Balance of linear momentum for regular and singular points

In this section, the local balance equations of linear momentum in regular and singular points are briefly stated.
In the derivation, a classical Euler–Cauchy continuum is assumed. In regular points, the balance reads

ρA − σ · ∇ = ρF + f (EM). (B.1)

Herein, the body forces are decomposed into the classical mass-proportional density, ρF, and an electromag-
netic source f (EM). In this equation, σ denotes the pure mechanical stress tensor. By introducing the surface
nabla operator via the projection

∇I := 1I · ∇ where 1I = 1 − n ⊗ n,

the balance of linear momentum in singular points reads

ρI a I − σ I · ∇I = −[[ρ(v − v I ) ⊗ (v − w) − σ ]] · n + ρI F I + f (EM)
I , (B.2)

This equation also contains a decomposed force density w.r.t. mass and electromagnetism. The static version
of this equation reduces to

−σ I · ∇I = [[σ ]] · n + ρI F I + f (EM)
I . (B.3)

If the singular surface is without intrinsic structure, this equation further simplifies to

0 = [[σ ]] · n + f (EM)
I . (B.4)

As the electromagnetic surface traction is not (purely) intrinsic to the interface, it remains in the equation. This
density can be related to regular field values in close proximity of the surface, depending on the force model
employed. For thorough reviews of balance equations for regular and singular points, see [8,34,36].
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Appendix C: Example of the form computation of electromagnetic force formulas

In this section, it is shown how the form of electromagnetic force densities can be obtained. As an example, the
generalized Lorentz force model is used. For the analysis, the following formulas of vector calculus identities
are useful:

a × (b × c) = b(a · c) − c(a · b), (∇ × a) × b = b · (∇ ⊗ a) − (∇ ⊗ a) · b,
∇ · (a ⊗ b) = (∇ · a)b + a · (∇ ⊗ b), (∇ ⊗ a) · a = ∇ 1

2‖a‖2 = ∇ · 1
2‖a‖21,

(∇ × a) × b = ∇ · (b ⊗ a) − (∇ · b)a − (∇ ⊗ a) · b, [[ab]] = [[a]]〈b〉 + 〈a〉[[b]].
Here, a, b, c are smooth vector fields and a, b are scalar fields.

Let us assume that the generalized Lorentz force model is defined by a momentum density and stress
tensor

gL = D × B, σL = − 1
2 (ε0E · E + 1

μ0
B · B)1 + ε0E ⊗ E + 1

μ0
B ⊗ B,

so that
∂

∂t
(gL) − ∇ · σL = − f L.

To obtain f L, one can start by examining the time derivative of the momentum density:

∂(D × B)

∂t
= ∂D

∂t
× B + D × ∂B

∂t
= (∇ × H − J) × B + D × (−∇ × E) = (∇ × H) × B + (∇ × E) × D − J × B
= B · (∇ ⊗ H) − (∇ ⊗ H) · B + D · (∇ ⊗ E) − (∇ ⊗ E) · D − J × B

= 1
μ0

B · (∇ ⊗ B) − 1
μ0

(∇ ⊗ B) · B + ε0E · (∇ ⊗ E) − ε0(∇ ⊗ E) · E − J × B

= 1
μ0

∇ · (B ⊗ B) − 1
μ0

(∇ · B)B − 1
μ0

∇ · ( 12 B · B)1 + ε0∇ · (E ⊗ E) −
− (∇ · ε0E)E − ε0∇ · ( 12 E · E)1 − J × B

= ∇ · [− 1
2 (ε0E · E + 1

μ0
B · B)1 + ε0E ⊗ E + 1

μ0
B ⊗ B] − qE − J × B.

In these computations,Maxwell’s equations and some of the above identities of vector calculus were used. As
for this force model, the stress tensor is specified, the force density is uniquely defined as f L = qE + J × B.
If only the momentum density is fixed, then there are infinitely many options to define the electromagnetic
stress and force.

The surface force f LI = n · [[w ⊗ gL + σL]] is computed next, using the singular forms of Maxwell’s
equations and the product rule of jumps shown above. Starting with

f LI = n · [[w ⊗ (D × B) − 1
2 (ε0E · E + 1

μ0
B · B)1 + ε0E ⊗ E + 1

μ0
B ⊗ B]],

it is convenient to regard the contained terms individually. The first becomes

n · [[w ⊗ (D × B)]] = w⊥ε0[[E × B]] = w⊥ε0[[E]] × 〈B〉 + ε0〈E〉 × w⊥[[B]]
= (J I − n × [[H]]) × 〈B〉 + ε0〈E〉 × (n × [[E]])
= 1

μ0
〈B〉 × (n × [[B]]) + ε0〈E〉 × (n × [[E]]) + J I × 〈B〉

= 1
μ0

n〈B〉 · [[B]] − 1
μ0

[[B]]〈B〉 · n + ε0n〈E〉 · [[E]] − ε0[[E]]〈E〉 · n + J I × 〈B〉.
The second term is manipulated to read

n · [[− 1
2 (ε0E · E + 1

μ0
B · B)1]] = − 1

2n[[(ε0E · E + 1
μ0

B · B)]] = −ε0n〈E〉 · [[E]] − 1
μ0

n〈B〉 · [[B]],
and the last term becomes

n · [[ε0E ⊗ E + 1
μ0

B ⊗ B]] = ε0n · 〈E〉[[E]] + ε0n · [[E]]〈E〉 + 1
μ0

n · 〈B〉[[B]] + 1
μ0

n · [[B]]〈B〉
= ε0n · 〈E〉[[E]] + qI 〈E〉 + 1

μ0
n · 〈B〉[[B]].

Summing the three terms shows that many contributions cancel out, and there remains

f LI = qI 〈E〉 + J I × 〈B〉.
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