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Abstract In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances
induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat
conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived
from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are
explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent
problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical
process, and then investigate the influence of the chemical reaction on the properties of interest in the problems
studied here. We complete our study by developing a rather detailed analysis using the Hydrogen–Chlorine
system as reference. Several numerical computations are included illustrating the behavior of the phase velocity
and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the
small wavenumber limit.

Keywords Chemically reactive flows · Sound propagation · Flow instabilities · Eigenmodes

1 Introduction

The behavior of sound waves propagating in chemically reactive systems is of great relevance in various
modern engineering problems, and therefore, this subject has scientific and commercial interests [1–3]. In
particular, the coupling between the chemical kinetics and the sound propagation is important for measuring
physical and chemical properties of fluids. The application of mathematical models to study the dynamics
of such wave problems can be useful to improve the theoretical research on this field and to investigate the
effects of the chemical reactions on sound properties of the reactive system. There exist several studies in
this field, showing that the sound propagation in reactive mixtures can be strongly affected by the chemical
reaction. Among others, we quote here Refs. [1,4–8]. However, in our opinion, other contributions at the level
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of theoretical and modeling approaches should be of interest in order to deeply investigate the effects of the
chemical kinetics on sound propagation within reactive systems.

Our contribution presented in this paper goes in this direction, and we exploit the potentialities of the
kinetic theory to give a rather detailed description of the chemical effects on the sound properties. In fact,
the kinetic theory extended to chemically reactive mixtures provides a robust microscopic model to describe
reactive systems, starting from the molecular dynamics of the particles. The reactive source terms representing
the chemical kinetics of the reactive system, and the forward and backward rate constants in particular, can be
explicitly computed and incorporated in the mathematical model in a very natural way [9]. Moreover, these
source terms retain many parameters connected to the chemical kinetics of the mixture and this represents a
great advantage in the analysis.

Having these ideas in mind, we present in this paper a mathematical model and a detailed numerical
analysis to investigate the propagation of sound waves in chemically reactive mixtures. The modeling and
the analysis are also applied to study the propagation of infinitesimal disturbances induced by spontaneous
internal fluctuations in the reactive mixture.

The starting point for the present investigation is the study initiated in paper [8], where the focus was on
the effects of the reaction heat on time-dependent problems within a binary reactive mixture. The modeling
proposed in Ref. [8] is here extended to a quaternary mixture with bimolecular reaction and then applied
taking as reference the Hydrogen–Chlorine system when the reaction is specialized in H2 + Cl � HCl + H.
The complexity of a quaternary reactive mixture enriches the description but, at the same time, brings many
additional complications at the modeling level. Nevertheless, with the help of computational resources, we
were able to derive explicitly the dispersion relation, compute its solutions and evaluate the properties of
interest in the sound propagation problem and dynamics of small disturbances.

The presentation of our results is organized as follows. In Sect. 2, we briefly describe the mathematical
model, introducing the basic quantities and source terms, and providing the hydrodynamic equations. In Sect. 3,
we furnish the linear framework, search for harmonic wave solutions and derive the corresponding dispersion
relation. Sections 4 and 5 are devoted to the study of sound propagation and dynamics of small disturbances,
respectively. Computations are presented and discussed in Sect. 6, with reference to the Hydrogen–Chlorine
system. Finally, in Sect. 7 we present some concluding remarks.

2 Basic quantities and hydrodynamic model

In this section, we introduce the basic fields and the corresponding hydrodynamic equations for the description
of the chemically reacting mixture. We consider a reactive mixture of monatomic gases with four constituents
Aα , α = 1, . . . , 4, undergoing the reversible bimolecular reaction represented by

A1 + A2 � A3 + A4. (1)

For each constituent Aα , we introduce the molecular diameter dα , the formation (or binding) energy εα , and
the molecular mass mα . Due to the mass conservation during the chemical reaction (1), we have m1 + m2 =
m3 + m4 = M .

2.1 Macroscopic basic fields

The basic fields of the reactive mixture are the mass densities �α of the constituents, α = 1, . . . , 4, the
momentum density �v and the total energy density �e of the whole mixture, with � = ∑4

α=1 �α , v and e being
the mass density, mean velocity and total specific energy of the mixture.

Other fields of the mixture are the number density nα of each constituent, the pressure p, number density
n and temperature T of the mixture, with nα = �α/mα and n = ∑4

α=1 nα .
The total energy density �e of the mixture is the sum of the internal energy and the kinetic energy, with

the internal energy density �ε being, in turn, the sum of the thermal and binding energies, that is

�e = �ε + �v2

2
, �ε = 3

2
p +

4∑

α=1

nαεα. (2)
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2.2 Modeling assumptions

For the present analysis, we will assume the following properties about the reactive mixture. The space
evolution is one-dimensional depending on the space coordinate x ∈ R, so that all mixture fields depend on
(t, x) ∈ R

+
0 ×R. The evolution regime is Eulerian, and thus, the mixture is non-diffusive, non-heat conducting

and non-viscous. The chemical reaction is assumed a fast process, so that the mixture is not faraway from
the chemical equilibrium. Moreover, molecular degrees of freedom, like vibrational, rotational, electronic and
nuclei, are not taken into account, so each constituent Aα has only one degree of internal energy specified
by εα . The chemical reaction can be treated properly in terms of the formation energies εα , see [9], and the
chemical kinetics of the model is based on a chemical potential with internal variables associated with the
formation energy, only, that is

μα = εα + kT

[

ln nα − 3

2
ln T − 9

4
ln

(
2πkmα

h2

)]

, α = 1, . . . , 4, (3)

where k is the Boltzmann constant and h the Planck constant.
All constituents have equal specific heat ratios, that is γα = γ = 5/3, for α = 1, . . . , 4. They also have

specific heats at constant volume that are independent of the temperature,

cα
v = k

mα(γ − 1)
, α = 1, . . . , 4, (4)

so that the constant volume specific heat of the mixture, defined by cv = 1
�

∑4
α=1 �αcα

v , can be written as

cv = 3kn

2�
. (5)

Furthermore, we assume that the mixture obeys the thermal equation of state,

p = nkT, (6)

and thus the internal energy density �ε can be expressed in terms of the temperature T as

�ε =
4∑

α=1

nαεα + �cvT . (7)

2.3 Model equations

The hydrodynamic equations of our model are those for an Eulerian reacting mixture, formed by the balance
equations for the mass densities of the constituents and conservation equations for the momentum and total
energy of the mixture. In one-space dimension form, such equations are given by

∂�α

∂t
+ ∂

∂x
(�αv) = τα, α = 1, . . . , 4, (8)

∂

∂t
(�v) + ∂

∂x
(�v2+ p) = 0, (9)

∂

∂t
(�e) + ∂

∂x
(�ev+ pv) = 0, (10)

where τα represents the reaction rate of constituent Aα describing the interaction among the constituents due
to the chemical reaction (1). The closure of Eqs. (8–10) is achieved when the reaction rates τα are specified,
as explained below.

For the analysis developed in this paper, it is convenient to write the reactive Euler Eqs. (8–10) in matrix
form, and we obtain

∂U
∂t

+ A(U)
∂U
∂x

= S(U), (11)
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where U is the vector of the mixture fields, U = [u1 u2 u3 u4 u5 u6]T = [�1 �2 �3 �4 �v �e]T, and S(U) the
vector of the source contributions, S(U) = [τ1 τ2 τ3 τ4 0 0]T. Moreover, A(U) represents the Jacobian matrix
of the Euler system whose nonzero entries are

A11 = v

�
(�2 + �3 + �4) , A12 = A13 = A14 = −�1v

�
, A15 = �1

�
,

A21 = A23 = A24 = −�2v

�
, A22 = v

�
(�1 + �3 + �4) , A25 = �2

�
,

A31 = A32 = A34 − �3v

�
, A33 = v

�
(�1 + �2 + �4) , A35 = �3

�
,

A41 = A42 = A43 = −�4v

�
, A44 = v

�
(�1 + �2 + �3) , A45 = �4

�
,

A5α = −2

3

(

v2 + εα

mα

)

+ gα, A55 = 4

3
v, A56 = 2

3
,

A6α = v

�

(

gα + 2

3
hα

)

− ev − pv

�
, A65 = e + p

�
− 2

3
v2, A66 = 5

3
v,

(12)

where gα = kT
�

(
�
mα

− n
)
, hα = v2

2 − εα

mα
, for α = 1, . . . , 4.

2.4 Chemical reaction rates

In our analysis, the reaction rates τα appearing in Eq. (8) are obtained from the kinetic theory of reactive
mixtures, assuming reactive differential cross sections with activation energy and a particular form of the
velocity distribution function that results to be appropriate for the considered Eulerian regime (see, for example,
Ref. [9]). Following a standard procedure in kinetic theory, the reaction rates τα were explicitly evaluated in
the form of an Arrhenius law as

τα = −ναmα

[
k34(T )n3n4 − k12(T )n1n2

]
, ν1 = ν2 = −ν3 = −ν4 = −1, (13)

where να is the stoichiometric coefficient of each constituent, and k34(T ), k12(T ) denote the forward and
reverse reaction rate coefficients given by

k12(T ) =
√
8πkT

m12
d2f exp

(
− εf

kT

)
, k34(T ) =

√
8πkT

m34
d2r exp

(
− εr

kT

)
. (14)

Here, εf = ε3 + ε4, εr = ε1 + ε2 are the forward and backward activation energies, Q = εf − εr is the reaction
heat, m12 = m1m2/M , m34 = m3m4/M are reduced masses of reactants and products, and df , dr represent
the reactive diameters in the forward and backward reactions, with df = d12sf , where sf ∈ [0, 1] is the steric
factor of the forward reaction, d12 = 1

2 (d1 + d2), and dr = √
m12/m34 df . Note that, for each α, the number

density nα of the constituent Aα represents a measure of the constituent’s concentration in the mixture.

2.5 Chemical equilibrium

The reactive mixture reaches the chemical equilibrium if the reaction rates τα vanish. Thus, from expressions
(13), we obtain the equilibrium condition

neq1 neq2
neq3 neq4

=
(
m1m2

m3m4

)3/2
exp

(
Q

kT

)

, (15)

which represents the mass action law of our model and gives a constraint on the equilibrium number densities
neqα , temperature T of the mixture, molecular masses mα of the constituents and reaction heat Q.

We conclude this section by emphasizing that our mathematical model for the analysis developed in the
following sections is based on Eq. (11), with the source contributions defined by expression (13).
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3 Linear analysis and dispersion relation of normal modes

Starting from themathematicalmodeling described in the previous section,we study here the dynamics of small
amplitude propagatingwaves in a chemically reactivemixture. As usual, we assume that the perturbations of the
macroscopic fields have small amplitudes. Therefore, the state variables slightly deviate from the equilibrium
and a linear theory results to be appropriate in describing the dynamics of the perturbations induced on the
hydrodynamic fields.

Accordingly, we linearize the reactive Euler equations (11) around an equilibrium state characterized by a
vanishing velocity, v = 0, and constant values of both the mass densities of the constituents, �0

α , and the total
specific energy of the mixture, �0e0 = �0ε0. For such an equilibrium state, the reaction rate vanishes, τ 0α , and
the chemical equilibrium condition (15) holds true.

We then expand the state vector U in the form

U = U0 + U, (16)

where U0 stands for the equilibrium state and U represents the vector of the perturbations, given by

U0 = [
�0
1 �0

2 �0
3 �0

4 0 (� e)0
]T

, U = [
ū1 ū2 ū3 ū4 ū5 ū6

]T
. (17)

3.1 Linearized field equations

Considering expansion (16) of the state vector U and the consequent expansions induced on the Jacobian
matrix A(U) and source contributions S(U), the reactive Euler Eq. (11) become

∂U
∂t

+ A(U0)
∂U
∂x

=
(

∂S
∂U

)

0
U, (18)

where we have disregarded all nonlinear terms in the perturbations and taken into account that the source

contributions vanish at equilibrium, i.e., S(U0) = 0. Furthermore, the terms A(U0) and
(

∂S
∂U

)

0
represent the

matrix A and the Jacobian matrix of the source terms evaluated at the equilibrium state. The nonzero entries
of the matrix A(U0) = (

A0
αβ

)
, α, β = 1, ..., 6, are given by

A0
α5 = �0

α

�0
, α = 1, . . . , 4, A0

65 = e0 + p0
�0

,

A0
5β = −2

3

εβ

mβ

+ p0
�0

(
�0

mβn0
− 1

)

, β = 1, . . . , 4, A0
56 = 2

3
,

(19)

and the nonzero entries of the matrix
(

∂S
∂U

)

0
= (

Hαβ

)
are given by

Hαα = − Δ

τ xeqα
+ mα

(
n

�
+ 2

3mα

εα

kT

)

Q∗ Δ

τ
,

Hγ γ = − Δ

τ xeqγ
−mγ

(
n

�
+ 2

3mγ

εγ

kT

)

Q∗ Δ

τ
,

Hαβ = −mα

mβ

Δ

τ xeqβ
+ mα

(
n

�
+ 2

3mβ

εβ

kT

)

Q∗ Δ

τ
, α �= β,

Hαγ = mα

mγ

Δ

τ xeqγ
+ mα

(
n

�
+ 2

3mγ

εγ

kT

)

Q∗ Δ

τ
, (20)

Hγα = mγ

mα

Δ

τ xeqα
− mγ

(
n

�
+ 2

3mα

εα

kT

)

Q∗ Δ

τ
,

Hγ δ = −mγ

mδ

Δ

τ xeqδ
− mγ

(
n

�
+ 2

3mδ

εδ

kT

)

Q∗ Δ

τ
, γ �= δ,

Hα6 = −2

3

mα

kT
Q∗ Δ

τ
, Hγ 6 = 2

3

mγ

kT
Q∗ Δ

τ
,
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with α, β = 1, 2 and γ, δ = 3, 4. Here we have introduced the concentration of each constituent, xeqα = neqα /n,
for α = 1, . . . , 4, the dimensionless reaction heat, Q∗ = Q

kT , and also the reference time τ and the pre-
exponential Arrhenius factor Δ defined by

τ = 1

4nd212

√
m12

πkT
, Δ = xeq1 xeq2

s2f√
2
exp

(
− εf

kT

)
. (21)

The details of the calculations for the components of the first line of matrix H are given in Appendix.

3.2 Plane harmonic waves

Considering that the perturbation waves described by system (18) are plane harmonic waves with angular
frequency ω and wavenumber κ , traveling in the x-direction, we look for solutions to system (18) of the form

U = Ũ exp [ı (κx − ωt)] , (22)

where Ũ is the vector of small amplitudes of the harmonic waves, whose components are complex constants.
By inserting the wave expansions (22) into the linear differential equations (18), we obtain the following
homogeneous linear algebraic system for the wave amplitudes,

(

ωI − κA(U0) − ıH(U0)

)

Ũ = 0, (23)

where I is the identity matrix of order six. Non-trivial solutions to system (23) follow when

det

(

ωI − κA(U0) − ıH(U0)

)

= 0, (24)

which defines the dispersion relation of the plane harmonic wave solutions (22) and enables us to determine
the phase velocity and the attenuation coefficient of the waves.

In order to analyze the influence of the chemical reaction on the harmonic wave solutions, we also derive
the dispersion relation of a non-reacting mixture. When we turn off the chemical reaction from our mixture,
the corresponding dispersion relation can be explicitly computed from Eq. (24), giving rise to the following
equation

ω4

[

ω2 − 2

3
κ2

(

ε + p

�
+ 1

�

4∑

α=1

nαεα

)]

= 0, (25)

where the symbols have the same meaning as before. The dispersion relations (24) and (25) constitute the key
ingredients to investigate the sound wave propagation and the dynamics of local disturbances (eigenmodes) in
the reactive mixture. This will be the object of our analysis in the next sections.

4 Sound wave propagation

In this section, we study the problem concerning the propagation of sound waves in the reactive mixture, in
view of characterizing the effects of the chemical reaction in the relevant properties of the waves. We consider
a propagation regime for which the sound frequency is significantly low. The sound wave problem can then
be studied using the macroscopic equations of the previous sections, assuming that the perturbations induced
by the sound propagation on the field variables are described by plane harmonic waves of type (22).

Due to the complexity of the problem and to the large amount of parameters characterizing the quaternary
reactive mixture, we solve this problem for a specific quaternary mixture, following the steps presented in the
sequel.
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4.1 Formulation of the problem for sound waves

The problem of sound waves corresponds to the propagation of forced waves and consists in assuming a given
real angular frequency ω and solving the dispersion relation (24) for a complex wavenumber κ as function
of the oscillation frequency, that is κ = κ(ω). Then, the phase velocity and the attenuation coefficient of the
waves can be computed from the roots of the dispersion relation, following a rather standard procedure (see,
for example, [7,10–15]).

Accordingly, we write the wavenumber in the form κ = κr + ıκi, where κr = Re(κ) and κi = Im(κ)
represent the real and imaginary parts of κ , so that the properties of interest for the sound propagation are
obtained as the phase velocity vvvp and attenuation coefficient ααα of the waves, given by

vvvp = ω

κr
, ααα = κi. (26)

Our aim is to analyze how the chemical reaction affects these properties, in particular how they are influenced
by some of the parameters inherent to the chemical kinetics of the model.

4.2 Sound wave solutions

First, when considering a non-reacting mixture, we evaluate the corresponding phase velocity vvvp∗ and attenu-
ation coefficient ααα∗ from the solutions to the dispersions relation (25) as

vvvp∗ = ±
√
√
√
√2

3

[

ε + p

�
− 1

�

4∑

α=1

nαεα

]

= ±
√
5

3

p

�
= ±c , ααα∗ = 0. (27)

Expressions (27) reveal a well-known result for a non-reactingmixture of Eulerian gases [1,9,16] showing that,
in absence of chemical reaction, as expected, the attenuation coefficient vanishes, whereas the phase velocity
is independent of ω and κ and reduces to the sound speed ±c of a single monatomic gas. Therefore, there is
no dispersion and no attenuation in the sound waves, and this can be justified by the fact that the transport
coefficients are not taken into account and the chemical reaction is turned off.

Now we want to determine the solutions κ = κ(ω) to the dispersion relation (24) for the reactive mixture
and then to evaluate the dimensionless reciprocal phase velocity c/vvvp and the dimensionless attenuation
coefficient αααc/ω. Our aim is to analyze how the chemical reaction affects these properties, in particular how
they are influenced by the activation energy of the chemical reaction and how they vary depending on the
mixture temperature and constituent concentrations. To this end, we introduce the dimensionless wavenumber
Γ = κc/ω and the dimensionless oscillation frequency ωτ , with τ being the reference time given in (21).
Then, we rewrite the dispersion relation (24) in terms of ωτ and Γ , obtaining

det

[

(ωτ)

(

I − Γ

c
A(U0)

)

− ıτH(U0)

]

= 0, (28)

and solve this equation for Γ as function of ωτ . Equation (28) determines an algebraic constraint between
Γ and ωτ , which results in a polynomial equation of sixth degree in ωτ and second degree in Γ , whose
coefficients depend on the reaction heat Q∗, concentrations xeqα and molecular masses mα of the constituents,
mixture temperature T , and activation energy εf [through the Arrhenius factor Δ, see expression (21)2]. Such
polynomial equation is a huge and complicated equation, and it is not reasonable to write it here. The dispersion
relation (28) reflects the influence of the chemical reaction and indicates that the model is able to capture the
effects of the reactive process on the macroscopic fields variations due to the passage of sound waves.

The solutions Γ to the dispersion relation determine two propagating modes, for which the phase velocity
and attenuation coefficient, are given by

vvvp(ω) = c

Γr
, ααα(ω) = ωΓi

c
, (29)

where Γr and Γi are the real and imaginary parts of Γ .
Starting from the analysis developed in this section, and in particular from the dispersion relation (28)

and its solutions Γ , detailed calculations can be performed once a particular mixture and associated chemical
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reaction are specified. In Sect. 6, results are provided for different study cases for the Hydrogen–Chlorine
system in which the elementary reaction H2 + Cl � HCl + H takes place. Several aspects regarding the
influence of the chemical reaction on the sound propagation are presented and discussed.

5 Dynamics of local disturbances in the reactive mixture

In this section, we study the dynamics of local wave disturbances induced by spontaneous internal fluctuations
in the reactive mixture. Our main objective is to characterize the propagating modes (eigenmodes) and inves-
tigate the influence of the chemical reaction on the parameters of interest in the process. We assume that the
disturbances induced on the macroscopic fields are weak, and we are interested in the small wavenumber limit.
The problem can then be well described using the linearized equations derived in Sect. 3, assuming that the
disturbances are plane harmonic waves of type (22). In order to solve this problem, we follow the procedure
explained below and perform a detailed numerical analysis to determine the solutions in a convenient parameter
space.

5.1 Formulation of the problem of local wave disturbances

The problem of local wave disturbances corresponds to the propagation of free oscillations that decay in time,
and is studied by assuming a given real wavenumber κ and solving the dispersion relation (24) for a complex
angular frequency ω as function of the wavenumber, ω = ω(κ). The oscillation frequency and the oscillation
time decay of the disturbances can be computed from the roots of the dispersion relation, following a rather
well-known procedure (see, for example, Refs. [7,17,18]).

We write the angular frequency as ω = ωr + ıωi, with ωr and ωi being the real and imaginary parts of ω.
Then, we determine the relevant properties of this problem, namely the oscillation frequency ϕϕϕ of the wave
disturbances and the decay in time of their amplitude λλλ, defined by

ϕϕϕ = ωr, λλλ = ωi. (30)

Our goal is to characterize the spectrum of the eigenmodes for the considered reactive mixture and its depen-
dence on the parameters connected to the chemical reaction.

5.2 Eigenmodes

First we derive the solutions to the dispersion relation (25) for a non-reacting mixture and obtain

ω1,2,3,4 = 0 and ω5 = −κc, ω6 = +κc, (31)

which define four non-propagating eigenmodes and two propagating eigenmodes with symmetric real parts
and zero imaginary parts. Solutions ω5 and ω6 describe hydrodynamic modes, since ω(κ) → 0 as κ → 0,
representing sound waves propagating in opposite directions with the same velocity (symmetric real parts) and
no damping (zero imaginary parts).

In order to determine the spectrum of the eigenmodes of the reactive mixture, we use the dispersion
relation (24) as explained before. Then, we introduce a reference length � = τc, with τ being the reference
time defined in (21) and c the sound speed of themixture, and rewrite the dispersion relation (24) in terms of the
dimensionless oscillation frequency ωτ and dimensionless wavenumber κ�. We obtain a rather cumbersome
equation, due to the mathematical structure of the equations and source terms, which cannot be reproduced
here. Its general form results in a polynomial equation of sixth degree in ωτ and second degree in κ�, whose
coefficients depend on Q∗, xeqα , mα , T and εf . The corresponding solutions characterize the full spectrum of
the eigenmodes for the considered reacting mixture, in particular they identify six eigenmodes classified in
hydrodynamic modes and kinetic modes. See Refs. [7,17] for other details on the topic. The solutions also
allow us to recognize the effects of the chemical reaction on the spectrum. However, in the small wavenumber
limit, the solutions to the dispersion relation can be determined explicitly by expanding the dimensionless
angular frequency ωτ in power series of the dimensionless wavenumber κ�,

ωτ = b0 + b1(κ�) + b2(κ�)2 + · · · , (32)

and then looking for the complex expansion parameters b0, b1, b2, . . .
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In the case of a generic quaternary reactive mixture, the dispersion relation is unmanageable from the
analytical point of view, so our strategy is as follows. First we consider a specific reactive mixture and an
elementary chemical reaction. Then, for any frequency regime, we derive the exact dispersion relation of the
mixture and determine its solutions in view of characterizing the full spectrum of the eigenmodes. Finally,
we focus on the small wavenumber limit and obtain an explicit representation of the solutions in the form of
power series (32) and a detailed characterization of the eigenmodes.

Following this strategy, we consider in Sect. 6 the Hydrogen–Chlorine system and the elementary reaction
H2 + Cl � HCl+H. We give a rather detailed characterization of the eigenmodes and investigate the effects
of the chemical reaction on the dynamics of the local disturbances. Numerical computations are presented and
discussed.

6 Analysis of forced and free waves propagation

In this section, we perform a rather detailed analysis of forced and free waves, in view of studying the problems
described in Sects. 4 and 5 and implementing the methodologies explained there. The formal theory presented
in these sections is derived from the model described in Sect. 2, and there are some model parameters that
play an important role in the chemical kinetics of the reactive mixture, like the molecular masses, activation
energy and concentrations of the species, so our idea is to conduct a parametric study in order to investigate the
influence of these parameters in the propagation of forced and free waves. Even if the formal theory is based
in a model for monatomic mixtures, the data for our parametric study is taken from the Hydrogen–Chlorine
system which is a polyatomic mixture. This represents a shortcoming of our analysis. However, at least from
a qualitative point of view, our computations can provide general ideas about the role of the chemistry on both
propagation problems. Accordingly, we consider three different mixtures of the Hydrogen–Chlorine system
in which the elementary reaction H2 + Cl � HCl + H takes place. In Table 1, we present the mixtures,
represented by Mi , i = 1, 2, 3, indicating the concentrations of the constituents. In Table 2, we indicate the
values of themolecular masses, molecular diameters and binding energies of the constituents at the temperature
T = 298.15 K.

The analysis performed in this section addresses the problem of investigating the influence of the chemical
reaction in the relevant properties of both processes. In order to better appreciate the chemical effects, we
take sf = 1 in all simulations implemented in this section. The computations are performed with the software
Maple, version 12, for the considered mixtures, and the results are presented in Sects. 6.1 and 6.2.

The equilibrium concentrations xeqα and themolecular massesmα reported in Tables 1 and 2 are constrained
to the mass action law (15). Therefore, we evaluate the reaction heat at chemical equilibrium as a measure of
the exothermicity or endothermicity degree of the reaction and obtain

Q∗ = 3

2
ln

(
m3m4

m1m2

)

+ ln

(
xeq1 xeq2
xeq3 xeq4

)

. (33)

Table 1 Reacting mixtures of the Hydrogen–Chlorine system

Reacting mixture xeq1 xeq2 xeq3 xeq4
M1 0.20 0.20 0.30 0.30
M2 0.40 0.40 0.10 0.10
M3 0.25 0.25 0.25 0.25

Concentrations of the constituents

Table 2 Parameters characterizing the constituents

Constituent Mass Diameter Binding energy
mα (×10−26 kg) dα (×10−10 m) εα (kJ/mol)

H2 (A1) 0.335 2.90 0
Cl (A2) 5.886 1.90 121.68
HCl (A3) 6.054 3.30 −92.31
H (A4) 0.167 1.50 217.97
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and conclude that the chemical reaction is exothermic (Q∗ < 0) for the mixtures M1 and M3, whereas it is
endothermic (Q∗ > 0) for the mixture M2.

6.1 Results for the sound propagation

In this subsection, we study the sound wave propagation in the low-frequency regime. In detail, we solve
analytically the dispersion relation and determine the nonzero solutions for Γ = Γr + ıΓi, specifying both the
dimensionless reciprocal phase velocity and the attenuation coefficient through the relations Γr(ω) = c/vvvp(ω)
and Γi(ω) = cααα(ω)/ω, see Eq. (29). In our study, only the effects of the chemical reaction on the sound
properties are considered since transport effects and molecular degrees of freedom are not taken into account.

The results are shown in Figs. 1, 2 and 3, in the range ω≤2GHz, where, for simplicity, we have used the
notation ω for the dimensionless frequency ωτ . Left plots show the reciprocal phase velocity c/vvvp versus ω,
and right plots show the attenuation coefficient αααc/ω versus ω.

• The diagrams show, in general, that the chemical reaction contributes to decrease the phase velocity and
increase the attenuation coefficient. This result is consistent with other papers studying sound propagation
on chemically reactive mixtures (see, for example, [5,6]). However, in those papers, also the transport
coefficients were included in the description, showing that the chemical reaction contributes to decrease
the transport coefficients, and thus, the comparison is not straightforward.

• The deviations induced on both properties of the sound waves are more pronounced in the very low-
frequency limit, i.e., when ω → 0. The reciprocal phase velocity starts from a positive constant greater
than 1, and then, decreases and asymptotically approximates the unity for increasing ω showing that the
reactive phase velocity approaches the sound speed c of the inert mixture. The attenuation coefficient
also shows a standard qualitative behavior (see [5,6,13,14]), starting from a very small value in the very
low-frequency regime ω → 0, then increasing until a certain value of ω always less than 0.5, and then
decreasing showing that the sound waves asymptotically tend to attenuate.

0.1 0.5 1 1.5 2
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solid line, f = 23
dashed line, f = 10
dotted line, f = 2

210.5 1.5
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0.002

0.001

solid line, f = 23

dashed line, f = 10

dotted line, f = 2

c vp

Fig. 1 Influence of the forward activation energy εf , mixture M1 with T = 500 K. Reciprocal phase velocity c/vvvp (left) and
attenuation coefficient αααc/ω (right) versus the dimensionless angular frequency ω
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Fig. 2 Influence of the equilibrium temperature T , mixtureM2 with εf = 23. Reciprocal phase velocity c/vvvp (left) and attenuation
coefficient αααc/ω (right) versus the dimensionless angular frequency ω
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Fig. 3 Different mixtures with different constituent’s concentrations. Reciprocal phase velocity c/vvvp (left) and attenuation coef-
ficient αααc/ω (right) versus the dimensionless angular frequency ω

• The effects on the phase velocity and attenuation coefficient just above described can be explained as
follows, see [1–3].A soundwavepropagating in amixture of reactive species in chemical equilibriumcauses
infinitesimal variations in pressure and temperature that instantaneously induce small non-equilibrium
effects in the reactive mixture. The chemical reaction, in turn, drives the mixture toward the chemical
equilibrium. However, when the sound wave frequency is very low, the chemical reaction is fast enough
to restore the equilibrium very quickly and the effects of the chemical reaction should be visible. On
the contrary, when the sound wave frequency is high enough, the chemical composition of the mixture
essentially remains the same and the non-equilibrium effects are almost absent so that the impact of the
chemical reaction is almost absent. Of course, the trend to equilibrium crucially depends on the activation
energy, concentrations and on other chemical kinetic parameters, as evidenced by Figs. 1, 2 and 3.

• In Fig. 1, results on sound propagation are represented for the mixtureM1 at the temperature T = 500 K.
In this case, the forward chemical reaction is exothermic. Three different values of the forward activation
energy are considered, namely εf = 23 (solid lines), εf = 10 (dashed lines) and εf = 2.0 (dotted lines).
The exothermicity degree of the reaction is the same in all cases. The solid lines represent the case with
higher activation energy, meaning that the threshold of the forward chemical reaction is to high so that
only few particles react chemically. In this case, the effects of the chemical reaction are concentrated in the
limit ω → 0, because the chemical reaction rate rapidly approaches to zero, see expressions (13) and (14),
and very quickly restores the chemical equilibrium to the reactive mixture. Moreover, as the activation
energy decreases, the effects on the phase velocity and attenuation coefficient, as ω increases, become
more evident because the chemical reaction is a more frequent process in the evolution of the mixture and
the non-equilibrium effects becomemore significant. However, independently of the value of the activation
energy among those considered in Fig. 1, the maximum deviation induced by the chemical reaction (i.e.,
the peak) on the phase velocity as well as on the attenuation coefficient is the same, namely 7×10−3

for the phase velocity and 3.5×10−3 for the attenuation coefficient. This is a consequence of a common
exothermicity degree for all cases.

• In Fig. 2, we present results on sound propagation for the mixture M2, considering an activation energy
εf = 23. Three different values of the mixture temperature (in K) are considered, namely T = 500 (solid
lines), T = 800 (dashed lines) and T = 1200 (dotted lines). For this mixture, the forward chemical reaction
is endothermic and the endothermicity degree of the reaction increases with T , so that the minimum degree
of endothermicity corresponds to T = 500 (solid lines) and the maximum degree corresponds to T = 1200
(dotted lines).
From the plots in Fig. 2, we observe that the peak of the deviation induced by the chemical reaction is
higher for the smaller value of T and lower for the larger value of T . This results from the fact that when
the reaction has a larger endothermicity degree (dotted line) the mixture absorbs a larger amount of the
energy associated with the passage of the sound waves.
The plots in Fig. 2 allow also to estimate the effects of the chemical reaction. They show that the maximum
deviation induced by the chemical reaction is of order 5×10−3 for the phase velocity and 2.3×10−3 for
the attenuation coefficient, when T = 500 K, and of order 1×10−3 for the phase velocity and 0.5×10−3

for the attenuation coefficient, when T = 1200 K.
• Figure 3 illustrates the sound results for the reacting mixtures indicated in Table 1, at the temperature

T = 1200 K. We consider an activation energy εf = 23. The forward chemical reaction is endothermic for
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the mixture M2 (dashed line), whereas it is exothermic for the mixtures M1 (solid line) and M3 (dotted
line), with comparable degrees of exothermicity for mixtures M1 and M3. This justifies the fact that
mixturesM1 andM3 show similar effects on the phase velocity and attenuation coefficient. Additionally,
the plots for mixturesM1 andM3 evidence a higher peak because the mixture absorbs less energy of the
sound waves (exothermic reaction) and the non-equilibrium deviations are more noticeable.

The plots in Fig. 3 show that the maximum deviation induced by the chemical reaction is of order 1.3×10−3

for the phase velocity and 6.5×10−4 for the attenuation coefficient, for M1 and M3, and of order 8×10−4

for the phase velocity and 3.5×10−4 for the attenuation coefficient, for M2.
On the other hand, the plots in Fig. 3 show that when ω > 0.1 the effects of the chemical reaction on the

phase velocity are more pronounced when the reaction is endothermic, and the same happens when ω > 0.2
for the attenuation coefficient. An analogous behavior has been obtained in paper [5].

6.2 Results for the eigenmodes

In this subsection, we present the results for the dynamics of local wave disturbances appearing in the reactive
system described at the beginning of Sect. 6. In detail, we solve numerically the dispersion relation for the
considered system and characterize the full spectrum of the eigenmodes.

We obtain six solutions corresponding to three non-propagating eigenmodes (solutions S1, S2 and S3)
and three propagating eigenmodes (solutions S4, S5 and S6). Solutions S5 and S6 describe hydrodynamic
modes, since ω(κ) tends to zero when κ → 0, whereas solution S4 describes a kinetic mode, since ω(κ) tends
to a non-vanishing constant value when κ → 0. The kinetic mode is clearly associated with the chemical
reaction, since it is not present when we turn off the chemical reaction, as it was explained in Sect. 5 when
determining the eigenmodes given in (31) for the non-reactive mixture. Moreover, from this analysis, we also
realized that solutions S5 and S6 have symmetric real parts and the same imaginary part. This indicates that
the hydrodynamic modes represent sound waves propagating in opposite directions with the same velocity.
Moreover, the kinetic mode is purely diffusive because Re(S4) = 0 in all cases considered here.

The qualitative spectrum obtained in the present work for a chemically reacting quaternary mixture is
exactly the same as the one obtained in paper [8] for a binary mixture with chemical reaction. The fact that
the mixture is quaternary instead of binary adds two more non-propagating eigenmodes associated with null
solutions of the dispersion relation.

Now, we compute explicitly the eigenmodes in the small wavenumber limit and recover the complete
spectrum just described above. The results are presented in Figs. 4, 5, 6, 7, 8 and 9, where the longitudinal
eigenmodes are plotted with dependence on the dimensionless wavenumber. For convenience, we use the
simpler notation ω and κ for the dimensionless frequency ωτ and wavenumber κ�.

In order to appreciate the effects of the chemical reaction on the hydrodynamic modes determined by
solutions S5 and S6, we plot their imaginary parts and the deviations induced on their real parts, say Re(S5)+κ
and Re(S6) − κ , since in the case of the non-reactive mixture these modes have dimensionless real parts ±κ
and vanishing imaginary parts, see expression (31). Furthermore, we also plot the imaginary part of the kinetic
mode S4.

Left diagrams of Figs. 4, 5, 6, 7, 8 and 9 refer to the hydrodynamic modes, while right diagrams refer to the
kinetic mode. In the left diagrams, we show the deviations induced on the real parts of the angular frequency
ω, i.e., on the oscillation frequency of the wave disturbances. We also show the imaginary parts of the angular
frequency ω, which represents the time decay of the oscillation amplitude of the wave disturbances. In the
right diagrams, we show the imaginary part of the angular frequency ω, only, since the real part vanishes, as
explained before.

• Figures 4, 5 and 6 refer to the mixtureM1 for which the forward chemical reaction is exothermic, whereas
Figs. 7, 8 and 9 refer to the mixtureM2 for which the forward chemical reaction is endothermic. With the
exceptions of the cases represented in Figs. 6 and 9 for εf = 23 and in Figs. 4 and 7 for T = 500 K, in all
study cases we have considered a low activation energy and a high value of the temperature, εf = 2 and
T = 1200 K, in order to better appreciate the effects of the chemical reaction. Figures with εf = 23 or
T = 500 K are important when analyzing the influence of the activation energy and of the temperature.

• Let us comment first on the qualitative aspects recognizable in all figures for the eigenmodes associated
with solutions S4, S5, S6. All modes show a stable behavior (in time) because the imaginary part of the
solutions is negative, see also expressions (22). All figures show that the hydrodynamic modes S5, S6
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Fig. 4 Longitudinal eigenmodes as functions of the wavenumber κ for the mixture M1, exothermic reaction with T = 500 K,
εf = 2. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)
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Fig. 5 Longitudinal eigenmodes as functions of the wavenumber κ for the mixtureM1, exothermic reaction with T = 1200 K,
εf = 2. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)
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Fig. 6 Longitudinal eigenmodes as functions of the wavenumber κ for the mixtureM1, exothermic reaction with T = 1200 K,
εf = 23. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)

describe sound waves propagating in opposite direction. In fact, we can see that S5, S6 have symmetric
real parts (and thus opposite velocities) and the same imaginary part (and thus the same damping). All
figures also show that the kinetic mode S4 is always purely non-propagating diffusive, since its real part
is zero and its imaginary part is negative. Moreover, in all cases, the damping of the kinetic mode is more
pronounced than that of the hydrodynamic modes.

• Now, in order to appreciate in detail the effects of the chemical reaction on the eigenmodes, let us compare
the different plots.
– Comparing first Figs. 5 and 6 for mixture M1, exothermic reaction, T = 1200 K, or Figs. 8 and 9 for
mixtureM2, endothermic reaction, T = 1200 K, we can appreciate the effects of the activation energy
on the eigenmodes. We clearly observe that, as expected, the effects are more noticeable in Figs. 5 and
8 when εf = 2, than in Figs. 6 and 9 when εf = 23. In particular, we observe that when εf = 2 and the
chemical reaction is more frequent, a larger deviation on the real parts of the hydrodynamic modes with
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Fig. 7 Longitudinal eigenmodes as functions of the wavenumber κ for the mixtureM2, endothermic reaction with T = 500 K,
εf = 2. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)
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Fig. 8 Longitudinal eigenmodes as functions of the wavenumber κ for the mixtureM2, endothermic reaction with T = 1200 K,
εf = 2. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)
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Fig. 9 Longitudinal eigenmodes as functions of the wavenumber κ for the mixtureM2, endothermic reaction with T = 1200 K,
εf = 23. Representation of the hydrodynamic modes (left) and of the kinetic mode (right)

respect to ±κ is observed. Additionally, the amplitude decay (imaginary parts) of the kinetic and of the
hydrodynamic modes increases. The behavior through this comparison is justified by the fact that the
influence of the chemical reaction is more evident when the energy barrier imposed by the activation
energy is low and more collisions with chemical reaction are occurring.

– Comparing now Figs. 4 and 7 for T = 500 K, εf = 2, or Figs. 5 and 8 for T = 1200 K, εf = 2,
we can appreciate the effects of the exothermicity/endothermicity on the eigenmodes. We can observe
that the qualitative behavior of the solutions is the same when the forward reaction is exothermic or
endothermic. However, the effects of the chemical reaction are more pronounced when the chemical
reaction is endothermic (Figs. 7, 8), in the sense that both the deviation of the oscillation frequency
(real parts) and the amplitude decay (imaginary parts) are larger when the reaction is endothermic.

– Finally, comparing Figs. 4 and 5 for mixture M1, exothermic reaction, εf = 2, or Figs. 7 and 8 for
mixture M2, endothermic reaction, εf = 2, , we can appreciate the effects of the temperature on the
eigenmodes. We observe that when the temperature is high the deviation of the oscillation frequency
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(real part) of the hydrodynamic modes decreases. The amplitude decay (imaginary part) of the kinetic
mode increases, whereas the one of the hydrodynamic modes decreases. This behavior indicates that
when the temperature is high the effects of the chemical reaction are more pronounced in the kinetic
mode and less evident in the hydrodynamic modes.

7 Concluding remarks

Our analysis developed in this paper, based on the reactive Euler equations for a quaternary mixture, was able
to capture some effects of the chemical reaction on the sound propagation as well as on the propagation of
local wave disturbances appearing in the reactive system. Naturally, the analysis presents some limitations but
also some interesting points, and we will comment on both.

We start by mentioning two significant limitations. First, we were not able to test the agreement of the
model with experimental observations, because we did not find available data to implement the comparison
with real physical systems. Second, we have used an idealized model for monatomic mixtures to mimic a
realistic chemical reaction occurring in polyatomic mixtures. These represent perhaps the stronger limitations
of our study.

Nowwe comment on the positive aspects of the study. The mathematical model incorporates some relevant
elements for an appropriate description of the problems studied here within reactive mixtures. In particular,
the numerical tests implemented in the paper provide valuable information about the effects of the chemical
reaction on the properties of interest in the propagating problems. Another important aspect of our analysis is
the fact that the reactive source terms appearing in the model equations have been explicitly computed from
the kinetic theory. Thus, they show a detailed dependence on some key parameters in the reactive process,
namely the heat of the chemical reaction, the activation energy of the forward reaction and the concentrations
of the constituents.

Therefore, regardless of the limitations, we believe that our study offers some insights into the chemical
kinetics of forced and free waves and can be useful to develop better mathematical models and conduct other
computational or even experimental studies on these topics.

Some possible improvements to the preliminary investigation carried out in this paper should be oriented
following two different lines of investigation.

(a) A first line should be developed in order to investigate the high-frequency limit of sound propagation in a
chemically reactive mixture, using the method proposed in [10] for one component gas.

(b) A second line, but apparently more difficult, should be developed in order to deepen the effects of the
chemical reaction by considering a model for polyatomic gases, since reactive mixtures are, in general,
polyatomic systems. In particular, Refs. [19,20] and [21,22] propose mathematical models to describe
polyatomic systems, respectively, with and without chemical reaction. Therefore, the literature concerning
wavepropagationwithin non-reactive polyatomic gases, andwequote for exampleRefs. [13,15,23], should
be enriched with further studies when chemical reactions are involved.
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Appendix

In this appendix, we give the details of the calculations for the components of the first line of the matrix
(
Hαβ

) =
(

∂S
∂U

)

0
presented in expressions (20) of Sect. 3, with S and U being the vectors of the source

contributions and mixture fields, respectively, introduced in Eq. (11).
Each source term τα is a function of the fields �1, . . . , �4 and of the mixture temperature T , see (13),

which is not a field in our theory. The temperature T , in turn, is a function of all fields �1, . . . , �4, �v, �e,
whose functional dependence can be obtained from Eqs. (7) and (2) in the form

T = 1

�cv

[

�e − 1

2�
(�v)2 −

4∑

α=1

�α

εα

mα

]

. (34)
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Therefore, the elements of the matrix
(
Hαβ

)
were calculated using the chain rule.

(a) In the case of H11 the chain rule gives

H11 =
(

∂τ1

∂�1
+ ∂τ1

∂T

∂T

∂�1

)

0
(35)

where

∂τ1

∂�1
= −

√
8πkT

m12
d2f exp

(
− εf

kT

)
n2, (36)

∂τ1

∂T
= m1

2T
τ1 + m1

√
8π

kT 3

[
n3n4√
m34

εrd
2
r exp

(
− εr

kT

)
− n1n2√

m12
εfd

2
f exp

(
− εf

kT

)]

, (37)

∂T

∂�1
= 1

�cv

[

− ε1

m1
+ 1

2�2 (�v)2
]

− T

�
. (38)

At equilibrium, the momentum �v and the reaction rate τ1 vanish, so that substituting expressions (36),
(37) and (38) referred to equilibrium into (35), we obtain

H11 = −
{√

8πkT

m12
exp

(
− εf

kT

)
d2f n2

[

1 + �1

kT 2

(
T

�
+ 1

�cv

ε1

m1

)

(εr − εf)

]}

0

.

Introducing the concentrations xeqα = neqα /n, the dimensionless reaction rate Q∗, as well as the reference
time τ and the Arrhenius factor Δ together with the formula df = d12sf , into the expression for H11
presented above, gives

H11 = − Δ

τ xeq1
+ m1

(
n

�
+ 2

3m1

ε1

kT

)

Q∗ Δ

τ
.

(b) In a similar fashion, we apply the chain rule to obtain

H12 =
(

∂τ1

∂�2
+ ∂τ1

∂T

∂T

∂�2

)

0
,

where ∂τ1
∂T is given by Eq. (37) and

∂τ1

∂�2
= −m1

m2

√
8πkT

m12
d2f exp

(
− εf

kT

)
n1,

∂T

∂�2
= 1

�cv

[

− ε2

m2
+ 1

2�2 (�v)2
]

− T

�
.

At equilibrium, we obtain

H12 = −
{√

8πkT

m12
exp

(
− εf

kT

)
d2f

�1

m2

[

1 + �2

kT 2

(
T

�
+ 1

�cv

ε2

m2

)

(εr − εf)

]}

0

or, in dimensional form,

H12 = −m1

m2

Δ

τ xeq2
+ m1

(
n

�
+ 2

3m2

ε2

kT

)

Q∗ Δ

τ
.
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(c) Analogously, for H13, we obtain

H13 =
{√

8πkT

m12
exp

(
− εf

kT

)
d2f n2

�1

�3

[

1 − �3

kT 2

(
T

�
+ 1

�cv

ε3

m3

)

(εr − εf)

]}

0

or, in dimensional form,

H13 = m1

m3

Δ

τ xeq3
+ m1

(
n

�
+ 2

3m3

ε3

kT

)

Q∗ Δ

τ
.

(d) For H14, we obtain

H14 =
{√

8πkT

m12
exp

(
− εf

kT

)
d2f n2

�1

�4

[

1 − �4

kT 2

(
T

�
+ 1

�cv

ε4

m4

)

(εr − εf)

]}

0

or, in dimensional form,

H14 = m1

m4

Δ

τ xeq4
+ m1

(
n

�
+ 2

3m4

ε4

kT

)

Q∗ Δ

τ
.

(e) For the component H15, the chain rule gives

H15 =
(

∂τ1

∂T

∂T

∂(�v)

)

0
,

where

∂T

∂(�v)
= − v

�cv

which vanishes in equilibrium, and therefore H15 = 0.
(f) Finally, for the component H16, the chain rule gives

H16 =
(

∂τ1

∂T

∂T

∂(�e)

)

0
,

where

∂T

∂(�e)
= 1

�cv
.

Therefore

H16 =
[√

8π

kT 3m12

1

�cv
exp

(
− εf

kT

)
d2f �1

�2

m2
(εr − εf)

]

0

.

or, in dimensional form,

H16 = −2

3

m1

kT
Q∗ Δ

τ
.
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