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Abstract A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been
derived based on Gurtin’s framework (Int J Plast 24:702–725, 2008) is carried out here. This systematic
investigation on the different roles of governing components of the model represents the strength of this
framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-
variation responses in a single crystal. Themodel is represented in the reference configuration for the purpose of
numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine
(UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of
formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening
can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable
work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320–343, 2011). Here, the variation of size
dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation
of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the
reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip
systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different
loading conditions.

Keywords Gradient crystal plasticity · Hardening · Finite deformation · Gradient strengthening

1 Introduction

Crystal lattices are disrupted by point, line and surface defects such as dislocations, disclinations, voids and
interstitial atoms [1,2]. Experimental results have also shown that accumulation of defects gives rise to an
intrinsic size-dependent response of crystalline materials along with inhomogeneous plastic flows on the
micro-scale level [3–10]. Prediction of such a size-dependent response requires incorporation of atomistic slip
systems, gradient description and length-scale parameters into classical plasticity models.

Pertinent works on the development of classical crystal-plasticity theory have been presented in e.g.,
[11–13]. The general approach is an incorporation of the Schmid law into inelastic constitute models. Con-
cerning the size-dependence modeling, it is well accepted that extension of conventional plasticity theories
to strain-gradient plasticity is a promising approach. Comprehensive reviews of strain-gradient theories have
been presented in [14–17]. Studies on the non-uniform straining in crystalline materials show that flow and
accumulation of dislocations play an important role in the accommodation of deformation in a crystal lattice
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[18,19]. Furthermore, it is well accepted that statistically stored dislocation (SSD) and geometrically necessary
dislocation (GND) densities could be simply described by plastic flow and its gradient, respectively [3,20–22].
Geometrical foundations of dislocation density tensors associated with the torsion of crystal connection have
been detailed in e.g., [1,23]. In addition to the density of line defects, a measure of density of point defects
was also proposed by Naghdi and Srinivasa [24] in a finite-deformation gradient crystal-plasticity framework.
Studies on relationship between dislocation densities and material shear-strength can be found in [20,21,25].
A simplest form of small-deformation higher-order strain-gradient plasticity theory was proposed by Aifan-
tis [26], and further developed in [27,28]. Aifantis introduced the Laplacian of equivalent plastic strain into
a constitutive expression. Later, a class of higher-order strain-gradient theories using a couple stress [29]
work-conjugate to strain gradient was proposed in [6,30] and further generalized in [20,31,32]. It is worth
mentioning that Acharya and Bassani [33,34] developed a conventional plasticity theory with an incorporation
of a strain-gradient term as an internal variable in hardening modulus. This theory has standard boundary
conditions and no higher-order stresses. Furthermore, a comprehensive discussion on the similarities between
an extension of Cosserat framework [35,36] and strain-gradient theories has been reported by Forest et al.
[37–39].

Moreover, introducing a definition of GNDs tensor into strain-gradient continuum mechanics has been of
great interest [40,41], and it reveals the physical interpretation behind the concept of strain-gradient crystal-
plasticity theories. Cermelli and Gurtin studied a variety of GND tensors [42,43]. Moreover, Gurtin [44]
introduced a framework in development of gradient crystal-plasticity model with incorporation of a system of
microscopic stresses, which is consistent with microforce balance for each independent kinematic processes
[32,45–47]. This framework was greatly followed later [17,43,48–61]. Cermelli and Gurtin [43] proposed a
small-deformation gradient crystal-plasticity model which employs the microforce framework and a defect
energy based on the GND tensor. In this study, microscopic force is simply decomposed into distributed Peach–
Koehler forces for the edge and screw dislocations [62–64]. Gurtin and Anand [55,56] modified the strain-
gradient theory detailed above for an irrotational-plasticity isotropic material in the framework of small and
finite deformations.A detailed study on the comparison of stain-gradient theory in small and finite deformations
has been presented by Gurtin [54]. In the gradient plasticity frameworks, length-scale parameters are employed
to keep the dimensional consistency [30,32]. Voyiadjis et al. investigated the identification of material length-
scale parameters frommicro- and nano-scale experiments [10,65,66], the resulting model is a physically based
model of length-scale parameters for gradient isotropic-hardening plasticity.

As a review of recent studies on the large-deformation gradient crystal-plasticity, Clayton et al. [67]
employed a three-term multiplicative decomposition of the deformation gradient and studied the distortion
of crystal lattice via a framework including the concept of dislocations and disclinations. Levkovitch and
Svendsen [68] proposed a reformulation of a non-local single-crystal model which is accompanied by an
additional kinematic-like hardening due to GNDs. Furthermore, a crystal-plasticity model incorporating addi-
tional differential equations for the evolution of GND densities was introduced in [69,70], in this model,
dissipative gradient strengthening, gradient yield strengthening and dissipative length-scale are not taken in to
account. A physically based strain-gradient crystal-plasticity theory was proposed via concept of micro-stress
framework in [71]. Svendsen and Bargmann [72] studied a possible extension of selected small-deformation
extended crystal-plasticity models to the large-deformation ones via variational approach. Finally, Gurtin [51]
introduced a finite-deformation gradient crystal-plasticity model for a single crystal. This thermodynamically
consistent model is based on the system of microforce balances and derived from the principle of virtual
power. The free energy comprises two parts: a hyperelastic description for large-deformation compressible
material and a defect energy in a frame-invariance form based on a net dislocation density [52,73]. Moreover,
a non-local rate-dependence flow rule is introduced, which incorporates an energetic back-stress, a dissipative
gradient strengthening as well as dissipative self- and latent-hardening. Energetic and dissipative length-scale
parameters and a function of accumulation rates of SSDs and GNDs are also taken into account.

As for numerical solution of large-deformation strain-gradient theories, an implementation method which
introduces GND density as an additional nodal degree of freedom has been widely employed [69,70,74–79].
Based on this method, Bargmann et al. [80,81] studied the effect of dissipative microstress in the extension
of two small-deformation yield-functions proposed in [74,82]. Kuroda also employed similar implementation
method in a study of a large-strain-gradient crystal-plasticity model developed via an additional higher-order
back-stress description [69,70].

It can be concluded from the literature review that an understanding of large-deformation gradient crystal-
plasticity is of great interest. The model proposed by Gurtin [51] was claimed to cover a number of hardening
behaviors. However, to the best of authors’ knowledge, there is a lack of systematic study on the governing
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components of this model, even though there are great efforts on the development of theoretical models. In the
current work, the authors employGurtin’s framework in [51] to represent amodel in the reference configuration
for the convenience of numerical implementation. Furthermore, a function of accumulation rates of SSDs and
GNDs is employed and viewed as a measure of formation of short-range interactions which impede dislocation
movements within a crystal. The model is then implemented in the FEM software ABAQUS via a user-defined
subroutine (UEL). The present work reveals the capability of the model in the prediction of a wide range of
hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. An observation
of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the
reference configuration, is also aimed. Moreover, plastic flows in predefined slip systems and accumulation of
GNDs are distinctly observed in single crystals under different loading conditions. Effects of scale variation
in expansion of directional flows and accumulation of GNDs within single crystals are also investigated and
simply linked to the phenomenon ‘smaller is stronger’.

In addition, Gurtin and Ohno [83] proposed a new small-deformation gradient crystal-plasticity model
which incorporates an irrecoverable stored energy of cold work and represents new forms of irrecoverable
microstress and irrecoverable gradient strengthening. This stored energy is a portion of plastic work done
during the plastic deformation, and dominantly governed by the accumulation of GNDs [83]. It is noted that
the dissipativemicrostress introduced in [51] plays the same role as the new formproposed in [83]. Furthermore,
Gurtin emphasized that the irrecoverable stored energy may lead to isotropic hardening which is induced via
the irrecoverable gradient strengthening. Motivated by these statements, an isotropic-hardening response due
to the dissipative gradient strengthening is also investigated.

The present work is organized as follows. In Sect. 2, the constitutive model with respect to the reference
configuration is presented. Section 3 details the two-dimensional version of the model and the implementation
method. In Sect. 4, numerical results are shown, compared and discussed.

2 Formulation

In this section, a finite-deformation gradient crystal-plasticity framework which has been proposed by Gurtin
[51] in the deformed configuration is employed to represent a model with respect to the reference configuration
in order to facilitate the numerical implementation and development of a user-defined subroutine (UEL) in the
finite-element software ABAQUS.

2.1 Kinematics in a single crystal

We begin with

F = FeFp, Ce = FeTFe, Ee = 1

2

(
Ce − I

)
and L = Le + FeLpFe−1

, (1)

where F represents the deformation gradient tensor, Fe denotes the elastic distortion, Fp represents an inelastic
deformation, where det Fp = 1.Ce is the right Cauchy-Green elastic tensor,Ee is the Green-Lagrangian elastic
strain tensor, and I is the identity tensor. Le and Lp represent the elastic and plastic distortion-rate tensors, and
Lp is expressed as

Lp =
∑

α
υα

S
α, (2)

where α is a slip-system number, υα is a flow-rate scalar, and Sα is the Schmid tensor which is defined by

S
α = sα ⊗ mα and lα = mα × sα. (3)

Here, sα ,mα and lα are, respectively, the slip direction, the normal vector of slip plane and the glide direction
of the screw dislocations (Sect. 2.2) which are constant vectors in the intermediate space [84] and vary in the
reference configurations [54] as

sαr = Fp−1
sα, mα

r = FpTmα and lαr = Fp−1
lα. (4)

In this study, r stands for the reference configuration. As an explanation of the vector mapping in Eq. (4), Gurtin
et al. stated that “Some readers may disagree with this: In the literature one sometimes finds the assertion,
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either verbally or implicitly via a figure, that the undistorted lattice resides in the reference space (and is hence
material). We believe this to be a misconception. Physically, because a flow of dislocations involves a flow of
material relative to the undistorted lattice, lattice vectors cannot be material” (Section 91.2 in [47]).

2.2 Power expenditures, force balances and dislocation densities

Consider an arbitrary subregion P of the reference body, the internal and external power expenditures W int
and Wext are expressed in the reference configuration by

Wint(P) =
∫

P
Pe : ḞedV +

∑

α

∫

p
(παυα + ξα · ∇υα)dV, (5)

Wext(P) =
∫

P
b · vdV +

∫

∂P
p (n) · vdA +

∑

α

∫

∂P
ξ (n)α υαdA, (6)

where Pe represents the first Piola elastic-stress tensors, πα is a scalar microforce per unit reference volume
and ξα is a microstress vector, expends power over ∇υα per unit reference volume. b is a macroscopic body
force per unit reference volume, p (n) is a macroscopic surface traction, v is a velocity vector, n is an outward
unit vector on the boundary in the reference configuration, and ξ (n)α is a scalar microtraction. ∇ denotes the
gradient operation in the reference configuration. In addition, employing the principle of virtual power [49]
yields the macroscopic and microscopic force balances as well as the macroscopic and microscopic traction
conditions as follows:

Div P + b = 0, τα − πα + Div ξα = 0, (7)

p (n) = Pn and ξ (n)α = ξα · n. (8)

Here, Div denotes the divergence operation in the reference configuration, P = PeFp−T
represents the first

Piola–Kirchhoff stress and τα = CeSe : Sα is the resolved shear stress, where Se represents the second Piola
elastic-stress. In the finite-deformation crystal plasticity description [51,54],

ρ̇α� = −sαr · ∇υα and ρ̇α� = lαr · ∇υα (9)

are directional derivatives of the slip rate in the glide directions −sαr and lαr , ρ
α� and ρα� denote the edge and

screw dislocation densities.1

2.3 Free-energy imbalance

Guided by the second law of thermodynamics and the balanced power [49], the local dissipation inequality
may be rewritten as

�̇ − Se : Ėe −
∑

α

(
παυα + ξα · ∇υα

) ≤ 0, (10)

where � = �e + �ρ denotes a stored free energy per unit reference volume and comprises an elastic strain-
energy �e and a defect energy �ρ . �e is given in a form of compressible Neo-Hookean energy density
by

�e = μ

2
(I1 − 3 − ln I3) + λ

2

(
ln I1/23

)2
, (11)

where I1 and I3 are the first and third invariants of Ce, μ the shear modulus and λ the Lame parameter [85]. A
quadratic defect energy �ρ and its rate form are also given by

1 ρα� and ρα� are in units of length−1, and are signed. To emphasize a difference in notation, each continuum-mechanical density
ρα can be converted to a materials-science density 
α via the transformation ρα = b
α , b is the magnitude of material Burgers
vector [48].
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�ρ = 1

2
S0L

2
1

∑

α

(∣∣ρα�
∣∣2 + ∣∣ρα�

∣∣2
)

,

�̇ρ = S0L
2
1

∑

α

(−ρα�sαr + ρα�lαr
) · ∇υα (12)

where S0 is a slip resistance and L1 is an energetic length-scale parameter. It is worth mentioning that other
forms of energetic defect energy such as rank-one, logarithmic and power-law have been employed in recent
studies [73,86–90], and numerical results based on the models in [87,89,90] show that a jump in energetic
cyclic stress–strain response is observed at the area of change of sign of plastic flow. Such a behavior is not
observed via the quadratic form of energetic defect energy which is employed in this study [Sect. 4.2, Case
study (1)].

2.4 Constitutive model

By considering the free energy �, the local dissipation inequality in Eq. (10) is rewritten as
(

∂�e

∂Ee − Se
)

: Ėe + S0L
2
1

∑

α

(−ρα�sαr + ρα�lαr
) · ∇υα −

∑

α

(
παυα + ξα · ∇υα

) ≤ 0 (13)

The energetic and dissipative microstresses are defined via ξα = ξα
eng + ξα

dis; thus, a reduced inequality is
derived in

∂�e

∂Ee = Se, ξα
eng = S0L

2
1

(−ρα�sαr + ρα�lαr
)
,

∑

α

(
παυα + ξα

dis · ∇υα
) ≥ 0. (14)

Equation (14)2 shows that the energetic microstress ξα
eng is an in-slip-plane vector. Consequently, ξα

dis is
assumed to be tangential to the slip plane and the reduced inequality in Eq. (14)3 is redefined in

∑

α

(
παυα + ξα

dis · ∇αυα
) ≥ 0, (15)

where ∇αυα = P̄∇υα = ∇υα − (
m̄α

r · ∇υα
)
m̄α

r , P̄ = I − m̄α
r ⊗ m̄α

r and m̄α
r = mα

r|mα
r | .

2.4.1 Constitutive relations for πα and ξα
dis

To ensure Eq. (15), a strong formulation of the reduced inequality is assumed as

παυα ≥ 0 and ξα
dis · ∇αυα ≥ 0, (16)

and conventional power-law model is employed to define πα and ξα
dis

2 in

πα = Sα

(
υα

υ0

)m
υα

|υα| , παυα = Sα

(
υα

υ0

)m ∣∣υα
∣∣ ≥ 0,

ξα
dis = L2

2S
α

(
dα

d0

)q ∇αυα

dα
, ξα

dis.∇αυα = L2
2S

α

(
dα

d0

)q |∇αυα|2
dα

≥ 0,

dα = L2
∣∣∇αυα

∣∣ , Ṡα =
∑

β

Hαβφβ, Sα (x, 0) = Sy,

Hαβ = [
�αβh(Sβ)

]
, φβ =

√
υ

β
acc

2 + L2
2ρ̇

β
acc

2
. (17)

Here, q and m are rate-sensitivity parameters, υ0 and d0 are constant positive-valued reference flow rates, L2
is a dissipative length-scale parameter, Sα is a positive-valued slip resistance, φβ is a measure of accumulation

2 By considering the strong formulation of inequality, uncoupled forms of power laws in πα and ξα
dis are defined, it is similar

to the formulation in Lele and Anand [49] and in the spirit of formulation in Gurtin [51].
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rate of dislocations, Sy is an initial coarse-grain shear resistance, Hαβ is a stiffness matrix, h(Sβ) is a self-
hardening function and �αβ is an interaction constant. �αβ = 1 if mα = ±mβ and �αβ = κ otherwise, κ

represents a ratio of latent-hardening rate to self-hardening rate. In this study, φβ is defined as an accumulation
rate of dislocations and represents a measure of formation of short-range interactions between all dislocations,
i.e., both SSDs and GNDs. These interactions impede the dislocation movements and render a dissipative
hardening [78]. υα

acc and ρ̇α
acc represent the accumulation rate of SSDs and GNDs, respectively [48,82,89,91],

υβ
acc = ∣∣υβ

∣∣ and ρ̇β
acc =

√∣
∣∣ρ̇β

�
∣
∣∣
2 +

∣
∣∣ρ̇β

�
∣
∣∣
2
. (18)

2.4.2 Flow rule

The microscopic force balance Eq. (7)2 takes the following form via ξα = ξα
eng + ξα

dis,

τα + Divξα
eng = πα − Divξα

dis. (19)

Substitution of Eqs. (14)2 and (17) into Eq. (19) results in

τα + S0L
2
1Div

(−ρα�sαr + ρα�lαr
)

︸ ︷︷ ︸
(I)

= Sα

(
υα

υ0

)m
υα

|υα|
︸ ︷︷ ︸

(II)

−Div

(
L2
2S

α

(
dα

d0

)q ∇αυα

dα

)

︸ ︷︷ ︸
(III)

. (20)

The flow rule in Eq. (20) is governed by three different components. The term (I) represents an energetic
hardening defined via the defect energy and is independent of υα sign. Therefore, term (I) is expected to
show back-stress effect and the Bauschinger-like phenomenon. The terms (II) and (III) express dissipative
hardening and strengthening via a dissipative microforce, power-conjugate to υα , and a dissipative microstress
power-conjugate to ∇αυα , respectively. Similar to many other gradient theories, the length-scale parameters
L1 and L2 are ad hoc parameters [47] and keep the dimensional consistency [30,32]. However, a built-in
gradient length-scale μb

S̄
in a small-deformation theory based on a GND self-energy near the grain boundaries

was proposed in [73,89], where μ is the shear modulus, b is the magnitude of material Burgers vector, and
S̄ is the initial slip resistance (Section 8 in [48]). This small-deformation theory showed good agreements
with a series of experiments from submicron to several microns range of grain sizes [73,89] and yielded an
observation of size dependency of the initial slip resistance which reveals the physical interpretation behind
the concept of length-scale parameters.

2.5 Microscopic boundary conditions

Considering ahigher-order strain-gradient theory requires concomitantly amicroscopic boundary condition and
results in an expenditure of microscopic power

∫
∂P ξ(n)αυαd A defined in Eq. (6). In this study, a microscopic

boundary with a null power-expenditure is defined by

ξ (n)α υα = (ξα · n) υα = 0, (21)

and it is simply satisfied via considering two idealized boundary conditions—microscopically free boundary
through ξα · n = 0, and microscopically hard boundary via υα = 0. A more comprehensive study on the
powerless boundaries could be found in [92].

3 Two-dimensional version of the model and implementation method

A two-dimensional version of the model is introduced here. ∇υα , mα and sα are in-plane vectors, and e =
mα × sα is an out-of-plane vector. The rates of dislocation densities are given by

ρ̇α� = −sαr · ∇υα and ρ̇α� = e · ∇υα = 0 (22)
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where ρα� (x, 0) = ρα� (x, 0) = 0. Then, the flow rule in Eq. (20) is rewritten as

τα + S0L
2
1Div

(−ρα�sαr
)

︸ ︷︷ ︸
(I)

= Sα

(
υα

υ0

)m
υα

|υα|
︸ ︷︷ ︸

(II)

−Div

(
L2
2S

α

(
dα

d0

)q ∇αυα

dα

)

︸ ︷︷ ︸
(III)

, (23)

where

∇αυα = (
sαr · ∇υα

)
sαr /

∣
∣sαr

∣
∣2 , dα = L2

∣
∣∇αυα

∣
∣ , Ṡα =

∑

β

Hαβφβ, Sα (x, 0) = Sy . (24)

Due to the limited information on q and for the sake of simplicity, q = 1 and ∇Sα = 0 in term (III) are
assumed in the numerical simulations. In this way, Eq. (23) is reduced to

τα + S0L
2
1Div

(−ρα�sαr
)

︸ ︷︷ ︸
(I)

= Sα

(
υα

υ0

)m
υα

|υα|
︸ ︷︷ ︸

(II)

− SαL2
2
Div ∇αυα

d0︸ ︷︷ ︸
(III)

. (25)

The two-dimensional version of the model is implemented via a user-defined subroutine (UEL) in the
finite-element software ABAQUS. An implementation method introducing the rate of dislocation density
ρ̇α� = −sαr · ∇υα as an additional nodal degree of freedom, is employed. A plane-strain quadratic-element
(8-node element with 9 integration points) is defined, and the flow rule Eq. (25) is solved at the integration
points to obtain the plastic flow in each slip system via the Newton–Raphson scheme. This implementation
method has been widely used by others [69–71,74,76,78,81].

3.1 Calculation within an element

The nodal degrees of freedom: the displacement components u1, u2 and ρ̇α�, are given by the finite-element
software. At a time-step�t = tn+1− tn , ρα�n+1 = �t ρ̇α� +ρα�n is updated, and the deformation gradient Fn+1,

Div
(−ρα�n+1s

α
r

) = −∇ρα�n+1 · sαr − ρα�n+1 Div sαr and

Div ∇αυα = Div
(
−ρ̇α�sαr /

∣
∣sαr

∣
∣2

)
= −∇ρ̇α� · sαr /

∣
∣sαr

∣
∣2 − ρ̇α� Div

(
sαr /

∣
∣sαr

∣
∣2

)
(26)

are computed at the integration points.3 The quantity Fp
n which has been already saved in the last time-step is

employed, and trial quantities

Fe
n+1

trial = Fn+1F
p−1

n ,

Ce
n+1

trial = Fe T
n+1

trial
Fe
n+1

trial and

τα
n+1

trial = Ce
n+1

trialSen+1
trial : Sα (27)

are calculated. The flow rule Eq. (25) is solved at the integration points and the flow rate υα
n+1 is obtained via

the Newton–Raphson scheme, Fp
n+1 may be updated via a semi-implicit Euler method4 in the form

Fp
n+1 = �

(

�t
∑

α

υα
n+1S

α + I

)

Fp
n, (28)

where � (A) = (detA)− 1
3 A enforces det Fp = 1. Finally, Fp

n+1 is saved for a new calculation in the next
time-step, and Fe

n+1 and C
e
n+1 are calculated and employed in the derivation of elemental stiffness matrix and

elemental residual which are detailed in the following section.

3 Effect of distortion of crystal lattice in the reference configuration (Div sar ) is discussed in Sect. 4.4.
4 The form of Fp

n+1 − Fp
n =

(
�t

∑

α

υα
n+1S

α

)
Fp
n+1 renders a fully implicit method.
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3.2 Weak forms and elemental residual

Here, weak forms of the macroscopic force balance and the rate of dislocation density ρ̇α� are detailed. The
macroscopic force balance via a vectorial set of virtual velocity descriptor ϕ is redefined in

∫

P
(P : ∇ϕ) dV −

∫

P
b · ϕdV −

∫

∂P
p (n) · ϕdA = 0. (29)

Following the variational approach leading to the finite-element discretization technique (Section 8 in [93]),
a virtual displacement field ϕ = δu is introduced. In the absence of the body force and considering a null
external-work due to the boundary conditions, the variational equation is given by

δΠ = δWint − δWext =
elements∑

j

nodes∑

i

δuei
T

∫

Ω j

(
BT
i : S)

dV, (30)

where j and i stand for the element and node numbers, δuei represents a virtual displacement vector.Bi = DrNi ,
where Dr is a nonlinear differential operating matrix with respect to the reference configuration, Ni is an
elemental shape function (Section 5 in [94]), and S is the second Piola–Kirchhoff stress. Therefore, the
elemental residual is defined in the form

Re
u =

nodes∑

i

Rei
u =

nodes∑

i

∫ (
BT
i : S)

dV . (31)

Furthermore, the rate of dislocation density ρ̇α� = −sαr · ∇υα is formulated in a weak form by
∫

P
ρ̇α�δρ̇α� dV −

∫

P
∇ · (

δρ̇α�sαr
)
υα dV +

∫

∂P
υα

(
δρ̇α�sαr

) · n∂P dA = 0. (32)

By considering the microscopically hard boundary condition υα = 0 introduced in Sect. 2.5, Eq. (32) may be
rewritten in

∫

P
ρ̇α�δρ̇α� dV −

∫

P

(
sαr · ∇δρ̇α�

)
υα dV −

∫

P

(
δρ̇α� Divsαr

)
υα dV = 0. (33)

Thus the elemental residual associated with the rate of dislocation density is expressed as

Re
ρ̇�α

=
nodes∑

i

Re i
ρ̇�α

=
nodes∑

i

∫ (
Nl ρ̇

αl� Ni − υα
(
sαr · Bi + Divsαr Ni

))
dV . (34)

The elemental stiffness matrix Ke =
[
Ke

Γ iΛ j = ∂Re
Γ i

∂Λ j

]
and its components are calculated by imposing a

low increment in nodal variables �Λ j and then calculation of variation of elemental residuals �Re
Γ i . The

elemental residual and stiffness matrix are assembled over all elements as
[

Ku u Ku ρ̇�α

Kρ̇�α u Kρ̇�α ρ̇�α

] [
du

dρ̇�α

]
= −

[
Ru
Rρ̇�α

]
. (35)

4 Results

In this section, the capability of the two-dimensional version of the model in the prediction of a wide range of
hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal, is investigated.
The effect of the dissipative gradient strengthening as a source of isotropic-hardening behaviorwhichmay show
aportion of dissipative plasticwork done during the deformation is also studied. Furthermore, directional plastic
flows in predefined slip systems and accumulation of GNDs are distinctly observed in a single crystal under
three different loading conditions. Effects of scale variation in expansion of directional flows and accumulation
of GNDs are also studied and simply linked to the phenomenon ‘smaller is stronger’. Moreover, the effect
of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference
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Table 1 Predefined slip systems, sα andmα—constant vectors in the intermediate space

Slip-system number α Relative orientation
between sα and (1, 0)

Slip vector sα Normal slip
plane vectormα

1 30◦ (
√
3/2, 1/2) (−1/2,

√
3/2)

2 60◦ (1/2,
√
3/2) (

√
3/2, −1/2)

3 120◦ (−1)/2,
√
3/2 (

√
3/2, 1/2)

4 −30◦ (
√
3/2, −1/2) (1/2,

√
3/2)

Table 2 A common set of material coefficients and modeling parameters

μ λ Sy υ0 d0 q D L1, L2 S0 m h
(
Sβ

)
κ

76.9 115.3 200 1e-3 1e-4 1.0 1 1 90e4 0.08 400 0.5
GPa GPa MPa 1/s 1/s – µm µm MPa – MPa –

In order to gain insight into the spirit of proposed model, modeling parameters vanish or vary in different case studies

Table 3 In loading scenarios (1–3), a single crystal which is discretized by 5180 elements and incorporates the predefined slip
systems (Table 1) is considered

Loading scenarios Displacement-loading condition Slip systems taken from Table 1

1 Figure 1a Two slip systems, α = 1, 4
2 Figure 1b Four slip systems, α = 1, 2, 3, 4
3 Figure 1c Four slip systems, α = 1, 2, 3, 4

Different loading conditions are employed based on Fig. 1. A common set of material parameters and modeling coefficients are
taken from Table 2. Here, a high magnitude of S0 = 100e7MPa is considered

Table 4 In the case studies (1–6), a single crystal which is discretized by 96 elements and incorporates all four slip systems
detailed in Table 1, is considered

Case study A complete form of the flow rule according to the following conditions is employed

1 Term (III) is not activated, L2 = 0, Sα = Sy , Ṡα = 0 and L1 varies
2 Term (III) is activated, Sα = Sy , Ṡα = 0, L1 and L2 vary

3 Term (III) is activated, Sα = Sy , Ṡα 
= 0,

{
κ = 0
κ 
= 0

4 Term (III) is switched off, L2 = 0, Ṡα 
= 0, κ 
= 0
The results are compared with previous case studies to release the effect of Term (III)

5 Rate-sensitivity parameter m varies in a range of 0.08–0.4
6 Size of single crystal D varies in a range of 0.125–8µm, L2 = L1 = 1µm

Case studies (1–5) are under a cyclic simple-shear loading and case study (6) is subjected to a large-strain simple-shear loading.
A common set of material parameters and modeling coefficients are taken from Table 2. Term (I) in the flow rule detailed in Eq.
(23) is active for all case studies and modeling parameters vanish or vary in different case studies

configuration is also investigated. First of all, a two-dimensional square single-crystal in a size of D = 1µm is
employed. In order to show the strength of the implementation method for a distinct observation of dislocation
glides in different directions, four arbitrary slip systems in a variety of slip directions (Table 1) are incorporated
into the crystal. Here, the grain boundary is idealized considering the concept of hard boundary introduced
in Sect. 2.5. A surrounding boundary-layer with a thickness of 0.01µm enforces the microscopically hard
boundary condition via υα = 0. A common set of material coefficients and modeling parameters are given in
Table 2. The parameters μ and λ are taken from a common material with an elastic modulus E = 200GPa
and a Poisson’s ratio ν = 0.3, other parameters are employed in an acceptable range. In order to gain insight
into the spirit of the model, different loading conditions and case studies which are detailed in Tables 3, 4,
are carried out. The modeling parameters in the flow rule Eqs. (24, 25) may vary or vanish in different case
studies.



1398 H. Pouriayevali, B.-X. Xu

Fig. 1 Three different displacement-loading conditions are applied to the single crystal; a top surface is subjected to a horizontal
displacement in the direction of (1, 0); b simple-shear loading; c tensile loading in the direction of (0, 1); d discretization with
96 elements, red dots represent nodes, each element is accompanied by 9 integration points (color figure online)

Fig. 2 Loading scenario (1), the single crystal at 1.1% strain via a loading condition depicted in Fig. 1a. a,bContours of directional
plastic flows

∫
υαdt , respectively, for the predefined slip systems α = 1, 4 (Table 1); c contour of a combination of plastic flows

(∑
α

(∫
υαdt

)2)0.5; d contour of accumulation of dislocation densities
(∑

α

(∫
ρ̇α�dt

)2)0.5

4.1 Different displacement-loading conditions

Loading scenarios (1, 2, 3) are detailed in Table 3. Here, it is aimed to distinctly observe directional plastic
flows associated with the predefined slip systems as well as accumulation of GNDs in the single crystal.
Three different displacement-loading conditions depicted in Fig. 1 are considered. Here, the single crystal
is discretized by 5180 elements. A common set of material parameters and modeling coefficients given in
Table 2 is employed. Here, a high magnitude of the energetic resistance S0 = 100e7MPa is considered,
which restrains expansion of plastic flows within the single crystal and provides us with a distinct obser-
vation of directional plastic flows as expected. Numerical results based on the loading scenarios (1–3) are
illustrated in Figs. 2, 3 and 4, respectively. Plastic flow

∫
υαdt for each predefined slip direction, a combi-
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Fig. 3 Loading scenario (2), the single crystal at 1.6% strain via a loading condition depicted in Fig. 1b. a–d Contours of
directional plastic flows

∫
υαdt , respectively, for the predefined slip systems α = 1–4 (Table 1); e contour of a combination of

plastic flows
(∑

α

(∫
υαdt

)2)0.5; f contour of accumulation of dislocation densities
(∑

α

(∫
ρ̇α�dt

)2)0.5

nation of all plastic flows
(∑

α

(∫
υαdt

)2)0.5 and accumulation of edge dislocations
(∑

α

(∫
ρ̇α�dt

)2)0.5 are
simply observed. Figures 2, 3 and 4 show that the plastic flows in an area close to the hard boundary are
quite low and the edge dislocations are highly accumulated toward the boundary due to the hard boundary
condition. In addition, directional plastic flows and accumulation of GNDs under a cyclic loading condition
are investigated here. Figure 5 shows the stress–strain response of the single crystal under a cyclic version
of loading scenario (2), four different red points: A, B, C and D which correspond respectively to strains
ε = 2, −0.67, −2 and 0.16% are marked on the stress–strain curve. Figure 6 illustrates the directional plastic
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Fig. 4 Loading scenario (3), the single crystal at 0.6% strain via a loading condition depicted in Fig. 1c. a–dContours of directional
plastic flows

∫
υαdt , respectively, for the predefined slip systems α = 1–4 (Table 1); e contour of a combination of plastic flows

(∑
α

(∫
υαdt

)2)0.5; f contour of accumulation of dislocation densities
(∑

α

(∫
ρ̇α�dt

)2)0.5

flow, a combination of plastic flows and accumulation of GNDs at different strains. Similar responses and
behaviors are observed at points A and C. However, the directional plastic flows at A and C are, respectively,
captured in positive and negative magnitudes as expected. Point B is located at the area of zero plastic flow
(Fig. 5); therefore, very low plastic flows and accumulation of GNDs are observed at this point. Point D defines
the single crystal at a positive strain location, although the directional plastic flow is observed in a negative
magnitude.
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Fig. 5 The stress–strain response of the single crystal under a cyclic version of loading scenario (2). Four different red points
A, B, C and D which correspond respectively to strains ε = 2, −0.67, −2 and 0.16 % are marked. A high magnitude of the
energetic resistance S0 = 100e7MPa is considered here (color figure online)

Fig. 6 A cyclic version of loading scenario (2) is applied to the single crystal. Numerical results corresponding to points a, b,
c and d which have been marked on the stress–strain curve shown in Fig. 5, are presented. Row (x) contours of the directional
plastic flow

∫
υαdt based on the predefined slip system α = 1 (Table 1). Row (y) contour of a combination of plastic flows

(∑
α

(∫
υαdt

)2)0.5, α = 1-4. Row (z) contour of accumulation of dislocation densities
(∑

α

(∫
ρ̇α�dt

)2)0.5. ε denotes the total

strain (color figure online)
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Fig. 7 A comparison of the stress–strain results obtained for different L1/D ratios in the case study (1); L2 = 0, Ṡα = 0. a The
energetic gradient strengthening results in a kinematic-hardening behavior along with a Bauschinger-like response. b Changing
in the energetic length-scale L1 has no effect on the onset of plastic flow

Fig. 8 A comparison of the stress–strain results obtained for different L1/D and L2/D ratios in the case study (2) along with
Ṡα = 0. The dissipative gradient strengthening induces an increase in the yield strength

4.2 Different case studies

Case studies (1–6) are detailed in Table 4. In the case studies (1–5), the capability of the two-dimensional
version of the model Eq. (25) in the prediction of a wide range of rate-dependent hardening behaviors via
simulation of the single crystal under a cyclic simple-shear loading, is studied. Figure 1b depicts the simple-
shear loading. In a similar vein with effect of irrecoverable work [83], the case study (4) investigates the
dissipative gradient strengthening as a source of isotropic-hardening behavior which may represent a portion
of dissipative plastic work which is associated with the long-range stress field. The case study (6) aims to
validate the phenomenon ‘smaller is stronger’ in the single crystal under a large-strain simple-shear loading. In
the case studies (1–6) discretization of single crystal by 96 elements results in a reasonable range of mesh-size
insensitivity response along with an efficient calculation time. A study of mesh-size sensitivity can be found
in “Appendix”.

• Case study (1): L2 = 0, Sα = Sy and Ṡα = 0. The effect of energetic gradient strengthening [term
(I) in Eq. (25)] is studied here. The dissipative gradient strengthening [term (III)] is not involved and
only the initial coarse-grain yield-threshold Sy is considered. Different L1/D ratios are also employed.
Figure 7a shows the effect of term (I) in the stress–strain responses, it can be concluded that the energetic
gradient strengthening represents the kinematic hardening which is accompanied by a Bauschinger-like
phenomenon. It is worth mentioning that GND densities which are evolved via the directional gradient of
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Fig. 9 A comparison of the stress–strain results obtained for different L2/D ratios in the case study (2) along with Ṡα = 0. An
increase in the dissipative length-scale L2 changes the yield strength in the onset of plastic flow

Fig. 10 A comparison of stress–strain results obtained for L1 = L2 = D in the case study (3); a effect of the dissipative
self-hardening (Ṡα 
= 0, κ = 0), and the result for Ṡα = 0 is taken from Fig. 8a; L1 = L2 = D, b effect of the dissipative latent-
hardening (Ṡα 
= 0), κ 
= 0. The isotropic-hardening behavior is simply observed via employing the self- and latent-hardening

slip-rates (Sect. 2.2) are independent of sign of υα . Therefore, term (I) plays a role of energetic back-stress.
Figure 7b shows that changing in the energetic length-scale L1 has no effect on the onset of plastic flow.
However, a higher strain-hardening response is observed with a larger value of L1.

• Case study (2): Sα = Sy , Ṡα = 0, and L1/D and L2/D vary. Effect of the dissipative gradient strength-
ening [term (III)] is investigated here. Figure 8 shows the stress–strain results. It can be seen that the
dissipative gradient strengthening represents the yield strengthening. In order to gain insight into the effect
of dissipative length-scale L2, a varying L2/D ratio along with L1 = D are considered here. Figure 9
shows that an increase in L2 yields a higher yield strength in the onset of plastic flow which is in contrast
to the response observed from the energetic length-scale in Fig. 7b. Bear in mind that Ṡα = 0 is considered
here; thus, the post-yield strain-hardening is not induced. The effect of Ṡα 
= 0 in term (III) is studied in
the case study (4).

• Case study (3): Ṡα 
= 0. Evolution of self- and latent-hardening is activated here. First, only self-hardening
without latent one is considered (Ṡα 
= 0, κ = 0). Figure 10a shows the effect of self-hardening in
the stress–strain results, it can be seen that self-hardening is a source of isotropic-hardening behavior
and yields a post-yield strain-hardening response that consistently increases by plastic work. Second, the
latent-hardening is taken into account (Ṡα 
= 0, κ 
= 0). Figure 10b indicates a comparison of stress–
strain results obtained by considering self- and latent-hardening with the results obtained without latent-
hardening (Fig. 10a). An additional isotropic-hardening response is easily observed via employing the
latent-hardening. It is worth mentioning that self- and latent-hardening are evolved via φβ in Eq. (17)
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Fig. 11 a A comparison of the stress–strain result obtained in the case study (4) with a result taken from Fig. 10b—L2 = D,
Ṡα 
= 0, κ 
= 0. b Results in the area of onset of plastic flow. Considering the dissipative gradient strengthening [term (III)] gives
rise to an additional isotropic-hardening behavior as well as a yield-strengthening response which has been already observed in
the case study (2)

which is a function of accumulation rates of SSDs and GNDs [Eq. (18)]. Evers [78] emphasized that
evolution of SSDs during crystallographic slips increases formation of short-range interactions between
all dislocations, i.e., both SSDs and GNDs. These interactions turn to impede the dislocation movements
and yield the isotropic-hardening responses which are observed in this case study.

• Case study (4), Gurtin and Ohno [83] proposed a new small-deformation gradient crystal-plasticity model
which incorporates an irrecoverable stored energy of cold work and represents a new form of irrecoverable
microstress and irrecoverable gradient strengthening [Eq. (13.5-6) in [83]]. Gurtin emphasized that the
irrecoverable stored energy may lead to isotropic hardening which is induced via the new form of irrecov-
erable gradient strengthening. Moreover, the dissipative microstress which is introduced in the current
large-deformation theory plays the same role as the new form proposed in the small-deformation model
[83]. Gurtin highlighted that there is no way of differentiating between the new model and a theory in
which the irrecoverable stored energy vanishes and a dissipative term is considered. Motivated by this
statement, an isotropic-hardening response due to the dissipative gradient strengthening [term (III)] is also
investigated. A complete form of Eq. (25) with Ṡα 
= 0 and κ 
= 0 is considered. Figure 11 compares the
stress–strain responses obtained for L2 = 0 with the result taken from Fig. 10b (L2 = D, Ṡα 
= 0, κ 
= 0).
Based on the results presented in Fig. 11, the dissipative gradient strengthening [term (III)] results in a
yield-strengthening response (Fig. 11b) which has been already observed in the case study (2), as well as
an isotropic-hardening behavior due to Ṡα 
= 0 in term (III) seen in Fig. 11a. It could be concluded that
the isotropic-hardening behavior observed in the case study (3), Fig. 10b (Ṡα 
= 0, κ 
= 0), is induced by
the evolution of short-range interactions, i.e., φβ 
= 0 in terms (II, III). The portion of isotropic hardening
which is governed by the long-range stress filed ξα

dis is quite of interest in the study of irrecoverable gradient
works based on a gradient crystal-plasticity framework.

• Case study (5), two rate-sensitivity parameters m, q are employed in Eq. (23). Effect of m which is widely
used in the conventional viscoplasticity and supposed to be quite small in simulation of metals under
quasi-static loading, is studied here. Note that term (III) in Eq. (23) is simplified via q = 1 in Eq. (25).
Figure 12a, b compares the stress–strain responses obtained based on a complete form of Eq. (25) and the
coefficients and parameters detailed in Table 2 along with varying value of m. It can be concluded that
considering m = 0.08 in this study, results in a low rate-dependent response. Figure 12a, b shows that an
increase inm value in a range of greater than 0.12 results in a significant change in the onset of plastic flow
and the post-yield response. Figure 12c, d compare the contribution of governing terms (I–III) atm = 0.08,
0.2. The change induced by m and Ṡα 
= 0 is quite significant in the contribution of term (II). A sharper
rise in the contribution of term (III) (data set C) at the onset of plastic flow and at the area of strains below
2% can be also seen for lower m.

• Case study (6), employing all three governing components [terms (I–III)] in Eq. (25) with the common set
of material coefficients and modeling parameters detailed in Table 2, yields a stress–strain response which
shows a combination of isotropic and kinematic-like hardening behaviors as well as yield strengthening.
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Fig. 12 a, b A comparison of rate-dependent stress–strain results obtained in the case study (5) for crystal size D = 1µm.
Considering m = 0.08 results in a low rate-dependent response, and an increase in m value in a range of greater than 0.12 results
in a significant change in the onset of plastic flow and the post-yield behavior. c, d A comparison of contribution of the governing
terms (I–III) at m = 0.08, 0.2. A and C represent the effect of terms (I) and (III), and B shows the effect of m and Ṡα 
= 0 in
term (II), beyond perfect plastic response. A change in data set B is quite clear. A sharper rise in the contribution of term (III)
(data set C) at the onset of plastic flow is also seen for lower m

In this case study, a phenomenon which is so-called ‘smaller is stronger’ and refers to an increase in
strengthening response with decrease in the crystal size, is investigated. A complete form of the flow rule
Eq. (25) is employed to investigate size-dependent behavior of single crystals which are simulated with
different crystal sizes D under a large-strain simple-shear loading. Figure 13a, b shows the stress–strain
responses and indicate that the onset of plastic flow and the post-yield behavior are highly size-dependent.
However, in a range of crystal size close to 8μm, where L1/D = L2/D = 0.125, a nearly size-independent
response is observed, and it can be concluded that the effect of gradient strengthenings [terms (I, III)] is
insignificant in this range. Moreover, Fig. 13c, d compares the contribution of governing terms (I–III) at
D = 1 and 0.25µm. A size-dependent change in three governing terms is quite clear. In order to capture
the variation of size dependency at different magnitude of rate-sensitivity parameterm, the size-dependent
stress–strain responses at two different crystal sizes D = 1 and 0.25µm are compared when m = 0.08
and 0.2. Figure 14 shows the size- and rate-dependent stress–strain responses. In the range of strains and
in the resolution of results obtained in this study, it could be concluded that the size dependency of stress–
strain response at a specific small strain is more pronounced at lower m, i.e., �4 > �3 and �2 > �1 in
Fig. 14a. It is worth mentioning that by a lower m, a higher rate of flow at the onset plastic deformation is
expected, which results in a sharper rise in the effect of gradient of plastic flow close to hard boundaries.
Such a sharper rise can be observed in the contribution of term (III) (data set C) in Fig. 14c, e at lower
m. In Fig. 14a, �0 > �1 compares the size dependency between two sets of points which are indicated
via 0.2%-strain offset of elastic response guided by a green dash-line. At large enough strains, the size
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Fig. 13 a Size-dependent stress–strain responses obtained for L1 = L2 = 1µm in the case study (6), single crystals are simulated
with different crystal sizes D at constantm =0.08; b results are distinctly shown in the area of onset of plastic flow. The post-yield
behavior and the onset of plastic flow are clearly size-dependent. The phenomenon ‘smaller is stronger’ is simply observed. c, dA
comparison of contribution of the governing terms (I–III) for D = 1, 0.25µm. A and C represent the effect of terms (I) and (III),
and B shows the effect of Ṡα 
= 0 in term (II), beyond perfect plastic response. A size-dependent change in three data sets (A, B
and C) is quite clear

dependency is greater by a higher m, i.e., �5 > �6 and �7 > �8 in Fig. 14b. It might be of interest to
study an effect of grain size in the rate dependency of stress–strain responses in a wide range of strain rates,
particularly at very low strain rates (m ∼ 0.01). It is envisaged that a version of current model calibrated
with a new set of modeling parameters at low strain rates could capture such a grain-size dependency of
rate-dependence response which has been reported in i.e., [95].

4.3 Effect of scale variation in directional plastic flows and accumulation of GNDs

In order to observe the effect of scale variation in directional plastic flows and accumulation of GNDs, loading
scenario (2) is recalled and applied to two more single crystals with different crystal sizes D = 0.5 and 2µm.
Figure 15 compares the numerical results obtained here with the results presented in Fig. 3 for a single crystal
with D = 1µm. A high magnitude of the energetic resistance S0 = 100e7MPa is considered here. Based on
the results depicted in Fig. 15-rows a, b, it can be concluded that an increase in the crystal size results in a larger
magnitude of plastic flows as well as a more expansion of plastic flows toward the boundary. Smaller crystals
show a higher aggregation of plastic flows toward the center of crystals. Results presented in Fig. 15-row c
indicate the greatest magnitude of GND density (dislocations pile-up) in an area close to the hard boundary.
It can also be concluded that a decrease in the crystal size yields an increase in the accumulation of GNDs
toward the boundary. A smaller crystal shows a more expansive accumulation of GNDs and is subjected to a
larger value of gradient strengthening; thus, the phenomenon ‘smaller is stronger’ is validated.
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Fig. 14 Size- and rate-dependent stress–strain responses obtained for L1 = L2 = 1µm in the case study (6), single crystals are
simulated with different crystal sizes D = 1 and 0.25µm at m = 0.08 and 0.2. a, b Four sets of points at different fixed strains
are indicated with boxes. The values denote the stress magnitudes at points. �0–8 represent changes in the stress magnitudes.
The green dash-line indicates a 0.2%-strain offset of elastic response. a Here, �4 > �3 and �2 > �1 denote that a change
in the size-dependent stress–strain response at a specific small strain is more pronounced at lower m. b At large enough strains,
the size dependency is greater by a higher m, i.e., �5 > �6 and �7 > �8. c, f The contribution of the governing terms (I–III)
corresponding to the stress–strain response shown in (a). A and C represents the effect of terms (I) and (III), and B shows the
effect of m and Ṡα 
= 0 in term (II), beyond perfect plastic response (color figure online)

4.4 Effect of distortion of crystal lattice

Here, the effect of a distinctive feature (Div sαr ) in Gurtin’s finite-deformation gradient crystal-plasticity theory
which explains the effect of distortion of crystal lattice in the reference configuration [Eq. (4) and the following
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Fig. 15 Loading scenario (2) detailed in Table 3 is applied to three different single crystals with different crystal sizes (D).
Numerical results corresponding to 1.6% shear strain are presented. Columns (x , y, z) represent the results obtained for D = 0.5,
1 and 2µm, respectively. Row a Contours of the directional plastic flow

∫
υαdt based on the predefined slip system α = 1

(Table 1). Row b contour of a combination of plastic flows
(∑

α

(∫
υαdt

)2)0.5, α = 1-4. Row c contour of accumulation of

dislocation densities
(∑

α

(∫
ρ̇α�dt

)2)0.5 (color figure online)

paragraph] is investigated. It is worth noting that evaluation of Div sαr and Div
(
sαr /

∣∣sαr
∣∣2

)
represented in

Eqs. (26, 34) requires an intricate analysis at the integration points, which is time consuming and cannot be
simply accomplished via a user-defined subroutine (UEL). A discussion on the evaluation of these terms has
been presented in a study by Kuroda [70].5 However, the effect of Div sαr was not successfully captured in
[70] in the resolution of plots reported. In the current study, Div ϕ where ϕ is a vector, is evaluated via a
common block function which is linked to UEL subroutine. The components of ϕ at integration points are
extrapolated to nodes. An averaging method at each node combines the vector’s components provided from
neighboring elements, then Div ϕ is calculated at integration points within each elements. The effect of Div sαr
and Div

(
sαr /

∣∣sαr
∣∣2

)
in Eqs. (26, 34) is investigated here. Figure 16 compares three sets of results taken from

5 The model employed in Kuroda [70] is based on the study by Kuroda and Tvergaard [69] and does not incorporate the
dissipative microstress, the gradient yield-strengthening and the dissipative length-scale.
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Fig. 16 Three sets of results (solid lines) taken from Fig. 13a, which correspond to the response of single crystals under the large-
strain simple-shear loading, are compared with three sets of responses of same single crystals obtained when Div ϕ vanishes in
the constitutive model. ϕ represents sαr and sαr /

∣∣sαr
∣∣2

Fig. 13a, which correspond to the response of single crystals under the large-strain simple-shear loading, with

three other sets of responses of same single crystals obtained when Div sαr and Div
(
sαr /

∣
∣sαr

∣
∣2

)
vanishes in

the constitutive model. Based on the modeling parameters and coefficients employed in this study, it can be

concluded from Fig. 16 that Div sαr and Div
(
sαr /

∣∣sαr
∣∣2

)
together play the effective role in large strains, and it is

more pronounced when the crystal size decreases and a higher degree of gradient strengthening is experienced.

5 Summary and conclusion

The comprehensive study represented in the current work confirms the strength of the finite-deformation gra-
dient crystal-plasticity framework proposed by Gurtin [51] in order to distinctly describe a wide range of
hardening behaviors as well as rate-dependent and scale-variation responses in single crystals. The frame-
work was revisited first with respect to the reference configuration to facilitate the numerical implementation.
The numerical results reveal that the energetic and dissipative gradient strengthenings yield, respectively, the
kinematic-hardening behavior and yield-strengthening response. It is also concluded that the dissipative and
energetic length-scales act differently; the former affects the onset of plastic flow, and the latter results in
a change of the post-yield strain-hardening response. Moreover, the evolution of self- and latent-hardening
is induced via a function of accumulation rates of SSDs and GNDs which represents a measure of forma-
tion of short-range interactions between SSDs and GNDs. These interactions turn to impede the dislocation
movements and yield isotropic-hardening responses. The simulation results reveal that the dissipative gradient
strengthening can be identified as a source of isotropic-hardening behavior and may represent a portion of
dissipative plastic work which is associated with the long-range stress field. Furthermore, the effect of a dis-
tinctive feature in Gurtin’s finite-deformation gradient crystal-plasticity framework which explains the effect
of distortion of crystal lattice in the reference configuration was observed in this study for the first time. In
addition, the rate-dependent stress–strain response of single crystals is reported, and the directional plastic
flows and accumulation of GNDs toward the hard boundary are distinctly observed in a single crystal under
three different loading conditions. Furthermore, the phenomenon ‘smaller is stronger’ is easily validated in
different crystal sizes, smaller crystals show a more expansive accumulation of GNDs along with a larger
value of gradient strengthening, and larger crystals present a larger magnitude of plastic flows as well as a
more expansion of plastic flows toward the boundary. It has been also seen that the size dependency is more
pronounced at a fixed small strain when the rate-sensitivity parameter m is lower. At large enough strains, the
size dependency is greater by a higher m.

Finally, the current model can predict a wide variety of behaviors and responses of single crystals which
have been already observed in experiments and it is envisaged that current work may provide a profound
understanding of gradient crystal-plasticity theories in the finite-deformation framework.
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Appendix

In the case studies (1–6), the single crystal is discretized by 96 elements (321 nodes and 864 integration points).
Table 5 shows the magnitude of stress at a specific strain 7.4% during first cycle loading, when the number of
elements is 96, 320 and 725. Here, the calculation time up to the strain 7.4% is also reported.

Table 5 The magnitude of stress at a specific strain 7.4% during first cycle loading, when the number of elements is 96, 320 and
725

Number of elements 96 320 725

Magnitude of stress 817MPa 881MPa 897MPa
Calculation time 35min 151min 333min

The calculation time up to the strain 7.4% is captured
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