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Abstract The Maxwell–Cattaneo heat conduction theory, the Lord–Shulman theory of thermoelasticity and a
hyperbolic theory of thermoviscoelasticity are studied. The dispersion relations are analyzed in the case when
a solution is represented in the form of an exponential function decreasing in time. Simple formulas that quite
accurately approximate the dispersion curves are obtained. Based on the results of analysis of the dispersion
relations, an experimental method of determination of the heat flux relaxation time is suggested.
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1 Introduction

A study of wave heat conduction models is important for the development of modern technologies which are
applied tomanufacture variousmicro- and nano-electromechanical systems (MEMS/NEMS). This is due to the
fact that using the classical heat conduction equation we cannot achieve a good agreement with experimental
data when we model non-stationary thermal processes caused by nano-sized internal heat sources or by short-
time impulse excitations [1,2]. In order to model such processes, more complicated models of heat conduction
were suggested. We refer to models with finite propagation velocity of thermal disturbances [2–5], models
with thermal memory that take into account a heating history [6], models taking into account the finite heat
flux delay time and the finite temperature gradient delay time [4,7]. A detailed overview of the heat conduction
models can be found in [2].

The Maxwell–Cattaneo model is one of the most known models of non-Fourier heat conduction. This
model allows us to achieve more reliable results in the problems of metal heating by means of shot laser
impulses [8], in the case of a heat source motion with a high velocity [7], and in the case of a rapid motion of
a phase boundary [9]. The derivation of the Maxwell–Cattaneo heat conduction equation is based on the heat
conduction law suggested independently by three scientists, namely Cattaneo [10], Vernotte [11] and Lykov
[12]. This law has the form

τ ḣ + h = −λ∇T, (1)
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where h is the heat flux vector, dot denotes the time derivative, ∇ is the nabla operator, T is temperature, λ is
the heat conduction coefficient, τ is the heat flux relaxation time (a constant). The Cattaneo–Vernotte law is
the generalization of the Fourier law. The presence of the finite relaxation time τ in Eq. (1) means that the heat
flux does not appear (disappear) simultaneously with the appearance (disappearance) of temperature gradient.
The derivation of the Maxwell–Cattaneo equation is carried out as follows. Let us consider a heat-conducting
rigid body. The energy balance equation is formulated as

ρU̇ = −∇ · h + ρq, (2)

where ρ is the volume density of mass,U is the mass density of the internal energy, q is the rate of heat supply
per unit mass.

It is known that the linear heat conduction equation can be used if the deviations of temperature from its
reference value T∗ (the value at which all thermodynamic parameters are measured) are less than 10K. That
is why, the mass density of internal energy can be represented as follows:

U = cv T̃ , T̃ = T − T ∗, (3)

where cv is the specific heat at constant volume. Next, let us substitute (3), into Eq. (2). Then, taking into
account the Cattaneo–Vernotte law (1), we obtain the Maxwell–Cattaneo heat conduction equation

λ�T̃ − ρcv

( ˙̃T + τ
¨̃T
)

+ ρ (q + τ q̇) = 0, (4)

where� is the Laplace operator. Equation (4) is the hyperbolic type equation. It combines properties of both the
classical heat conduction equation and the wave equation. As seen from Eq. (4), the thermal wave propagation
velocity depends on the heat flux relaxation time τ . An analytical solution of Eq. (4) in the case of laser action
can be found, e.g., in [13].

In 1944, Peshkov detected the thermal waves by experiment based on using the superfluid helium at
low temperature near the absolute zero [14]. He called them “the second sound” because the propagation
velocity of these waves was near to the propagation velocity of acoustic waves. At the present time, methods
of measurement of temperature and parameters characterizing the thermodynamic properties of materials are
rapidly developed. A laser thermometry technique is one of the modern methods of temperature measurement
[15–17]. It consists in remote measuring a temperature-dependent parameter by means of the probing light
beam and calculating the temperature by using the known temperature dependence of the measured parameter.
Five noncontact and nondestructive methods of temperature measurement are discussed in [18]. They are
the optical heating and electrical sensing technique, the transient electro-thermal technique, the transient
photo-electro-thermal technique, the pulsed laser-assisted thermal relaxation technique, and the steady-state
electro-Raman-thermal technique. An experimental determination of the heat flux relaxation time τ based on
the method of thermodynamic lattices is discussed in [19–21]. A brief outline of the method is as follows: a
thermodynamic lattice of a given period is formed in amaterial (to be exact, a redundant temperature distributed
as cosine, the period of which is equal to the lattice period, is generated in the direction of the lattice vector),
and after cessation of the external influence the relaxation process is registered by a laser.

In spite of a rapid development of measurement technique, as asserted in [22, p. 75], at present there are no
direct methods of measurement of the heat flux relaxation time. In addition, we note that values of τ for various
substances, which were determined at different times by different researchers who used different methods,
vary in a wide range. A description of an original method of measurement of the heat flux relaxation time
and the methods used by Grassmann [23], Herwig [24], Kaminski [25], and Mitra [26] can be found in [27].
Interestingly enough, the values of τ for the same materials determined by the listed researchers differ by
almost two orders of magnitude, whereas the values of the thermal diffusivity determined by these researchers
are sufficiently close. The values of τ for nitrogen, which are presented in [19–21], vary in the range from
0.1ns to 10ns. In accordance with the experimental results given in [28,29], values of τ for metals are of
about tens of nanoseconds, whereas according to [30–32] values of τ for metals are of about 0.01ns. The
heat flux relaxation time for gold is determined in [33] by two methods. The first method, which is based on
the consideration of phonon-phonon scattering, gives τ = 12ps. The second method, which is based on the
consideration of electron-phonon scattering, gives τ = 1.52ps. According to data presented in [34], values of
the heat flux relaxation time for homogeneous substances in different aggregative states vary in the range from
10 fs to 10ns. However, in accordance with [35], the heat flux relaxation time for diamonds is of about 1ms (the
measurement was fulfilled at the temperature of liquid nitrogen, namely 77K). In the case of materials with
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non-homogeneous structure (such as soda, sand andmeat), values of τ are of about seconds and tens of seconds.
For example, values of τ determined in [27] are 0.66s for soda and 2.26s for sand. In [26], it is determined that
the value of τ for meat is of about 15 s. Experiments with agar-gelled water [36] gave τ = 7.96s. Keeping all
the aforesaid facts in view, we conclude that though the problem of experimental determination of the heat flux
relaxation time arose a long time ago, this problem has not been finally solved up to now, and in a number of
cases values of τ presented in literature are not reliable. That is why, a problem of development of theoretical
foundations for new methods of experimental determination of the heat flux relaxation time has so far been
important.

The model of elastic heat-conducting medium based on the Cattaneo–Vernotte heat conduction law was
suggested by Lord and Shulman [37]. Subsequently, Green and Lindsay [38] suggested a theory with two
relaxation parameters. In addition, Hetnarski and Ignaczak [39] suggested a theory of thermoelasticity with
the specific heat nonlinearly dependent on temperature that takes palace in the case of low temperatures. We
also refer to the Green–Nagdi theory of thermoelasticity [40] based on the generalized Fourier law, the right-
hand side of which contains an additional term with the gradient of temperature shift proportional to mean free
path. Some other non-classical models of thermal conductivity, thermoelasticity and thermoviscoelasticity are
presented in the modern literature; see [41–47]. An overview of hyperbolic theories of thermoelasticity can be
found in [3]. An overview of some other non-classical theories of thermoelasticity can be found in [2].

In what follows, the Maxwell-Cattaneo heat conduction theory, the Lord–Shulman model of thermoelas-
ticity and the model of thermoviscoelasticity suggested in [44] are considered. The properties of these models,
which become apparent at the nanoscale level, are studied. An asymptotic analysis of the dispersion relations
is carried out and the simple formulas approximated the dispersion curves in the whole range of frequencies
are suggested. In contrast to [48,49], where the dispersion relations for the solutions decaying in space are
considered, we study the dispersion relations for the solutions decaying in time. Based on the results of analysis
of the hyperbolic heat conduction problem, we work out the theoretical foundations of the method for mea-
suring the heat flux relaxation time. Comparing solutions of the heat conduction problem and the appropriate
coupled problem of thermoelasticity, we show that the elastic and thermal strains will not affect the accuracy
of determination of the heat flux relaxation time by the suggested method.

2 The hyperbolic heat conduction equation

2.1 Dispersion curves for the Maxwell–Cattaneo heat conduction equation

We assume that there is no heat supply from the environment and the temperature varies only along the direction
of the x-coordinate. Then Eq. (4) takes the form

∂2T̃

∂x2
− 1

τc2r

∂ T̃

∂t
− 1

c2r

∂2T̃

∂t2
= 0, c2r = λ

ρcvτ
. (5)

Here, cr is the propagation velocity of thermal waves. It is easy to see that the coefficient of the term containing
the first time derivative of the temperature does not depend on the parameter τ . Indeed, τc2r = λ/(ρcv).

We start with the analysis of dispersion relations. Let us look for a solution of Eq. (5) in the form

T̃ (x, t) = T̃0 e
−iδx e(−α+iω) t , (6)

where δ is the wavenumber, ω is the frequency, α is the attenuation factor. Substituting Eq. (6) into Eq. (5) and
separating the real and imaginary parts of the obtained equation, we get the following dispersion relations:

ω �= 0 : α = 1

2τ
, ω =

√
c2r δ2 − 1

4τ 2
, δ ≥ δ0 = 1

2crτ
;

ω = 0 : α(1,2) = 1

2τ
∓

√
1

4τ 2
− c2r δ2, δ ≤ δ0 = 1

2crτ
.

(7)

Figure 1 shows the dispersion curves corresponding to Eq. (7). The frequency–wavenumber spectrum is
shown in the diagram on the left-hand side of Fig. 1, where the dashed line corresponds to the asymptote
ω = crδ. It is easy to see that the dispersion curve possesses the cut-off wavenumber δ0, i.e. oscillations are
absent (ω = 0) when 0 ≤ δ ≤ δ0. The wavenumber dependence of the attenuation factor is shown in the
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Fig. 1 The wavenumber dependence of the frequency and the attenuation factor for the Maxwell–Cattaneo heat conduction
equation
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Fig. 2 The frequency and wavenumber dependences of the phase velocity and the group velocity

diagram on the right-hand side of Fig. 1. It is easy to see that two values of α correspond to each value of
δ in the interval 0 ≤ δ ≤ δ0. One of the dispersion curves starts at point δ = 0, α = 0 and increases with
increasing δ. The second dispersion curve starts at point δ = 0, α = 1/τ and decreases with increasing δ. The
curves meet at the point δ = δ0, α = 1/(2τ). In the interval δ ≥ δ0 (where ω �= 0, see Fig. 1), the attenuation
factor α does not depend on δ. This part of the dispersion curve is the straight line α = 1/(2τ) in the diagram
on the right-hand side of Fig. 1. If the inertial term in Eq. (5) was absent, a dispersion relation between α and
δ would be α = τc2r δ2. This dependence is a good approximation for the dispersion curve starting at zero
(see the diagram on the left-hand side of Fig. 1). Thus, Eq. (5) demonstrates the properties of the classical
heat conduction equation for wavenumbers smaller than the cut-off wavenumber δ0, whereas for wavenumbers
greater than the cut-off wavenumber δ0 it demonstrates the properties of the wave equation.

In accordance with Eq. (7), the expressions for the phase velocity C f and the group velocity Cg have the
form

C f = ω

δ
, C f (ω) = cr√

1 + 1

4ω2τ 2

, C f (δ) = cr

√
1 − 1

4τ 2c2r δ2
,

Cg = dω

dδ
, Cg(ω) = cr

√
1 + 1

4ω2τ 2
, Cg(δ) = cr√

1 − 1

4τ 2c2r δ2

.

(8)

The frequency and wavenumber dependences of C f and Cg are shown in Fig. 2. It is easy to see that the
phase and group velocities asymptotically approach to cr with increasing frequency (wavenumber). When
ω = 0, the phase velocity becomes zero and the group velocity tends to infinity. The same behavior of C f and
Cg can be observed when δ = δ0.

A wave solution of Eq. (5) can be represented as a sum of forward and reverse traveling waves

T̃ (x, t) =
[
A1 sin

(
1

cr

√
ω2 + 1

4τ 2
x − ωt

)
+ +A2 sin

(
1

cr

√
ω2 + 1

4τ 2
x + ωt

)]
e−t/(2τ), (9)
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or as a sum of two standing waves

T̃ (x, t) =
[
B1 sin

(
1

cr

√
ω2 + 1

4τ 2
x

)
cos(ωt)

+B2 cos

(
1

cr

√
ω2 + 1

4τ 2
x

)
sin(ωt)

]
e−t/(2τ). (10)

A non-wave solution of Eq. (5) has the form

T̃ (x, t) = C1 sin(δx)
(
e−α(1)t + e−α(2)t

)

+C2 cos(δx)
(
e−α(1)t − e−α(2)t

)
. (11)

Here, Ai , Bi , Ci are arbitrary constants. We note that the solution (10), (11) is suitable for analysis of thermal
processes in finite-sized bodies when perturbations are caused, e.g., by initial conditions.

2.2 A hyperbolic heat conduction process in a thin rigid layer

We consider a heat-conducting rigid layer of thickness l. We assume that the temperature T̃ (x, t) of the layer
is a function of time and x-coordinate directed along the thickness of the layer, i.e., 0 ≤ x ≤ l. There is no
external body heat supply. The boundaries of the layer are in the thermal contact with the environment. The
exterior temperature is assumed to be constant and equal to T∗. The space distribution of temperature T0(x)
and the space distribution of the rate of temperature change Ṫ0(x) are known at the initial moment of time.
The boundary conditions for the variable T̃ = T − T∗ are homogeneous, namely

T̃
∣∣
x=0 = 0, T̃

∣∣
x=l = 0. (12)

The initial conditions for the variable T̃ are

T̃
∣∣
t=0 = T̃0(x),

˙̃T ∣∣
t=0 = ˙̃T0(x). (13)

A solution of the problem (5), (12), (13) can be represented as a series of natural modes

T̃ (x, t) =
∞∑
k=1

T̃k sin
πkx

l
e(−αk+i ωk ) t , (14)

where ωk are the eigenfrequencies and αk are the attenuation factors. It is easy to see that Eq. (14) identically
satisfies the boundary conditions (12). Substituting Eq. (14) into Eq. (5), after simple transformations we obtain

k < k∗ : ωk = 0, α
(1,2)
k = 1

2τ
∓

√
1

4τ 2
−

(
πkcr
l

)2

;

k ≥ k∗ : αk = 1

2τ
, ωk =

√(
πkcr
l

)2

− 1

4τ 2
, k∗ = 1 +

[
l

2πcrτ

]
,

(15)

where square brackets in the expression for k∗ denote the integer part of the expression.
Now, in view of Eq. (15), we rewrite the series (14) as

T̃ (x, t) =
k∗−1∑
k=1

(
T̃ (1)
k e−α

(1)
k t + T̃ (2)

k e−α
(2)
k t

)
sin

πkx

l

+ e−t/(2τ)

∞∑
k=k∗

(
T̃ (1)
k cos(ωk t) + T̃ (2)

k sin(ωk t)
)
sin

πkx

l
. (16)
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Let us find the coefficients of the series (16) taking into account the initial conditions (13). At first, we suppose

that ˙̃T0(x) 	 T̃0(x)/τ . In this case, the coefficients are calculated by the formulas

T̃ (1)
k ≈ 2

l

∫ l

0
T̃0(x) sin

πkx

l
dx;

k < k∗ : T̃ (2)
k ≈ 0, k ≥ k∗ : T̃ (2)

k ≈ 1

2τωk
T̃ (1)
k .

(17)

Next, we suppose that ˙̃T0(x) ∼ T̃0(x)/τ . In this case, the coefficients are calculated by the formulas

k < k∗ : T̃ (2)
k ≈ 2

lα(2)
k

∫ l

0

˙̃T0(x) sin πkx

l
dx,

T̃ (1)
k ≈ −T̃ (2)

k + 2

l

∫ l

0
T̃0(x) sin

πkx

l
dx;

k ≥ k∗ : T̃ (1)
k = 2

l

∫ l

0
T̃0(x) sin

πkx

l
dx,

T̃ (2)
k = 1

ωk

[
1

2τ
T̃ (1)
k + 2

l

∫ l

0

˙̃T0(x) sin πkx

l
dx

]
.

(18)

Now we discuss the influence of the scale factor l on the solution of free oscillation problem. A numerical
analysis was carried out for copper layers of various thicknesses. According to some theoretical and exper-
imental studies, the values of the heat flux relaxation time for metals are in the range from 0.1ns to 100ns.
That is why, to study the influence of the scale factor l on the solution of the heat conduction problem we
considered four values of τ , namely 0.1, 1, 10 and 100ns. As seen from Eq. (15), there exists the number k∗,
such as for k ≥ k∗ the solution has the oscillatory character, and both the number k∗ and the value of ωk∗
depend on the layer thickness l. Results of the numerical analysis are in Tables 1, 2, 3, and 4, which contain the
following data. The layer thickness and the number of the first oscillating mode k∗ are in the first and second
columns. The third column contains the inverse quantity of wavenumber, which is calculated as l/(πk∗) for

Table 1 The dependence of the solution on the scale factor l in the case of copper when τ = 0.1ns

l (µm) k∗ l/(πk∗) (µm) ωk∗ (rad/ns) αk∗/ωk∗ αk∗/α
(1)
1

106 1466586 0.217 2890 1732.9 4.30 × 1012

1000 1467 0.217 11.9 42.07 4.30 × 106

100 147 0.217 34.1 14.65 4307.0
10 15 0.212 1.07 4.66 429.67
5 8 0.199 2.18 2.29 107.04
4 6 0.212 1.07 4.66 68.32
3 6 0.185 3.03 1.65 52.19
1 2 0.159 4.64 1.079 3.72
0.1 1 0.0318 0.337 0.1483 —
0.01 1 0.00318 0.0341 0.0147 —

Table 2 The dependence of the solution on the scale factor l in the case of copper when τ = 1ns

l (µm) k∗ l/(πk∗) (µm) ωk∗ (rad/ns) αk∗/ωk∗ αk∗/α
(1)
1

106 463776 0.686 96400 518.43 4.30 × 1011

1000 464 0.686 156 32.11 4.30 × 1005

100 47 0.677 822 6.08 4301.25
10 5 0.637 20.1 2.48 42.51
5 3 0.531 41.0 1.22 10.23
4 2 0.637 20.1 2.48 6.34
3.5 2 0.557 36.0 1.39 4.71
1 1 0.318 95.5 0.523 —
0.1 1 0.0318 0.18 0.0464 —
0.01 1 0.00318 0.0108 0.0046 —
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Table 3 The dependence of the solution on the scale factor l in the case of copper when τ = 10ns

l (µm) k∗ l/(πk∗) (µm) ωk∗ (rad/ns) αk∗/ωk∗ αk∗/α
(1)
1

106 146659 2.17 12000 415.66 4.30 × 1010

1000 147 2.17 3410 14.65 4.30 × 104

100 15 2.12 107 4.66 429.67
10 2 1.59 464 1.08 3.72
5 1 1.59 464 1.08 —
4 1 1.27 690 0.72 —
3.5 1 1.11 836 0.60 —
1 1 0.318 33.7 0.148 —
0.1 1 0.0318 3.41 0.0147 —
0.01 1 0.00318 0.341 0.0015 —

Table 4 The dependence of the solution on the scale factor l in the case of copper when τ = 100ns

l (µm) k∗ l/(πk∗) (µm) ωk∗ (rad/ns) αk∗/ωk∗ αk∗/α
(1)
1

106 46378 6.86 229000 218.37 4.30 × 109

1000 47 6.77 82200 6.08 4.30 × 103

100 5 6.37 2010 2.48 42.51
10 1 3.18 9550 0.52 —
5 1 1.59 210 0.24 —
4 1 1.27 265 0.19 —
3.5 1 1.11 304 0.16 —
1 1 0.318 10.8 0.046 —
0.1 1 0.0318 1.08 0.0046 —
0.01 1 0.00318 0.108 0.0005 —

the considered boundary conditions. The value of the eigenfrequencyωk∗ and the ratio of the attenuation factor
αk∗ = 1/(2τ) to the eigenfrequency ωk∗ are in the fourth and fifth columns. The ratio of the attenuation factor
αk∗ to the attenuation factor α

(1)
1 of the first normal mode is in the sixth column. These results show that at the

macro level the oscillation processes are not of interest since they appear at very large values of k∗. When the
heat flux relaxation time increases, the oscillatory solutions appear at greater values of l for the given value of
k∗ and at smaller values of k∗ for the given value of l. In the case of τ = 0.1ns (see Table 1), the oscillatory
solutions appear at small values of k∗ if the layer thickness l is smaller than 5µm. In the case of τ = 100ns
(see Table 4), the oscillatory solutions appear at small values of k∗ if the layer thickness l does not exceed
100µm. However, the oscillation process can evolve over some time only when the ratio of the attenuation
factor αk∗ to the eigenfrequency ωk∗ is less than unity. Thus, the oscillatory character of the heat conduction
equation can become apparent only when l ∼ 0.1µm for τ = 0.1ns (see Table 1) and when l ∼ 10µm for
τ = 100ns (see Table 4).

The diagrams in Figs. 3 and 4 illustrate the solution of the Maxwell–Cattaneo hyperbolic heat conduction
problem (5), (12), (13). The calculationswere carried out for the copper layer in the case of the initial distribution

of temperature T̃0(x) = T̃0 sin
πkx

l
, when the initial value of ˙̃T is equal to zero. The diagrams in Fig. 3a,c and

Fig. 4a, c correspond to k = 1. The diagrams in Fig. 3b, d and Fig. 4b, d correspond to k = 2. Two values of the
heat flux relaxation time, namely τ = 0.1ns (see Fig. 3) and τ = 1ns (see Fig. 4), and four values of the layer
thickness l were considered. The diagrams in Fig. 3a, b and Fig. 4c,d correspond to l = 1µm, the diagrams in
Fig. 3c, d correspond to l = 0.1µm, and the diagrams in Fig. 4a, b correspond to l = 3.5µm. The diagrams in
Fig. 3 show that in the case of copper with τ = 0.1ns the conversion from the monotone decreasing solution
to the solution that decreases with oscillations occurs when the layer thickness l is in the range from 0.1µm
to 1µm. In accordance with data in Table 1, if l = 1µm, then the monotone decreasing solution takes place
only for the first mode (k = 1, see Fig. 3a), whereas in the case of the second mode (k = 2, see Fig. 3b) the
solution decreases with oscillations. However, in the case of the oscillatory solution, the oscillations cannot be
observed because of the ratio α/ω is too large (greater than unity). When l = 0.1µm, the strongly pronounced
oscillations can be observed for both the first mode (Fig. 3c) and the second mode (Fig. 3d). If τ = 1ns, then
the boundary between the monotone decreasing solution (Fig. 4a) and the solution decreasing with oscillations
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a b

c d

Fig. 3 The temperature distribution in the copper layer when τ = 0.1ns

a b

c d

Fig. 4 The temperature distribution in the copper layer when τ = 1ns

(Fig. 4b–d) is in the range from l = 1µm to l = 3.5µm. This fact is confirmed by the data presented in
Table 2.

2.3 An idea on experimental determination of the heat flux relaxation time

The effect described above, namely the appearance of oscillations in the decreasing solution when the layer
thickness becomes smaller, allows us to suggest an experimental method of determination of the heat flux
relaxation time. The idea consists in the following strategy. We should take a plate of thickness l and specify
the initial distribution of temperature in the direction along the plate thickness as T̃0(x) = T̃0 sin(δk x), where
δk = πk/ l and 0 ≤ x ≤ l. Next, we should find out what is the character of temperature changing. If the
temperature monotone decreases, then δk < δ0. If the temperature decreases with oscillations then δk > δ0.
Next, we should reiterate this experiment for plates of different thickness l in order to determine the value of
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the cut-off wavenumber δ0 as accurately as possible. According to Eqs. (5), (7), we have

δ0 = 1

2crτ
, c2r = λ

ρcvτ
. (19)

Eliminating cr from Eq. (19), we get

τ = ρcv

4λδ20
. (20)

Thus, if the value of δ0 is determined experimentally, then the heat flux relaxation time τ can be calculated
by Eq. (20).

3 Hyperbolic thermoelasticity

3.1 A statement of the coupled problem of hyperbolic thermoelasticity

Now,wewrite down the systemof equations of the Lord–Shulman theory of thermoelasticity [37]. The equation
of motion has the form

∇ · τ + ρf = ρü, (21)

where τ is the stress tensor, f is the mass density of external actions, and u is the displacement vector. The
constitutive equation for the stress tensor is

τ =
(
K − 2

3
G

)
εE + 2Gε − α∗K T̃E, (22)

where E is the unit tensor, ε is the strain tensor, ε is the trace of the strain tensor, K is the isothermal bulk
modulus, G is the shear modulus, and α∗ is the volume thermal expansion coefficient. Equation (22) is known
as the Duhamel–Neumann law. In the linear theory, the expressions for the stress tensor and the trace of the
strain tensor have the form

ε = 1

2
(∇u + ∇uT ), ε ≡ tr ε = ∇ · u. (23)

Substituting Eq. (22) into Eq. (21), we obtain the equation of motion in the form

G�u +
(
K + 1

3
G

)
∇∇ · u − α∗K∇ T̃ = ρü. (24)

In the coupled problem of thermoelasticity, the classical heat conduction equation has the form

λ�T̃ − ρcv
˙̃T − α∗KT∗ε̇ + ρq = 0, (25)

The heat conduction equation taking into account the finiteness of the heat flux relaxation time τ has the form

λ�T̃ − ρcv

( ˙̃T + τ
¨̃T
)

− α∗KT∗ (ε̇ + τ ε̈) + ρ (q + τ q̇) = 0. (26)

It is known that in the linear theory the differential equation describing the transverse waves does not
depend on temperature, see [50]. That is why, below we consider only the longitudinal waves associated with
the volume strains. Taking the divergence of Eq. (24) and taking into account the second equation in Eq. (23),
we obtain (

K + 4

3
G

)
�ε − α∗K�T̃ = ρε̈ (27)

Thus, the system of equations of the coupled problem of thermoelasticity, taking into account the finiteness
of the heat flux relaxation time τ , consists of the equation of motion (27) and the heat conduction Eq. (26). It
is easy to see that when the parameter τ vanishes this system of equations turns into the system of equations
of the classical theory of thermoelasticity (25), (27).
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3.2 An analysis of dispersion relations in the coupled problem of thermoelasticity

In order to analyze the dispersion relations, we consider a one-dimensional problem of the thermoelastic wave
propagation in the direction of x-coordinate. The external actions and the body heat supply from external
sources are assumed to be equal to zero. In this case, Eqs. (26), (27) take the form

∂2T̃

∂x2
− ρcv

λ

(
∂ T̃

∂t
+ τ

∂2T̃

∂t2

)
= α∗KT∗

λ

(
∂ε

∂t
+ τ

∂2ε

∂t2

)
, (28)

(
K + 4

3
G

)
∂2ε

∂x2
− α∗K

∂2T̃

∂x2
= ρ

∂2ε

∂t2
. (29)

After simple transformations, Eqs. (28), (29) can be reduced to one differential equation in the variable ε

(or the exactly same equation in variable T̃ ), namely

∂4ε

∂x4
− (A1 + A2)

∂4ε

∂t2∂x2
− A3

∂3ε

∂t∂x2
+

+A1A3(1 − A4)
∂3ε

∂t3
+ A1A2(1 − A4)

∂4ε

∂t4
= 0, (30)

where the following notations are used:

A1 = ρ

K + 4
3G

, A3 = 1

λ

(
ρcv + α2∗KT∗

1 + 4
3GK−1

)
,

A2 = τ A3, A4 = 1

1 + ρcv(1 + 4
3GK−1)/(α2∗KT∗)

.

(31)

All the quantities Ai in Eq. (31) are strictly positive. The parameter A4 varies in the range from 0 to 1, and for
solids and liquids A4 	 1, whereas for gases A4 > 1/2. The parameter A1 characterizes the acoustic wave
propagation velocity: ca = 1/

√
A1(1 − A4). The parameter A2 characterizes the thermal wave propagation

velocity: cr = 1/
√
A2.

The classical analogue of Eq. (30) follows from this equation if the heat flux relaxation time is assumed to
be equal to zero, i.e., when A2 = 0:

∂4ε

∂x4
− A1

∂4ε

∂t2∂x2
− A3

∂3ε

∂t∂x2
+ A1A3(1 − A4)

∂3ε

∂t3
= 0. (32)

The difference between Eqs. (30) and (32) consists in the fact that Eq. (30) contains the fourth-order time
derivative.

In order to obtain the dispersion relations, we can look for a solution of Eq. (30) in the formof an exponential
function decreasing in space coordinate:

ε(x, t) = ε0 e
(−γ+iδ)x e−iωt , (33)

where γ is the attenuation factor, δ is the wavenumber, and ω is the frequency. This approach is suitable in the
case when we compare the values of a physical quantity at different points of space in order to experimentally
estimate the attenuation factor. A detailed analysis of the respective dispersion relations can be found in [48,49].

Now, we look for a solution of Eq. (30) in the form of an exponential function decreasing in time:

ε(x, t) = ε0 e
−iδx e(−α+iω)t , (34)

where δ is the wavenumber, ω is the frequency, and α is the attenuation factor. This approach is suitable in the
case when we compare the values of a physical quantity at different moments of time in order to experimentally
estimate the attenuation factor.

Substituting Eq. (34) into Eq. (30) and separating the obtained equation into real and imaginary parts, we
come to the following dispersion relations between δ, ω and α:
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a b

Fig. 5 The wavenumber dependence of the frequency: a ca > cr ; b ca < cr

δ4 + (
(A1 + A2)(α

2 − ω2) − A3α
)
δ2 +

+A1(1 − A4)
(
A2(α

4 − 6α2ω2 + ω4) + A3α(3ω2 − α2)
) = 0,

ω
(
(2(A1 + A2)α − A3) δ2 + A1(1−A4)

(
4A2α(α2 − ω2) + A3(ω

2 − 3α2)
)) = 0. (35)

The dispersion curves corresponding to Eq. (35) are shown in Figs. 5, 6, 7, 8. The dependence of the
frequency ω on the wavenumber δ is shown in Fig. 5. The almost straight line starting from point δ = 0
represents the acoustic spectrum. This spectrum exists in both the hyperbolic thermoelasticity and the classical
thermoelasticity. The curve starting from point δ = δ0 represents the thermal spectrum. This spectrum exists
in the hyperbolic thermoelasticity due to the theory takes into account the inertia terms in the heat conduction
equation. In the case when the acoustic wave velocity ca is smaller than the thermal wave velocity cr , the
dispersion curves have a common point (see Fig. 5b). Both the dispersion curves have asymptotes, which are
shown in Fig. 5 by dashed lines. Equations of the asymptotes are

δa =
√

− c

c1
ωa, δh =

√
c

c2
ωh . (36)

Here, the acoustic and thermal spectra are denoted by the indexes “a” and “h”, respectively. In the case of
ca > cr , the constants c1 and c2 are calculated as

c1,2 = ∓ A1A3
3A4(A2 − A1 + 2A1A4)

4A2((A1 − A2)2 + 4A1A2A4)5/2

[
A1 +

+A2 ±
√

(A1 − A2)2 + 4A1A2A4

]
. (37)

In the case of ca < cr , the constants c1 and c2 are calculated as

c1,2 = ± A1A3
3A4(A2 − A1 + 2A1A4)

4A2((A1 − A2)2 + 4A1A2A4)5/2[
A1 + +A2 ∓

√
(A1 − A2)2 + 4A1A2A4

]
. (38)

The constant c is calculated by the formula

c = A1A2(1−A4)(c2 − c1)

A1 + A2
. (39)

As seen from Eqs. (37), (38), the constant c1 is always negative and the constant c2 is always positive. Hence,
the constant c is positive. Thus, the radical expressions in Eq. (36) are always positive. The cut-off wavenumber
δ0 is calculated by the formula

δ0 = α3

√
A1(3A3 − 4A2α3)(1−A4)

2α3(A1 + A2) − A3
. (40)
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Fig. 6 The wavenumber and frequency dependences of the attenuation factor

Here, the constants α1 and α2 are, respectively, the smaller root and the larger root of the quadratic equation

4A2α
2 − 2A3α + A1A2

3A4

(A1 − A2)2 + 4A1A2A4
= 0. (41)

The constant α3 is the unique real root of the cubic equation

4A2α
3 − 2

(
1 + 4A2(A2 − A1 + 2A1A4)

(A1 − A2)2 + 4A1A2A4

)
A3 α2

+ 8A2 − 4A1 + 9A1A4

(A1 − A2)2 + 4A1A2A4
A2
3 α − 2A3

3

(A1 − A2)2 + 4A1A2A4
= 0. (42)

The dependence of the attenuation factor α on the wavenumber δ is shown in the diagram on the left-hand
side of Fig. 6. The acoustic curve starts from point δ = 0, α = 0 and tends to the asymptote α = α1 at δ → ∞.
This curve exists in both the hyperbolic thermoelasticity and the classical thermoelasticity. The remainder
curves correspond to the thermal spectrum. In the interval 0 ≤ δ ≤ δ0 where thermal waves are absent (i.e.,
ω = 0, see Fig. 5), two values of α correspond to each value of δ. One of the dispersion curves starts from
point δ = 0, α = 0 and increases with increasing δ. The second dispersion curve starts from point δ = 0,
α = 1/τ and decreases with increasing δ. The curves meet at point δ = δ0, α = α3. In the interval δ ≥ δ0
where thermal waves exist (i.e., ω �= 0, see Fig. 5), the dependence of α on δ is represented by one curve
which starts from point δ = δ0, α = α3 and tends to the asymptote α = α2 at δ → ∞. In the classical theory
of thermoelasticity, there is only one thermal dispersion curve. It starts from point α = 0, δ = 0 and increases
ad infinitum at δ → ∞. The ratio of parameters ca and cr has practically no effect on the behavior of the
wavenumber dependence of the attenuation factor. The dependence of the attenuation factor α on the frequency
ω is shown in the diagram on the right-hand side of Fig. 6. The acoustic curve starts from point α = 0 and
tends to the asymptote α = α1 at ω → ∞. This curve exists in both the hyperbolic thermoelasticity and the
classical thermoelasticity. The thermal curve starts from point α = α3 and tends to the asymptote α = α2 at
ω → ∞. This dispersion curve is absent in the classical theory of thermoelasticity.

The frequency dependences of the phase and group velocities are shown in Figs. 7 and 8, respectively. The
phase and group velocities have the same asymptotes, which are given by the formulas

C∗
a =

√
−c1

c
, C∗

h =
√
c2
c

, (43)

where c1, c2 are calculated by Eqs. (37), (38) and c is calculated by Eq. (39). As stated above, the constant
c1 is always negative, whereas the constants c2 and c are always positive. Hence, the radical expressions in
Eq. (43) are positive. If ca > cr , then the acoustic asymptote is higher than the thermal one. If ca < cr , then
the thermal asymptote is higher than the acoustic one. The acoustic phase velocity approaches to its asymptote
from below if ca > cr (see Fig. 7, a) and from above if ca < cr (see Fig. 7b). The behavior of the thermal phase
velocity does not depend on the ratio of the parameters ca and cr . This curve starts from zero and approaches
to its asymptote from below. Due to these facts, the acoustic and thermal curves have a common point when
ca < cr (see Fig. 7b) and have no common points when ca > cr (see Fig. 7a). In the case of group velocities,
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Cf
a

C*h

C*a

Cf
b

C*h

C*a

Fig. 7 The frequency dependence of the phase velocity: a ca > cr ; b ca < cr

Cg
a

C*h

C*a

Cg

C*h

b

C*a

Fig. 8 The frequency dependence of the group velocity: a ca > cr ; b ca < cr

on the contrary, the acoustic and thermal curves have a common point when ca > cr (see Fig. 8a) and have no
common points when ca < cr (see Fig. 8b). This is due to the fact that the thermal curve always starts from
infinity and approaches to its asymptote from above, whereas the acoustic curve is situated higher than the
thermal asymptote when ca > cr and lower than the thermal asymptote when ca < cr .

3.3 Approximate formulas for the dispersion curves

The dispersion curves shown in Figs. 5, 6, 7, 8 can be quite accurately approximated by the simple formulas,
which are obtained without assuming that some parameters are small.

The approximate formulas that relate the frequencyω to the attenuation factor α (see Fig. 6) for the acoustic
and thermal spectra have the form

ωa =
√√√√α

(
2A3

A1A4
+ c1α

α2
1(α1 − α)

)
, ωh =

√
c2(α3 − α)

(α3 − α2)(α − α2)
. (44)

The approximate formulas that relate the wavenumber δ to the attenuation factor α (see Fig. 6) for the
acoustic spectrum at all values of δ and for the thermal spectrum at δ ≥ δ0 are

δa =
√√√√α

(
2A3(1−A4)

A4
+ c α

α2
1(α1 − α)

)
, δh =

√
δ20 + c (α3 − α)

(α3 − α2)(α − α2)
. (45)
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The exact formula relating the wavenumber δ to the attenuation factor α for the thermal spectrum at δ ≤ δ0
has the form

δh =
[
α

2

(
A3 − (A1 + A2) α+

+
√(

A3 − (A1 + A2) α
)2 + 4A1α(A3 − A2α)(1−A4)

)]1/2
. (46)

The approximate formulas that relate the wavenumber δ to the frequency ω (see Fig. 5) for the acoustic
spectrum at all values of δ and for the thermal spectrum at δ ≥ δ0 are

δa = ωa

√
− c

c1
+ 2A3α1

(
c + c1A1(1−A4)

)

c1
(
2A3α1 + A1A4 ω2

a

) , δh =
√

δ20 + cω2
h

c2
. (47)

The approximate formulas expressing the frequency dependence of the phase velocity C f and the group
velocity Cg for the acoustic and thermal spectra follow from Eq. (47). They have the form

C f,a(ω) =
√

− c1(2A3α1 + A1A4ω2)

2A1A3c1α1(A4 − 1) + A1A4cω2 ,

C f,h(ω) = ω

√
c2

δ20c2 + cω2
, Cg,h(ω) = c2

C f,hc
,

Cg,a(ω) = − c1(2A3α1 + A1A4ω
2)2

A1(A1A2
4cω

4 + 4A3α1(A4cω2 + A3c1α1(A4 − 1)))C f,a
.

(48)

3.4 A hyperbolic heat conduction process in a thin elastic layer

Now, we consider a heat-conducting elastic layer of thickness l. We assume that the temperature T (x, t) and
the displacement u(x, t) of the layer are functions of time and x-coordinate directed along the thickness of the
layer (0 ≤ x ≤ l). There are no external body forces, and the body heat supply is absent. The boundaries of
the layer are fixed and in the thermal contact with the environment. The exterior temperature is assumed to be
constant and equal to T∗. The space distribution of temperature at the initial moment of time is given by the

formula T̃0(x) = T̃0 sin
πkx

l
. The initial values of the displacement, the velocity and the rate of temperature

change are assumed to be equal to zero.
Figure 9 shows the comparison of the temperature profiles obtained as the solutions of two problems. One

of them is the coupled problem of the Lord–Shulman thermoelasticity. The corresponding temperature profiles
are shown by solid lines in Fig. 9. The second problem is the Maxwell–Cattaneo hyperbolic heat conduction
problem. The corresponding temperature profiles are shown by dashed lines in Fig. 9.

The finite difference method was used to solve the coupled problem of the Lord–Shulman thermoelasticity.
The explicit time integration scheme was implemented. The program was written in Delphi. The calculations
were carried out for the copper layers of thickness l = 1 µm (Fig. 9a, b) and l = 0.1 µm (Fig. 9c, d). The
heat flux relaxation time τ is assumed to be equal to 0.1 ns. Two different values of k were considered. The
temperature profiles for k = 1 are shown in Fig. 9a, c. The temperature profiles for k = 2 are shown in Fig. 9b,
d. All the diagrams correspond to the moment of time t = 2τ . An analysis of the numerical results shows that
the solution of the heat conduction problem practically coincides with the solution of the coupled problem
of thermoelasticity. This fact is illustrated by the diagrams in Fig. 9. We note that the difference between the
solutions of the heat conduction problem and the coupled problem of thermoelasticity is more noticeable in the
case of the oscillatory solutions. In the case of k = 1, the solution of the coupled problem of thermoelasticity
attenuates more quickly than the solution the heat conduction problem, whereas in the case of k = 2, on the
contrary, the solution the heat conduction problem attenuates more quickly than the solution of the coupled
problem of thermoelasticity.

The comparative analysis of the dispersion curves corresponding to theMaxwell–Cattaneo hyperbolic heat
conduction model (see Fig. 1) and the dispersion curves corresponding to Lord–Shulman thermoelasticity (see
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a b

c d

Fig. 9 The comparison of the temperature profiles

Figs. 5, 6), as well as the comparison of the dynamic problem solutions (see Fig. 9), allows us to conclude
that in many cases the mutual influence of the thermal and mechanical processes is not very important for
description of the heat conduction process. Hence, the mechanical processes can be ignored when the heat flux
relaxation time will be determined by the method suggested above.

4 Hyperbolic thermoviscoelasticity

4.1 A statement of the coupled problem of hyperbolic thermoviscoelasticity

An original approach to derivation of a hyperbolic theory of thermoviscoelasticity is suggested in [44]. Neither
the hypothesis of fading memory nor the rheological models are used to construct this theory. The approach
that is developed in [44] (see also [41–43]) is based on the idea of using the purely mechanical model of a
continuum with internal rotational degrees of freedom (a one-rotor gyrostat continuum) in order to describe
behavior of the ordinary material medium (medium without internal degrees of freedom) possessing not only
mechanical properties but also the thermal ones. In the context of this model, the original treatment of physical
nature of the mechanism of thermal conduction and internal damping is considered. The volume and shear
viscosities introduced in the context of the model differ from the analogous quantities used in the known
theories. In [44], the volume and shear viscosities are determined by using experimental values of the acoustic
wave attenuation factor.

The summary of the basic equations of the coupled problem of thermoviscoelasticity suggested [44] is

∇ · τ̃ s − ∇ × q̃ + ρf = ρ
d2u
dt2

, ∇ × µ̃v = 2q̃ , ∇ × ϕ = 0,

τ̃ s =
[(

K − 2

3
G

)
ε − α∗K T̃ + p

]
E + 2G εs, εs = 1

2

(
∇u + ∇uT

)
,

q̃ = (ηq − ηs)λα2∗K 2T∗
ρc2vη

2
v

γ − α∗KT∗ ηs

ρcvηv

ψ + t , γ = ∇ × u − 2ϕ ,
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�p = τα∗K
ηv

[
ρ
d2T̃

dt2
+ α∗KT∗

cv

d2ε

dt2

]
, �t = τα∗KT∗

cvηv

d2ψ

dt2
, ε = tr εs,

�T̃ − ρcv

λ

[
dT̃

dt
+ τ

d2T̃

dt2

]
= α∗KT∗

(
1

λ
− 1

cvηv

) [
dε

dt
+ τ

d2ε

dt2

]
− ρ∇ · Lh,

(ηq − ηs)�ψ − ρ

(
dψ

dt
+ τ

d2ψ

dt2

)
=

= λα∗K
cvηv

[
ηs �∇ × u − ρ

(
d∇×u
dt

+ τ
d2∇×u
dt2

)]
− λ ρ2

T∗
∇×Lh . (49)

Here τ̃ s = τ s + pE is the symmetrical stress tensor, q̃ = q + t is the stress vector characterizing the
antisymmetric part of the stress tensor, the µ̃v is the moment stress vector characterizing the antisymmetric
part of the moment stress tensor, ϕ is the rotation vector. The quantity ∇ · Lh characterizes the heat supply
per unit mass, and the quantity ∇ ×Lh characterizes an external influence of different non-mechanical nature.
The system of differential Eq. (49) contains three specific parameters of the model: ηv is the characteristic
of the volume (acoustic) viscosity, and ηs and ηq are the characteristics of the shear viscosity. The first and
second equations in (49) are the equations of motion. The third equations in (49) are the kinematic restriction.
The quantities p and t are considered to be thermodynamic stresses. The constitutive equations for p and t are
represented by the differential equations, namely the eighth and ninth equations in (49). The vector quantity ψ
describes an influence of viscous properties of a substance on vector q characterizing the antisymmetric part of
the stress tensor. The eleventh equation in (49) is the heat conduction equation. The twelfth one is an auxiliary
equation which is necessary to determine vectorψ and vector twhich is determined by the differential equation
containing vector ψ on the right-hand side. It is easy to see that the thermodynamic stresses p and t vanish
when ηv → ∞. In this case, the problem of thermoviscoelasticity turns into the hyperbolic type problem of
thermoelasticity.

The method of determination of the volume (acoustic) viscosity ηv , applied in [44], is based on using
experimental values of the longitudinal wave velocity and the longitudinal wave attenuation factor as well
as the value of the heat flux relaxation time that follows from the assumption that the velocity of thermal
wave propagation is equal to the theoretical value of the sound velocity. It is important to note that if we
decline this assumption and replace the value of τ by some other value, then we obtain the values of volume
(acoustic) viscosity ηv different from the values presented in [44]. The method of determination of the shear
viscosities ηs and ηq , applied in [44], is based on using experimental values of the transverse wave velocity and
the transverse wave attenuation factor as well as the approximate formula according to which the difference
ηq − ηq is proportional to the heat flux relaxation time. Thus, if we replace the aforesaid value of τ by some
other value, then we obtain the values of shear viscosities ηs and ηq different from the values presented in [44].

4.2 The problems of longitudinal and transverse wave propagation in the hyperbolic thermoviscoelasticity

As shown in [44], from Eq. (49) it follows that the longitudinal wave propagation is described by the system
of equations

�T + ρ∇ · Lh = ρcv

λ

(
∂T

∂t
+ τ

∂2T

∂t2

)
+ α∗KT∗

λ

(
1 − λ

cvηv

) (
∂ε

∂t
+ τ

∂2ε

∂t2

)
, (50)

(
K + 4

3
G

)
�ε − α∗K�T + ρ∇ · f =

(
ρ − τα2∗K 2T∗

cvηv

)
∂2ε

∂t2
− ρτα∗K

ηv

∂2T

∂t2
, (51)

and the transverse wave propagation is described by the system of equations

�ψ − ηsλα∗K
cvηv(ηq − ηs)

�φ + λ ρ2

T∗(ηq − ηs)
∇×Lh =

= ρ

ηq − ηs

(
∂ψ

∂t
+ τ

∂2ψ

∂t2

)
− ρλα∗K

cvηv(ηq − ηs)

(
∂φ

∂t
+ τ

∂2φ

∂t2

)
, (52)
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(
G + (ηq − ηs)λα2∗K 2T∗

ρc2vη
2
v

)
�φ − ηsα∗KT∗

ρcvηv

�ψ + ρ∇ × f =

= ρ
∂2φ

∂t2
− τα∗KT∗

cvηv

∂2ψ

∂t2
, (53)

where the notation φ = ∇ × u is used. Thus, in the considered theory of thermoviscoelasticity, the system of
differential equations describing the longitudinal waves and the system of differential equations describing the
transverse waves are independent of each other. The heat conduction Eq. (50) in the problem of longitudinal
wave propagation, as well as the heat conduction equation in the Lord–Shulman theory, contains the second
time derivatives of the temperature and the volume strain. Such terms are absent in the classical heat conduction
equation. If τ = 0, then these terms vanish in Eq. (50). However, even in this case, the heat conduction Eq. (50)
differs from the classical one since the coefficient of the volume strain in Eq. (50) depends on the volume
viscosity, whereas in the classical heat conduction equation it does not depend on this parameter. The equation
of motion (51) in the problem of longitudinal wave propagation contains the second time derivative of the
temperature. Such term is absent in the classical equation of motion. Equation (52) in the problem of transverse
wave propagation has the same structure as the heat conduction Eq. (50) in the problem of longitudinal wave
propagation. The only difference is the fact that Eq. (52) contains both the Laplacian of function ψ and the
Laplacian of function φ, whereas the heat conduction Eq. (50) contains only the Laplacian of temperature and
does not contain the Laplacian of the volume strain. The equation of motion (53) in the problem of transverse
wave propagation contains several additional terms compared with the classical equation, and it passes into
the classical equation when the parameters ηs , ηq and τ become equal to zero.

4.3 Dispersion relations in the coupled problem of thermoviscoelasticity

In order to analyze the dispersion relations, we consider two one-dimensional problems of wave propagation
in the direction of x-coordinate. The first one is the problem of longitudinal wave propagation. The second
one is the problem of transverse wave propagation. Further, external influences of all sorts are assumed to be
equal to zero.

The problem of longitudinal wave propagation. It is not difficult to show that Eqs. (50), (51) describing the
longitudinal wave propagation can be reduced to the following equation in variable ε (or to the same equation
in variable T ):

∂4ε

∂x4
− (A1 + A2)

∂4ε

∂t2∂x2
− A3

∂3ε

∂t∂x2
+

+A1A3(1 − A4)
∂3ε

∂t3
+ A1A2(1 − A4)

∂4ε

∂t4
= 0,

A1 = ρ

K + 4
3G

(
1 − τα2∗K 2T∗

ρcvηv

)
, A2 = τ A3,

A3 = ρcv

λ
+ α2∗KT∗

λ(1 + 4
3GK−1)

(
1 − λ

cvηv

)
,

A4 = α2∗K 2T∗[1 − λ/(cvηv)]
(
ρcvηv − τα2∗K 2T∗ − τρcv[K + 4

3G])(
ρcv[K + 4

3G] + α2∗K 2T∗[1 − λ/(cvηv)]
)(

ρcvηv − τα2∗K 2T∗
) . (54)

It is easy to see that the first equation in Eq. (54) coincides with Eq. (30) of the Lord–Shulman theory.
However, the constants Ai in Eq. (54) differ from the corresponding constants given by Eq. (31). At the same
time, when ηv → ∞, the constants Ai in Eq. (54) turn into the constants Ai given by Eq. (31). When τ → 0,
from Eq. (54) it follows

∂4ε

∂x4
− A1

∂4ε

∂t2∂x2
− A3

∂3ε

∂t∂x2
+ A1A3(1 − A4)

∂3ε

∂t3
= 0.

A1 = ρ

K + 4
3G

, A3 = ρcv

λ
+ α2∗KT∗

λ(1 + 4
3GK−1)

(
1 − λ

cvηv

)
,
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Fig. 10 Dispersion curves for longitudinal waves. The curves shown by solid lines correspond to the theory of thermoviscoelas-
ticity. The curves shown by dashed lines correspond to the Lord–Shulman theory.

A4 = α2∗K 2T∗[1 − λ/(cvηv)]
ρcv[K + 4

3G] + α2∗K 2T∗[1 − λ/(cvηv)]
. (55)

It is important to note that the first equation in Eq. (55) coincides with Eq. (32) of the classical theory of
thermoelasticity, but the constants A1, A3, A4 given by Eq. (55) coincide with the corresponding constants of
the classical theory only when ηv → ∞.

Since the first equation in Eq. (54) is the same as the corresponding equation of the Lord–Shulman theory, all
the qualitative results obtained for the coupled problem of thermoelasticity, namely the formulas approximating
the dispersion curves and the equations for the asymptotes of the dispersion curves, remain valid in the case
of the considered theory of thermoviscoelasticity. Figure 10 illustrates the quantitative difference between the
dispersion curves corresponding to Eq. (54) and the dispersion curves corresponding to the Lord–Shulman
theory. The dispersion curves shown in Fig. 10 are obtained for the real physical parameters of mercury. The
values of τ and ηv are taken from [44]. As seen from Fig. 10, the acoustic and thermal curves have the common
asymptotes. This is due to the fact that the value of τ is chosen based on the assumption that the velocity
of thermal wave propagation is equal to the theoretical value of the sound velocity. If we abandoned this
assumption, the dispersion curves would look like the dispersion curves in Figs. 5, 6.

The problem of transverse wave propagation. It is not difficult to show that Eqs. (52), (53) describing the
transverse wave propagation can be reduced to the following equation in variable φ :

∂4φ

∂x4
− (A1 + A2)

∂4φ

∂t2∂x2
− A3

∂3φ

∂t∂x2
+

+A1A3(1 − A4)
∂3φ

∂t3
+ A1A2(1 − A4)

∂4φ

∂t4
= 0,
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Fig. 11 The wavenumber dependences of the frequency. The solid lines correspond to longitudinal waves. The dashed lines
correspond to transverse waves

A1 = ρ
[
ρc2vη

2
v(ηq − ηs) − τλα2∗K 2T∗ηs

]

Gρc2vη
2
v(ηq − ηs) + λα2∗K 2T∗ ηq(ηq − 2ηs)

, A2 = τ A3,

A3 = ρ
[
Gρc2vη

2
v + λα2∗K 2T∗(ηq − 2ηs)

]

Gρc2vη
2
v(ηq − ηs) + λα2∗K 2T∗ ηq(ηq − 2ηs)

,

A4 = λα2∗K 2T∗(ηq − 2ηs)
[
ρc2vη

2
v(τG − ηs) + τλα2∗K 2T∗(ηq − ηs)

]
(
ρc2vη

2
v[ηq − ηs] − τλα2∗K 2T∗ ηs

)(
Gρc2vη

2
v + λα2∗K 2T∗[ηq − 2ηs]

) . (56)

It is easy to see that the first equation in Eq. (56) looks like the first equation in Eq. (54). The only
difference is the physical meaning and numerical values of the constants Ai . Therefore, the considered theory
of thermoviscoelasticity contains two frequency spectra corresponding to transverse waves. One of them starts
from the point zero, and another one possesses the cut-off wavenumber—see Fig. 11, dashed lines. The first
spectrum is the acoustic spectrum, and the physical meaning of the second one is not clear now. The behavior
of dispersion curves in the case of transverse waves is the same as the behavior of corresponding dispersion
curves in the case of longitudinal waves. Figures 11, 12 illustrate the quantitative difference between the
dispersion curves for longitudinal waves and the dispersion curves for transverse waves. The dispersion curves
shown in Figs. 11, 12 are obtained for the real physical parameters of copper. The values of τ , ηv , ηs and
ηq are taken from [44]. As seen from Fig. 12, for the given parameters, the attenuation factor for transverse
acoustic waves is much smaller than the attenuation factor for longitudinal acoustic waves, at least at high
frequencies.

5 Conclusion

In the presented study, the dispersion relations for theMaxwell–Cattaneo hyperbolic heat conduction equation,
the Lord–Shulman theory of thermoelasticity and the theory of thermoviscoelasticity formulated in [44] have
been analyzed. In the case of the Lord–Shulman model, the simple formulas that quite accurately approximate
the dispersion curves have been obtained. It has been shown that these formulas are valid in the case of the
model of thermoviscoelasticity suggested in [44]. Based on the fact that oscillations appear in the decreasing
solution of the heat conduction problem when the layer thickness becomes smaller, the experimental method
of determination of the heat flux relaxation time has been suggested. By comparison of thermal oscillations
obtained as a result of solving the heat conduction problem and the thermoelasticity problem, it has been
shown that mechanical processes will not have a considerable influence on the accuracy of the experimental
determination of the heat flux relaxation time.
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