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Abstract The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-
based size effects is outlined within this work. It extends the recent work of Miehe et al. (Comput Methods
Appl Mech Eng 268:704–734, 2014) to account for thermal effects at finite strains. From the computational
viewpoint, the finite element design of the coupled problem is not straightforward and requires additional
strategies due to the difficulties near the elastic–plastic boundaries. To simplify the finite element formulation,
we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain
space. The key point is the introduction of dual local–global field variables via a penalty method, where only
the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable
to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation
as discussed in Forest (J Eng Mech 135:117–131, 2009) and Miehe et al. (Philos Trans R Soc A Math Phys
Eng Sci 374:20150170, 2016).

Keywords Size effects · Finite gradient plasticity · Micromorphic regularization · Thermo-mechanical
processes

1 Introduction

The modeling of size effects in elastic–plastic solids must be based on nonstandard theories which incorporate
length scales. Hereby, additional internal variables and their nonlocal counterparts can be introduced to reflect
the microstructural response. Various observations underline the need for such extended continuum theories
of inelasticity. A first physically based motivation is the experimentally observed increase in strength of
metallic structures with diminishing size, resulting from dislocation-related hardening effects, see for example
Fleck et al. [4]. A further key motivation for the use of strain gradient theory arises from the computation of
localized plastic deformation in softening materials with finite element techniques, yielding for local theories
the pathological mesh dependencies for zero length scale. To overcome this nonphysical behavior, gradient-
enhanced plasticity models are used as regularization methods, which provide the existence of a length scale,
see for example De Borst and Mühlhaus [5], Liebe and Steinmann [6] and Engelen et al. [7]. The gradient-
enhanced models are naturally rooted in the micromechanical descriptions of the dislocation flow in crystals,
where the plastic length scale is related to the lattice spacing. Associated models of gradient crystal plasticity
are proposed by many authors, e.g., Gurtin [8], Svendsen and Bargmann [9], Wulfinghoff and Böhlke [10],
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Klusemann and Yalcinkaya [11] and Miehe et al. [12]. In contrast, pure phenomenologically based theories
of gradient plasticity often use plastic length scales as limiters of localized zones determined by macroscopic
experiments, see for example Forest and Sievert [13], Gudmundson [14], Anand et al. [15], Reddy et al. [16],
Fleck and Willis [17,18], Polizzotto [19], Forest [2,20], Voyiadjis et al. [21], Kuroda and Tvergaard [22] and
Miehe et al. [1,23].

Despite the fact that temperature distribution during heat accumulation has a strong influence on the
mechanical properties, thermal effects were not included in the constitutive formulation of most of the recently
developed strain gradient theories. Thermo-mechanical problems can be seen in different engineering applica-
tions, which exhibit a two-side coupling phenomenon. First, the effects of the thermal field on the mechanical
field results in thermal expansion and temperature dependence of the mechanical properties, for instance the
bridge joint expansion/contraction and the buckled railway tracks as a result of changes in the ambient tem-
perature. On the contrary, the action of the mechanical field on the thermal field leads to high-temperature
distribution and heat dissipation, such as the frictional heating of disk brakes in automotive industry. To this
end,Wriggers et al. [24] investigate the thermo-mechanical behavior of the necking problem in classical elasto-
plasticity. Here the authors observed that the development of a neck in a uniaxial tension test is influenced
by the heat production due to inelastic deformation. Anand et al. [25] proposed a coupled thermo-mechanical
elasto-viscoplasticity theory to model strain rate and temperature-dependent large-deformation response of
amorphous polymeric materials. A variational formulation for the thermo-mechanical coupling in finite strain
plasticity theory with nonlinear kinematic hardening is outlined in Canadija and Mosler [26] based on the
works Yang et al. [27] and Stainier and Ortiz [28]. However, no size effects were involved in the constitutive
formulation. This has motivated Voyiadjis and Faghihi [29] and Faghihi et al. [30] to propose a nonlocal
thermodynamic consistent framework with energetic and dissipative gradient length scales that addressing the
coupled thermal and mechanical responses of materials in small scales and fast transient process. In this con-
text, Forest and Aifantis [31] introduced some links between recent gradient thermo-elasto-plasticity theories
and the thermo-mechanics of generalized continua based on the micromorphic approach. Extensions to an
anisotropic model for gradient thermo-plasticity can be seen in the work of Bertram and Forest [32]. Recently
Wcislo and Pamin [33] developed a gradient-enhanced thermo-mechanical model that is strictly related to the
phenomenon of thermal softening. It incorporates higher order gradients of the temperature field. In this work,
we extend the above-mentioned gradient plasticity model introduced in Miehe et al. [1] to account for thermal
effects at finite deformations in the logarithmic strain space. The key goal of this work is the extension toward
the micromorphic regularization of the coupled problem to simplify the mixed finite element formulation as
outlined in the recent works Miehe et al. [3,34]. This is achieved by considering an extended set of plastic vari-
ables which are linked by penalty term in a modified energetic response function as discussed in Forest [2,20]
and Miehe et al. [34]. The advantage of such a formulation lies on the computational side, in particular on the
side of gradient plasticity. It allows a straightforward finite element formulation of gradient plasticity that does
not need to account of sharp plastic boundaries. From the numerical implementation aspects, an operator split
scheme is considered for the coupled problem, in line with our recent works Aldakheel [35] and Aldakheel and
Miehe [36] at small strains. It leads to a two-step solution procedure ALGOTM = ALGOThermo ◦ ALGOMech,
where the mechanical and thermal problems are solved separately. The idea here is to decompose the cou-
pled field equations of finite gradient thermo-plasticity into an elasto-plastic problem ALGOMech with frozen
temperature, followed by a heat conduction problem ALGOThermo at fixed updated mechanical configuration.
These two subproblems are then coupled via the plastic structural heating and the mechanical dissipation. Due
to the two-step solution procedure, we end up with a symmetric structure for each subproblem; for further
details on the numerical analysis, we refer to our recent work Aldakheel and Miehe [36] at small strains.

2 Introduction of primary field variables

2.1 Deformation map and temperature field

LetB ∈ Rd with d = 2, 3 be the reference configuration of the body of interest.We study thermo-elasto-plastic
deformations at time t ∈ R+, described by the deformation map ϕ(X, t) and the temperature field θ(x, t) > 0

ϕ :
{
B × T → R3

(X, t) �→ x = ϕ(X, t)
θ :

{
B × T → R
(X, t) �→ θ(X, t) (1)
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(a) (b) (c) (d) (e)

Fig. 1 Primary fields. a The macro-motion field ϕ is constrained by the Dirichlet- and Neumann-type BCs ϕ = ϕD on ∂Bϕ and
P · n = t̄ on ∂Bt . b The absolute temperature field θ is constrained by the Dirichlet- and Neumann-type BCs θ = θD on ∂Bθ

and Q · n = h̄ on ∂Bh. c The long-range micromotion field α is restricted by the conditions α = αD on ∂Bα and ∂∇α� · n = 0
on ∂Bf . d, e The short-range micromotion fields εp and ᾱ are locally defined and not constrained by boundary conditions

as depicted in Fig. 1. Thematerial deformation gradient is defined by F := ∇ϕt (X)with J :=det[F] > 0. The
solid is loaded by prescribed deformations and external traction on the boundary, defined by time-dependent
(“active”) Dirichlet and Neumann conditions

ϕ = ϕ̄(X, t) on ∂Bϕ and Pn = t̄(X, t) on ∂Bt (2)

on the surface ∂B = ∂Bϕ ∪ ∂Bt of the undeformed configuration. The first Piola stress tensor P is the
thermodynamic dual to F. For the thermal problem, the time-dependent (“active”) Dirichlet and Neumann
conditions of the absolute temperature field θ are defined as

θ = θD on ∂Bθ and Q · n = h̄ on ∂Bh (3)

with a prescribed temperature field θD and heat flux h̄. Note that the nominal heat flux vector Q = J F−1q is
given by Fourier’s law which states that heat exchanges always from hotter to colder regions, i.e.

q := −K∇θ (4)

where ∇θ is the gradient of the temperature field and K is the thermal conductivity which must be positive
(K > 0) in order to achieve thermodynamical consistency. Following Miehe et al. [37], we focus on a
phenomenological setting of finite thermo-plasticity based on an additive decomposition of a Lagrangian
Hencky strain ε. This allows to define a stress producing elastic strain measure

εe := ε − εp − εθ with ε := 1

2
ln C and C := FTgF , (5)

where C is the right Cauchy–Green tensor, i.e., the representation of the Eulerian standard metric g in the
reference configuration. The Lagrangian plastic strain measure εp is chosen as a local internal variable. It
starts to evolve from the initial condition εp(X, t0) = 0. The thermal contribution to the total deformation is
defined as

εθ = αT(θ − θ0)1 (6)

representing an expansion of the body under thermal loading. Here, αT is the linear thermal expansionmodulus
and θ0 a reference temperature.

2.2 Isotropic strain gradient plasticity

We consider a framework of isotropic gradient plasticity in themicromorphic regularization setting. To this end,
a scalar isotropic hardening variable α(X, t) is introduced that defines the micromorphic hardening variable
by the modified Helmholtz equation

α − l2mp�α = ᾱ (7)

determining the link of the local equivalent plastic strain variable ᾱ to the micromorphic variable α, in line
with the pioneering works of Engelen et al. [7], Geers et al. [38], Peerlings et al. [39,40] and Forest [2]. lmp is
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the plastic length scale in the micromorphic setting that accounts for size effects to overcome the nonphysical
mesh sensitivity of the localized plastic deformation in softening materials. The generalized internal variable
field α is considered as passive in the sense that an external driving is not allowed. This is consistent with the
time-independent (passive) Dirichlet and Neumann conditions

α = 0 on ∂Bα and ∇α · n = 0 on ∂B∇α (8)

on the surface ∂B as illustrated in Fig. 1, defining “micro-clamped” and “free” constraints for the evolution of
the plastic deformation. Note carefully that the variable α is now defined in the full domain and not restricted to
the plastic zone, whereas the linear hardening variable ᾱ is locally defined by the ordinary differential evolution
equation

˙̄α =
√
2

3
||ε̇p|| with ˙̄α ≥ 0. (9)

2.3 Global primary fields and constitutive state variables

The above-introduced variables will characterize a multi-field setting of thermo-mechanical strain gradient
plasticity based on three global primary fields

U := {ϕ, θ, α} , (10)

the deformationmapϕ, the absolute temperature field θ and themicromorphic hardening variableα. In addition,
the plastic strain field εp and the local equivalent plastic strain ᾱ serve as additional local primary fields, as
demonstrated in Fig. 1. The subsequent constitutive approach to the coupled gradient thermo-plasticity focuses
on the set

C := {ε, εp, ᾱ, θ, α,∇θ, ∇α}. (11)

The gradient of the plastic strains do not enter the constitutive state. Thus, εp and ᾱ are short-range variables,
whose evolution is described by an ODE, while the micromorphic hardening variable α is a long-range field
with a PDE-type evolution.

3 Constitutive functions of the coupled problem

3.1 Energetic response function

With the constitutive state variables introduced in (11), the free energy function for the coupled thermo-
mechanical strain gradient plasticity at finite strains takes the form

�̂(C) = U (J ) + �̄e
log(ε̄

e) + �̄p(ᾱ, α, ∇α; θ) + M(J, θ) + T (θ). (12)

3.1.1 Elastic contribution

The isotropic elastic contribution is assumed to be a quadratic function and is decomposed into volumetric and
isochoric parts as

U (J ) = κ

2
(J − 1)2 and �̄e

log(ε̄
e) = μ ||ε̄e||2, (13)

in terms of the elastic bulk modulus κ and the shear modulus μ. In this model, both κ and μ are considered as
constants material parameters. The isochoric elastic strain tensor is defined in the logarithmic strain space as

ε̄e := ε̄ − εp with ε̄ := 1

2
ln C̄ and C̄ := J−2/3C (14)
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3.1.2 Plastic contribution

The plastic part of the energy function (12) is decomposed into local and gradient parts, in terms of variables
which describe the strain gradient hardening effect. For themodeling of length scale effects in isotropic gradient
plasticity, we focus on the micromorphic hardening variable α and its gradient ∇α in addition to the local
equivalent plastic strain ᾱ. It is assumed to have the form

�̄p = h(θ)

2
ᾱ2 + [y∞(θ) − y0(θ)](ᾱ + exp[−δᾱ]/δ) + μl2p

2
||∇α||2 + εp

2
(ᾱ − α)2. (15)

The first and second contributions characterize a local plastic hardening and thermal softening mechanism.
lp ≥ 0 is a plastic length scale related to a strain gradient hardening effect. The local variable ᾱ is then linked
to the global micromorphic field variable α by the quadratic penalty term, where εp is an additional material
parameter. Note that for εp → ∞ the above micromorphic extensions recover the original setting of the
gradient-extended theory introduced in Miehe et al. [1]. The three temperature-dependent material parameters
y0 > 0, y∞ ≥ y0 and h ≥ 0 in (15) defined as

h(θ) := h
[
1 − wh(θ − θ0)

]
y0(θ) := y0

[
1 − w0(θ − θ0)

]
y∞(θ) := y∞

[
1 − wh(θ − θ0)

] (16)

as outlined in Simó and Miehe [41], where wh is the hardening/softening parameter, w0 is the flow stress
softening parameter and δ is the saturation parameter. The initial yield stress y0 determines the threshold of
the elastic response. Note that the parameters: δ, μ, lp and εp are considered as constants in Eq. (15).1

3.1.3 Thermo-elastic contribution

The coupled thermo-elastic part of the free energy is linear and has the simple form

M(J, θ) = −καT(J − 1)(θ − θ0) , (18)

where αt is the thermal expansion coefficient and θ0 is the reference temperature.

3.1.4 Thermal contribution

The purely thermal part is defined as

T (θ) = c
[
(θ − θ0) − θ ln

θ

θ0

]
, (19)

where c is the heat capacity coefficient.

3.2 Dissipative response function

For the subsequent modeling of thermo-plasticity, we introduce dissipative force fields on the solid domain B
dual to the constitutive state C introduced in (11) as

s̄ := −∂εp�̂ , f α := ∂ᾱ�̂ , δα�̂ = 0. (20)

where s̄ is dual to εp and f α dual to ᾱ. For a simple model of von Mises-type gradient thermo-plasticity, the
yield criterion function based on the driving forces and the temperature field θ is defined as

χ( f α, s̄, θ) := ||s̄|| −
√

2
3

[
y0(θ) + f α

]
(21)

1 The shear modulus μ could be also dependent on the temperature as suggested in Boyce et al. [42] through the empirical
relation

μ̂(θ) = exp
[
log(μ0) − Cs(θ − θ0)

]
(17)

in terms of the modulus μ0 at the reference temperature θ0 and a sensitivity parameter Cs.
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where y0(θ) is the temperature-dependent yield strength defined in (16). With the yield function at hand, one
can define the dual dissipation function for gradient-type thermal viscoplasticity according to Perzyna-type
viscoplasticity model as

�∗( f α, s̄, θ) := 1

2ηp

〈
||s̄|| −

√
2
3

[
y0(θ) + f α

]〉2
(22)

with ηp being the viscosity parameter that accounts for rate dependency. Here, 〈x〉 := (x + |x |)/2 is the
Macaulay bracket. In Eq. (20), δα�̂ denotes the variational derivative of �̂ with respect to the global micro-
morphic variable α, defining the additional micromorphic balance equation that links the local variable ᾱ to
the global field α

δα�̂ = ∂α�̂ − Div [ ∂∇α�̂ ] = 0 , (23)

along with the Neumann-type boundary conditions defined in Eq. (8). Taking the necessary derivatives, we
end up with the modified Helmholtz equation determining the link of the local variable ᾱ to the micromorphic
variable α

α − l2mp�α = ᾱ with lmp := lp
√

μ/εp (24)

where lmp is the plastic length scale of the micromorphic theory.2 Note carefully that the variable α is now
defined in the full domain and not restricted to the plastic zone, whereas the linear hardening variable ᾱ is
locally defined by the ordinary differential evolution equation introduced in (9). This provides a substantial
simplification with regard to the finite element implementation without tracking of elastic–plastic boundaries.
To this end, we depict in Fig. 2a one-dimensional finite element solutions of gradient plasticity for canonical
setting in which the global equivalent plastic strains evolution is ˙̄α = ∂ f α�∗, see Miehe et al. [1], which is
restricted to the plastic domain resulting in nonphysical oscillations at the elastic–plastic boundary; these are
relaxed in Fig. 2b by the micromorphic approach according to Eqs. (23) and (24).

3.3 Local–global constitutive equations

The balance and evolution equations describing the coupled problem are split up into Local and Global
constitutive equations in the micromorphic regularization setting as

1. Stress equilibrium Div [ ∂F�̂ ] = 0

2. Micromorphic hardening ∂α�̂ − Div [ ∂∇α�̂ ] = 0

3. Temperature field c θ̇ + Div [Q] − Dred
loc = 0

⎫⎪⎬
⎪⎭ (G)

4. Hardening force ∂ᾱ�̂ − f α = 0

5. Plastic force ∂εp�̂ + s̄ = 0

6. Equivalent strain −˙̄α + ∂ f α�∗ = 0
7. Plastic strains ε̇p − ∂s̄�

∗ = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(L)

(26)

in terms of the reduced local dissipation density function defined as

Dred
loc = ∂ε̄�̂ : ε̇p − ∂ᾱ�̂ ˙̄α − ∂α�̂α̇ − ∂∇α�̂ · ∇α̇ (27)

along with the Neumann-type boundary conditions

∂F�̂ · n = t̄ on ∂Bt , ∂∇α�̂ · n = 0 on ∂Bf and Q · n = 0 on ∂Bh (28)

2 If the shear modulus μ = μ̂(θ) is assumed to be temperature dependent, additional term must be defined in Eq. (24) to
account for thermal effects

α − l2p
εp

μ̂(θ) �α − l2p
εp

∂θ μ̂(θ) ∇θ · ∇α = ᾱ with ∂θ μ̂(θ) = −Cs μ̂(θ) (25)

as outlined in the work of Forest [2].
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Fig. 2 Canonical versus micromorphic formulation of gradient plasticity. Standard one-dimensional finite element solutions of
gradient plasticity for a canonical setting results in nonphysical oscillations at the elastic–plastic boundary, which are relaxed in
b by the micromorphic approach according to Eq. (24)

associated with the macro-motion field ϕ, the micromorphic hardening variable α and the absolute temperature
field θ . Here, P is denoted as the energetic first Piola nominal stress defined as

P := ∂F�̂ = ∂ε�̂ : Plog with Plog := ∂Fε (29)

in terms of the fourth-order nominal transformation tensor Plog outlined in the work of Miehe and Lambrecht
[43]. To solve for the above system of Eq. (26), we applied staggered solution scheme in line with our recent
work Aldakheel and Miehe [36].

4 Representative numerical examples

The capability of the model is pointed out by investigating the necking of cylindrical bar subjected to tensile
loading. The geometric setup and the boundary conditions of the cylindrical bar with radius 6.4135 mm are
illustrated in Fig. 3. To trigger localization in the center of the specimen, the yield limit y0 in the center is
reduced by 10%. The material parameters used in this example are given in Table 1 for metals. Regarding

26.67

26.67
ū

Fig. 3 Necking of cylindrical bar. Geometry and boundary conditions. Due to the symmetry of the boundary value problem only
the shaded area is discretized
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Table 1 Material parameters used for the numerical examples

No. Parameter Name Value Unit

1. κ Bulk modulus 164.2 GPa
2. μ Shear modulus 80.2 GPa
3. h Hardening parameter ± 0.13 GPa
4. εp Penalty parameter 4.0 GPa
5. y0 Yield stress 0.45 GPa
6. ηp Viscosity 10−7 GPa/s−1

7. αt Expansion coefficient 10−5 K−1

8. K Thermal conductivity 0.045 KN/sK
9. c Heat capacity 3.588 × 10−3 GPa/K
10. wh Thermal softening 0.002 K−1

11. w0 Flow stress softening 0.002 K−1

12. y∞ Infinite yield stress 1.165 GPa
13. δ Saturation parameter 16.96 –

α [-] Δθ [K]0.0 1.0 0.0 500

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Necking of cylindrical bar. Distribution of themicromorphic hardening variableα and the incremental temperature field θ at
the final deformation ū = 10.0mm in combination with several plastic length scales parameter. a, bLocal analysis (lp = 0.0mm),
c, d lp = 0.2 mm and e, f lp = 0.5 mm
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Fig. 6 Necking of cylindrical bar. Load-displacement curves for two different mesh sizes: a for local plasticity lp = 0 mm and b
gradient plasticity with lp = 0.2 mm

to the selection of the material parameters, we refer to the works of Hallquist [44], Simó [45] and Simó and
Miehe [41]. Figure 4 depicts the distribution of the micromorphic hardening variable α and the incremental
temperature field θ at the final deformation ū = 10.0 mm for several plastic length scales parameter lp. For
local plasticity, a sharp necked zone with concentrated micromorphic hardening variable α and temperature
field θ is illustrated in Fig. 4a for α and Fig. 4b for θ . By increasing lp the necking zone smears out and the
hardening variable α as well as the temperature field θ will spread over several elements. Figure 5 demonstrates
the influence of the plastic length scale on the temperature evolution over time at the center of the specimen.
As documented in Fig. 4, for local plasticity the temperature field θ has the highest value and by increasing
the plastic length scale lp the maximum value will be decreased. As the length scale parameter lp ∝ 1/L with
L being the macroscopic characteristic size, increasing the plastic length scale is equivalent to a decrease in
specimen size and, thus, temperature dissipates faster from a small size medium as illustrated in the work of
Faghihi et al. [30], Voyiadjis and Faghihi [29]. The load–displacement curves of the overall structural response
are illustrated in Fig. 6. For local theory of plasticity, mesh sensitive results are observed in Fig. 6a. In contrast,
Fig. 6b shows results for gradient plasticity with lp = 0.2 mm and two different mesh sizes, where mesh
objectivity is obtained. Thus, the incorporation of the length scale parameter lp enables us not only to predict
a size-independent structural response, but also to control the shape of the necking zone.

5 Conclusion

We outlined a model for coupled gradient thermo-plasticity under finite deformations in the logarithmic strain
space. This covers a computationally efficient micromorphic regularization of recently proposed strain gradient
plasticity formulations for the analysis of the thermo-mechanical coupling. In the mechanical part, the model
problem of von Mises plasticity with gradient-extended hardening/softening response was considered. In the
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thermal part, we followed the investigations of Simó and Miehe [41] and Aldakheel [35] that demonstrate the
effect of temperature on the mechanical fields resulting in a thermal expansion. The important aspect of the
work was the regularization toward a micromorphic gradient thermo-plasticity setting by taking into account
additional internal variable field linked to the original one by penalty term. This substantially enhances the
robustness of the finite element implementation. The performance of the formulation was demonstrated by
means of a representative numerical example.
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