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Abstract The stochastic equations of continuum are used for determining the heat transfer coefficients. As a
result, the formulas for Nusselt (Nu) number dependent on the turbulence intensity and scale instead of only on
theReynolds (Peclet) number are proposed for the classic flows of a nonisothermal fluid in a round smooth tube.
It is shown that the new expressions for the classical heat transfer coefficient Nu, which depend only on the
Reynolds number, should be obtained from these new general formulas if to use the well-known experimental
data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas
for heat transfer coefficients and their deviation from the experimental data depend on different parameters
of initial fluctuations in the flow for different experiments in a wide range of Reynolds or Peclet numbers.
Based on these new dependences, it is possible to explain that the differences between the experimental results
for the fixed Reynolds or Peclet numbers are caused by the difference in values of flow fluctuations for each
experiment instead of only due to the systematic error in the experiment processing. Accordingly, the obtained
general dependences of Nu for a smooth round tube can serve as the basis for clarifying the experimental
results and empirical formulas used for continuum flows in various power devices. Obtained results show that
both for isothermal and for nonisothermal flows, the reason for the process of transition from a deterministic
state into a turbulent one is determined by the physical law of equivalence of measures between them. Also
the theory of stochastic equations and the law of equivalence of measures could determine mechanics which
is basis in different phenomena of self-organization and chaos theory.

Keywords Stochastic equations · Equivalence of measures · Turbulence · The heat transfer coefficient

1 Introduction

Based on the analysis of publications [1–23], stochastic equations and theoretical regularity of equivalence of
measures between deterministic and stochastic processes were obtained in articles [24–33]. Using these results,
the basic characteristics for isothermal turbulent flow depending on initial turbulence of flow were determined.
Among them are as follows: (1) the first and second critical Reynolds numbers; (2) the expression for the critical
point of the transition beginning from the deterministic to turbulent state [24,30]; (3) the indicators of velocity
and temperature profiles [25–27,30]; (4) using the new fractal equations by Landau [25–27,30], expressions
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for the correlation moments of the second order and for the power spectrum of turbulence depending on initial
turbulencewerewritten.As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence
intensity and scale instead of only on the Reynolds number were proposed [28] for the classic flows of an
incompressible fluid along a smooth flat plate and a round smooth tube. It was shown that the new expressions
for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these
new general formulas if to use the well-known experimental data for the initial turbulence. For the forced
flows of the nonisothermal medium, analytical expressions were presented in [26,32–34] for calculating the
critical point and critical Reynolds number depending on the initial flow turbulence in a pipe and on a flat plate.
Analytical formulas for the indices of velocity and temperature profiles as functions of the parameters of initial
turbulence and the Eckert and Prandtl numbers were obtained on the basis of the stochastic system of equations
for energy, momentum, and mass [26]. It was also found [28] that the limitations of classical empirical and
semiempirical formulas for the heat transfer coefficients and their deviation from the experimental data depend
on various parameters of initial fluctuations in the flow for various experiments in a wide range of Reynolds
numbers. So here, the formulas for the heat transfer coefficients dependent on the turbulence intensity and
scale instead of only on Reynolds or Peclet numbers are proposed for the classic flows of a nonisothermal
fluid in the round smooth tube. It is shown that the new expressions for the classical heat transfer coefficient
Nusselt (Nu) number, which depend only on the Reynolds number or Peclet number, should be obtained from
these new general formulas if we use the well-known experimental data for the initial turbulence. Thus, based
on these new dependencies for Nu and St numbers, it is possible to explain that the differences between the
experimental results for the fixed Reynolds or Peclet numbers are caused by the difference in values of flow
fluctuations for each experiment instead of only due to the systematic error in the experiment processing in
various power devices.

2 Set of equations

The main aspects of the stochastic theory of turbulence and the law of equivalence of measures between
the deterministic and random motions were presented in [24–33]. Shortly, the general system of stochastic
equations of conservation for isothermal and nonisothermal medium includes:

the equation of mass (continuity)
(
d(ρ)colst

dτ

)
= −

(
ρst

τcor

)
−

(
dρst
dτ

)
, (1)

the momentum equation

dρuicolst
dτ

= div(τi, j )colst + div(τi, j )st − (ρU )st

τcor
− d(ρU )st

dτ
, (2)

the energy equation

dEcolst

dτ
= div

(
λ

∂T

∂x j
+ uiτi, j

)
colst

+ div

(
λ

∂T

∂x j
+ uiτi, j

)
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−
(
Est

τcor
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−

(
dEst
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Here the stress tensor is τi, j = P + σi, j σi, j = μ
(

∂ui
∂x j

+ ∂u j
∂xi

)
+ δi j

(
ξ − 2

3μ
)

∂ul
∂xl

, and ρ,
→
U , ui , u j , ul ,

μ, τ, τi, j are the density, the velocity vector, velocity components in directions xi , x j , xl (i, j, l = 1, 2, 3), the
dynamic viscosity, time and stress tensor. Quantity P is the liquid or gas pressure, T is the temperature, λ is the
thermal conductivity, ξ is second viscosity, ν is the kinematic viscosity, δi j = 1 if i = j and δi j = 0 if i �= j .
Physical essence of scientific discovery of equivalence of measures [29] is that the interaction between the
deterministic and random movement (the transfer of mass, momentum and energy between them) is realized
only when there is the equality not only of the time (the resonance of frequencies), but also of shifts and
powers of all physically substantial values of the interacting regions of space-time continuum for both of
physical states—the global resonance between the states. The concept of “equivalence of measures” reflects
both the physical and mathematical essence of established physical regularity (the law). Also, the essence
lies in the fact that the equivalence of measures may have a fractal nature [24–26,30] and could determine
mechanics of self-organization.
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Namely, in [24–33], for the transfer of the substantial quantity
 (mass (densityρ),momentum(ρU), energy
(E)) of the deterministic (laminar) motion into a random (turbulent) one, for domain 1 of the start of turbulence
generation, the pair (N , M) = (1, 0), with the equivalence of measures being written as

(
d
col,st

)
1,0 =

−R1,0 (
st) and
(
d(
)col,st

dτ

)
1,0

= −R1,0

(

st
τcor

)
. Applying correlator DN ,M (rc;mci ; τc) = D1,1(rc;mci ; τc)

obtained in [22–28], the equivalence relation for the pair (N , M) = (1, 1) was defined as (d
col,st)1,1 =
−R1,1(d
st),

(
d(
)col,st

dτ

)
1,1

= −R1,1

(
d
st
dτ

)
where R1,0 and R1,1 are fractal coefficients, 
col,st is part of the

field of 
, namely its deterministic component (subscript col,st), the stochastic component of the measure
of which is zero; 
st is part of 
, namely the proper stochastic component (subscript st). The relations of
the equivalence for momentum and mass (density) have been determined in the same way. For example,
to obtain new analytical relations, fractal coefficients R1,0 and R1,1 are taken equal unity, and indices “cr”
or “c” are related to critical point r(xcr, τcr) or τc. The critical point is the space–time point of the start of
interaction between the deterministic and random fields. Then for nonisothermal motion of the medium, with
using the definition of measures of equivalency between deterministic and random process, the set of stochastic
equations of energy, momentum, and mass are determined for the next space–time areas: (1) the beginning
of the generation; (2) the generation; (3) the diffusion; and (4) the dissipation of the turbulent fields. Thus,
for the turbulence beginning region rc0(xc + �x0, τc + �τ0) − rc (here (N , M) = (1, 0), the “correlator”
DN ,M (rc;mci ; τc) = D1,0(rc;mci ; τc)), the set of stochastic equations for mass, momentum and energy
generation is : (
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τcor = τ 0cor is the correlation time [24–28]. The subscript (col st1) refers to pair (N , M) = (1, 0). Thus, using
set (4) for flow on the flat plate and in the tube, formulas for critical points and critical Reynolds numbers were
obtained [26,31–33]. For the turbulence generation region rcl(xc+�x0+�x1, τc+�τ0+�τ1)−rc0((N , M) =
(1, 1), «correlator» DN ,M (rc;mci ; τc) = D1,1(rc;mci ; τc)), the set of stochastic equations was defined as(
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(5)

The subscript (col st2) refers to pair (N , M) = (1, 1). Then using mentioned above sets, the velocity fields of
the turbulent flow in the tube and along the flat plate were determined. As a result, the formulas for the exponent
nT of the velocity and temperature nT profiles were obtained as a function of the turbulence scale and the
intensity of the velocity and temperature fluctuations [26]. The critical point r(xcr, τcr), is the space–time point
of the turbulence onset as the interaction between the deterministic and random fields. It should be mentioned
that the idea about the critical point (the critical sublayer, the critical point (x2)cr = ycr) is not new. It was for the
first time proposed by Tollmien and Rayleigh for the well-known Orr–Sommerfeld’s equation [37], which was
used for the calculation of the laminar-turbulent transition. Later in the theory of attractors, the concept of the
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critical point was determined as the attraction point of trajectories [11]. Further, in the statistical semiempirical
theory of Taylor, the possibility was shown for obtaining the equation for the critical Reynolds number [37] in
the flow around a cylinder as a function of turbulence intensity and the scale of turbulence L = L(U,P) = LU

(integral length), D is the cylinder diameter: (Red)cr = F

{((
U0√
Est/ρ

) (
LU
D

)1/5)−1
}

,U0 - the velocity of

the main flow. So, here the stochastic theory and equivalence of measures are used for predicating the heat
transfer coefficient Nu with taking into account formulas for the critical point, the critical Reynolds number
and exponent for velocity and temperature profiles [24–32].

3 Determination of the equation for the Nusselt number depending on the intensity and the scale of
turbulence

It is known that the classical equation for the heat transfer into the wall for recorded Fourier’s law and the

Newton’s law [37–39] is used to determine theNusselt number:
[
q =

(
λ ∂T

∂x2

)]
= α (T0 − Tw) or, in the general

case, q = (λ ∂T
∂x2

)+μu1
∂u1
∂x2

= α(T0 − Tw), Here q, α—heat flux density, heat transfer coefficient. On the other

hand,we assume the temperature and the speed profile affinity
[
T−Tw
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= ( x2R )nT

]
, T = Tw+(T0 − Tw)

( x2
R

)nT
and u1 = U0

( x2
R

)n
, R,U = U0, T0, u1, Tw, n, nT—the tube radius, the velocity and the temperature at the

axis, the velocity along x1, the temperature at thewall, the exponent in the velocity profile and the exponent in the
temperature profile, x1, x2,—the longitudinal and transverse coordinates, respectively. So we can write that

q =
(
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∂x2
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R
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So, the Nusselt number, without considering the friction, has the form Nud = 2αR
λ

= 2 1
nT

( x2
R

)(1/nT )−1.

Taking into account friction, we have Nud = α2R
λ

= 2 1
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1 + Pr Ec nTn

( x2
R
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]
. The

expression in square brackets is written taking into account the effect of heat transfer due to friction. Now

applying the relation for the critical transition point
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R
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1
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)

] 1
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and

substituting it in the last formula for Nud, for compactness recording leaving the old record in square brackets,
we have the next formula
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1
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⎝
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1
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(6)

Taking into account that in according with [31–33]
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Table 1 An influence of cooling on increasing critical Reynolds numbers depending on turbulence intensities

Ec Tu TT M (Tw − To)K 0 Fplt (the plate) Ftb (the tube) Experiments [34–38] Increasing
critical Reynolds numbers

−0.01 0.01 0.005 0.03 −10. 1.113 1.135 ∼1.1÷1.2
−0.1 0.03 0.01 0.1 −100. 1.769 2.179 ∼1.7÷2.2

( x2
R

)
=

[
1

4

(Est)U P

U 2
0

(
R

LU

)] 1
3 [

Ec · Pr
1 + Ec · Pr

(
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)] 1

3
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1

2
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6

(
1
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(
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)] 1

3

, (7)

Nud = 2
1
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[
·1
3
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3
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R

)(2/n)−(1/nT )
)

. (8)

We write this expression by determining the amount of

F−1
tb =

⎛
⎜⎜⎜⎜⎜⎝

[
1 + 2TT
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] 2
3

[
1 +
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)
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)1\2
)

2TT
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]
( (

1 + 2 1
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)
(
1 + 1

Pr ·Ec
)2/3

)
⎞
⎟⎟⎟⎟⎟⎠

−1

= Pr

(
1 + 1

Pr ·Ec
)2/3

(
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)

[
1
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(((
u2j
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((
u2i

)
st
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]

[
1 + 2TT
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] 2
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, (9)

Then taking into account values in Table 1, see [33],
the estimation of the formula for Ftb depending on Pr number is

F−1
tb = Pr ·

(
1 + 1

Pr ·Ec
)2/3

(
1 + 2 1

Pr ·Ec
)

[
1
Pr +

(((
u2j

)
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)1\2
((
u2i

)
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)1\2
)

2TT
Ec·Tu2

]

[
1 + 2TT

Ec·Tu2
] 2
3

≈ 0.8 · Pr (10)

Then, substituting this expression, as well as the values of Ec, Tu, TT , and M into (8), we obtain

Nud ≈ .157 − .229

[(√
Est/ρ

U0

)
Red

](nT −1/nT ) [
(Pr)2/3(nT −1)/nT

]
(11)

Taking into account that in the previous equation n = 7, nT = 8, we can write finally

Nud = .155 − .229

[(√
Est/ρ

U0

)
Red

](7/8) [
(Pr)7\12

]
(12)

4 Results of calculations of Nusselt number

4.1 Air flow in the tube

The empirical formula [34–39] for the turbulent flow in a pipe, if parameters 0.6 < Pr < 200, 104 < Red <
5×106, is
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Nu = 0.021 · (Pr L)0.43Re0.8d (Pr L/Prw)0.25 (13)

Index L refers to the medium parameters on the tube axis. Index W refers to the medium parameters on the
tube wall. For the air flow in the tube, equation (13) is usually written as

Nu = 0.018 · Re0.8d (14)

For any turbulence intensity, see Table 2, we can determine the next values.
Then formula (11)–(12) for the air flow Pr = 0.7, Tu = 0.0356 may be written as

Nud = 0.00854
[
(Pr)7\12

]
[Red ](7/8) = 0.0069[Red ](7/8) (15)

Let us compare the results by a new formula for the Nusselt number with experimental equation (14), see
Table 3.

4.2 Water flow in the tube

We now represent calculations for water flow on the assumption that Pr L = 3, PrW = 4 (the heat transfer
from fluid to the wall), and then, the equation can be written as

Nud = 0.0077[(Pr)7\12][Red ](7/8) = 0.0145[Red ](7/8) (16)

An empirical equation for this case of the flow is

Nud = 0.021 ∗ (Pr L)0.43Re0.8d (Pr L/Prw)0.25 = 0.03137Re0.8d (17)

So, results of calculation are presented in Table 4:
In the case of the water flow with Pr L = 7, Prw = 6 (the wall-to-liquid heat transfer), the equation

(11)–(12) for Tu = 0.007–0.01 has the form :

Nud = 0.0077[(Pr)7\12][Red ](7/8) = 0.0177[Red ](7/8) (18)

Table 2 Changes of the intensity of turbulence and values of coefficients in formula (12)

[
√

(Est)U P/ρ
U0

] A = [
√

(Est)U P/ρ
U0

](0.875) A1 = (0.157 − 0.229) · A
0.009 0.0162 0.0254–0.0037
0.0093 0.0167 0.0262–0.00382
0.0115 0.02 0.0316–0.0046
0.015 0.0253 0.0392–0.00579
0.02 0.0326 0.00746–0.00508
0.036 0.0545 0.00854–0.012

Table 3 Calculations using new formula (15) and the experimental formula (14) for Pr = 0.7

Re Re0.8 Re7/8 Nud, Eq. (15) Data Nud, Eq. (14)

104 1585 3163 22 28
5∗104 5743 12930 91 104
105 104 23717 164 180
5∗105 36239 96961 669 652
106 63095 177827 1233 1136

Table 4 Calculations using new formula (16) and the experimental formula (17) for PrL = 3, PrW = 4

Re Re0.8 Re7/8 Nud, Eq. (16) Data Nud, Eq. (17), PrL\Prw = 0.93

104 1585 3163 46 53
5∗104 5743 12930 187 180
105 10000 23714 344 337
5∗105 36239 96961 1405 1137
106 63095 177827 2587 2125
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Table 5 Calculations using new formula (18) and the experimental formula (19) for Pr L = 7Prw = 6

Re Re0.8 Re7/8 Nud Eq. (18) Data Nud, Eq. (19)

104 1585 3163 57 77
5∗104 5743 12930 228 279
105 10000 23717 420 485
5∗105 36239 96961 1716 1757
106 63095 177827 3152 3063

Table 6 Calculations using new formula (20) and the experimental formula (21) for Pr L = 3Prw = 7

Re Re0.8 Re7/8 Nud , Eq. (20) Data, Nud , Eq. (21)

104 1585 3163 32 43
5∗104 5743 12930 130 156
3∗105 24082 62012 620 655
106 63095 177827 1778 1715
5∗106 228652 727107 7271 6219

Table 7 Calculations using new formula (22) and the experimental formula (23)

Re Re0.8 Re7/8 Nud (22) Pr = 0.05 Nud , experiment Eq. (23) Pr = 0.05

104 1585 3162 3 ÷ 4 6
5∗104 5743 12930 12 ÷ 13 18
105 10000 23717 22 ÷ 23 27
3∗105 24082 62012 58 ÷ 59 59
106 63095 177827 168 ÷ 169 149

and the empirical equation for this case of the flow is

Nud = 0.021 ∗ (Pr L)0.43Re0.8d (Pr L/Prw)0.25 = 0.021 · 2.308Re0.8d = 0.0485Re0.8d (19)

So, the results of calculation are presented in Table 5.
We now represent the calculations for the water flow under the assumption that PrL = 3Prw = 7 in

Table 6 (heat transfer from the fluid to the wall). When Prw > Pr L then turbulence intensity near the wall is
lower than in the flow if Pr L = PrW = 7, other factors being equal. Therefore, the estimated calculations of
equation (13), we can imagine not to Tu = .0356 as in the case of isothermal flow or flowwith constant thermal
properties, but with the fall of the wall turbulence. Then we can write equation (11)–(12) for Tu = .01− 0.02
as:

Nud = 0.01 · [Red (TU )

](7/8) (20)

and the empirical equation for this case of the flow is

Nud = 0.021 ∗ (Pr L)0.43Re0.8d (Pr L/Prw)0.25 = 0.0272Re0.8d (21)

4.3 Liquid metal flow in the tube

Finally, let us compare calculations and data for the liquid metal flow in the tube. Using new general equations
(11)–(12), the new formula for the liquid metal flow (Pr = 0.05) has next equation

Nu = 0.00095 · Re7/8x (22)

Then, taking into account the equation (Seban & Shimazaki) for the liquid metal flow in the tube [39–43]

Nu = 5 + 0.025 ∗ (Pr · Re)0.8 = 5 + 0.025 ∗ (Pe)0.8 (23)

we present the comparison between the theoretical and empirical values in Table 7.
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5 Conclusions

New analytical formulas are obtained for the heat transfer coefficients (Nud) for the gas, liquid, and liquid
metal flows in the tube (Eqs. 11–12). These formulas enable us also to take into account the initial turbulence
parameters (the turbulence scale and the of velocity fluctuation intensity), which are inherent for the flow,
instead of the effect of the Reynolds number only. This circumstance allows us to determine the causes of
the limited applicability of classical experiments and semiempirical equations of the Nu coefficient for the
flow in the tube due to the different fluctuation parameters of fluid in experiments. New formulas show that
the changes in the values of coefficients in the formulas for the heat coefficients are sensitive even for small
changes in values of the initial turbulence. Accordingly, new formulas can serve the basis for clarifying the
expressions of heat transfer in various devices in the case of different values of the initial turbulence. Obtained
results show that both for isothermal and for nonisothermal flows, the reason for the process of transition
from a deterministic state into a turbulent one is determined by the physical law of equivalence of measures
between them. Also the theory of stochastic equations and the law of equivalence of measures could determine
mechanics which is basis in different phenomena of self-organization and chaos theory.
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