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Abstract A micromorphic continuum model of a deformable electromagnetic conductor is established intro-
ducing microdensities of bound and free charges. The conductive part of electric current consists of contribu-
tions due to free charges andmicrodeformation. Beside the conservation of charge, we derive suitable evolution
equations for electric multipoles which are exploited to obtain the macroscopic form of Maxwell’s equations.
A constitutive model for electromagneto-elastic conductors is considered which allows for a natural character-
ization of perfect conductors independently on the form of the constitutive equation for the conduction current.
A generalized Ohm’s law is also derived for not ideal conductors which accounts for relaxation effects. The
consequences of the linearized Ohm’s law on the classic magnetic transport equation are shown.

Keywords Electromagneto-elastic continua · Continua with microstructure · Generalized Ohm’s law

1 Introduction

The coupling between elastic and electromagnetic fields in continuummechanics has a relevant role inmodeling
a wide class of solid and fluidmaterials. Physical interactions due to the presence of electric andmagnetic fields
in matter are introduced in current macroscopic theories on the basis of Maxwell’s equations, thermodynamic
laws, and suitable constitutive assumptions accounting for the intrinsicmaterial structure. Along this line,many
contributions to model various thermo-electromagneto-elastic effects have been given and comprehensive
phenomenological continuum theories are established (see, e.g., [1,2]).

A further refinement of mechanical continuum theories has been proposed which accounts for additional
degrees of freedom arising from the assumption that the continuum element has a microstructure [3,4]. The
extension of this approach to electromagnetic microcontinua has been performed by the inclusion of the
pertinent couplings into the balance equations and the constitutive equations [5,6]. In spite of aiming at
improving the accuracy of the physical model, this last generalization implies an increasing number of coupling
constitutive parameters which may prevent the model to be effective.

A different electromagnetic micromorphic model has been recently introduced where the electromagnetic
properties of the continuum are directly connected to its microstructure through the microcharge density. This
allows to account for polarization and magnetization via electric multipoles, avoiding the introduction of addi-
tional constitutive equations [7]. This approach has been exploited to formulate alternative phenomenological
models for piezoelectric and ferroelectric materials [8,9]. In particular, the micropolar reduction in such model
has shown to represent an effective alternative to polarization gradient models of dielectrics (see [1,10,11]).
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In the present paper, we propose an extension of the previous model to electromagnetic conductors. On the
basis of a general micromorphic continuum theory, we introduce the electric current as the flow of a continuum
of charge carriers which is superimposed to the microstructured electromagnetic medium. The basic quantities
and a suitable definition of electric current via charge microdensities are given in Sect. 2. The carriers are
supposed to be massless and interact with bound charges via the electromotive field. As a first step, in Sect. 3,
we derive the conservation of total charge in the form of the usual balance law and a couple of evolution
equations for electric dipole and quadrupole. Besides, we arrive at an explicit expression of the conductive part
of the current. Section 4 is devoted to the derivation of macroscopic Maxwell’s equations starting from their
elementary microscopic form. This result is obtained by means of the previous evolution equations for electric
dipole and quadrupole densities, and represents the micromorphic analogue to the space or statistical averaging
techniques proposed in the past [1,12]. According to [7], in Sect. 5, we give the complete set of mechanical
balance laws for a micromorphic conductor. In Sect. 6, we formulate the constitutive model which specifically
accounts for the interaction between elastic continuum and the continuum of free charges. This allows for a
rigorous characterization of perfect (ideal) conductors. The constitutive dependence and the thermodynamic
restrictions on the conductive current are then derived for not ideal conductors in Sect. 7, in order to state
a generalized Ohm’s law. In the final part of that section, we obtain a linearized Ohm’s law arriving at a
generalization of the usual magnetic transport equation for deformable conductors.

2 Micromorphic electromagneto-elasticity

We consider here a continuum body B equipped with an internal structure according to the micromorphic
theory of continua [5]. It is assumed that each “point” in B has the structure of a particle P whose center
of mass is given by the position vector x of the continuum. A vector ξ denotes the relative position of a
point within P , with respect to x. Denoting by X and � the vectors of the reference (material) configuration
corresponding to x and ξ , we suppose that macro- and microdeformations are allowed in B, defined by smooth
functions x = x̄(X, t), ξ = ξ̄ (X, �, t), respectively. As usual, we introduce the macrodeformation gradient
F = (∇Xx̄)T and pose J = detF. Besides, a microdeformation tensor χ is defined assuming ξ̄ to be linear in
�, that is, ξ̄ (X, �, t) = χ (X, t)� and pose j = detχ . In components, we have

FiK = ∂ x̄i
∂XK

, ξ̄i = χi K�K .

We denote by X the inverse of χ , such that χi JXJk = δik . A set of strain measures can be introduced by
means of the following material tensors

C = χ T χ , C = FT X T , � = X (∇X χ )T (2.1)

known, respectively, as microdeformation strain, deformation strain, and wryness tensor. From the previous
definitions, spatial derivatives of ξ are obtained in terms of the wryness tensor as

ξi, j = χi H�HK L F
−1
L j �K ,

and, posing γi jh = χi H�HK L F
−1
L j XKh , we can write

(∇ξ )T = γ ξ . (2.2)

According to the definition of microgyration tensor N(x, t), (see [5]), we have

χ̇ ≡ d

dt
χ = Nχ ,

so that
ξ̇ = Nξ . (2.3)

Owing to this result, we find the following time rates of the strain tensors (2.1)

Ċ = 2χ T (SymN) χ , Ċ = [X (L − N)F]T , �̇ = [X (∇N)T χ ]F, (2.4)
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where L = (∇v)T is the velocity gradient and v = ẋ is the usual macroscopic velocity. On the basis of this
physical picture of a micromorphic continuum, we are assuming different orders of magnitude for macro-
and microdeformation scales, so that ‖dξ ‖ � ‖dx‖. Equivalently, in view of (2.2), we require the following
condition on the tensor γ ξ ,

‖γ ξ ‖ � 1. (2.5)

Microdensities of mass and electric bound charge, respectively, ρ′ and σ ′, are here introduced as smooth
functions of x+ξ and t in the current configuration ofB. Here, we distinguish bound charges from free charges
responsible for conduction current, which will be introduced later. Denoting by Pt the current configuration
of the particle P , we define the (macroscopic) density of mass and density of electric bound charge as

ρ(x, t) = 1

�v′

∫
Pt

ρ′(x + ξ , t) dv′, q ′(x, t) = 1

�v′

∫
Pt

σ ′(x + ξ , t) dv′, (2.6)

where the integration vector variable is ξ and �v′ = vol(Pt ). These quantities represent mean values of mass
and charge on the particle’s volume. Similarly, we can represent densities of inertial and electric quantities in
terms of ρ′ and σ ′, respectively. In this respect, we observe that, since x is the center of mass of Pt ,

1

�v′

∫
Pt

ρ′(x + ξ , t)ξ dv′ = 0. (2.7)

Then, we define the microinertia tensor I per unit mass and the electric dipole and quadrupole densities p and
Q as follows:

I (x, t) = 1

ρ�v′

∫
Pt

ρ′(x + ξ , t)ξ ⊗ ξ dv′, (2.8)

p(x, t) = 1

�v′

∫
Pt

σ ′(x + ξ , t)ξ dv′, Q(x, t) = 1

�v′

∫
Pt

σ ′(x + ξ , t)ξ ⊗ ξ dv′. (2.9)

Quantities of order greater than 2 with respect to ξ can be defined in a similar way (see [9]).
According to (2.3), we have

d

dt
(x + ξ ) = v + Nξ . (2.10)

It is natural to define the density of electric current as the sum of a mean value, over the particle’s volume,
of a microcurrent due to bound charge microdensity σ ′ and a conduction current due to a microdensity σ̂ of a
continuum of free charges with negligible mass density and with relative velocity v̂ with respect to x,

J(x, t) = 1

�v′

∫
Pt

σ ′(x + ξ , t)(v + Nξ ) dv′ + 1

�v′

∫
P̂t

σ̂ (x + ξ̂ , t)[v + v̂(x + ξ̂ )] dv′, (2.11)

where P̂t is the portion of continuum of free charges coinciding with Pt at time t and ξ̂ the corresponding
relative vector position. Denoting by q = q ′ + q̂ the total charge density, where

q̂(x, t) = 1

�v′

∫
P̂t

σ̂ (x + ξ̂ , t) dv′,

using (2.6)2 and (2.9)1, we can write
J = qv + Np + Ĵ, (2.12)

where

Ĵ(x, t) = 1

�v′

∫
P̂t

σ̂ (x + ξ̂ , t) v̂(x + ξ̂ ) dv′. (2.13)

The first term in the right-hand side of (2.12) represents the common convective electric current, while the
second term accounts for internal relative motion of charges and represents a specific contribution of the
microstructure.

It is worth remarking that the continuum of free charges does not possess a microstructure. The previous
expressions for q̂ and Ĵ, which formally reflects the superposition of P̂t on the microcontinuum particle of B,
will be developed in the next sections to deal with a pertinent model of continuum electric conductors.
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3 Conservation of mass and charge, evolution equations

Let us consider a scalar or vector or tensor microfield density �′ defined on B, for instance one of the
microdensities ρ′ or σ ′ of the previous section, and represent it as a smooth function �′(x + ξ , t). The mean
value of �′ on Pt is the macroscopic field

�(x, t) = 1

�v′

∫
Pt

�′(x + ξ , t) dv′. (3.1)

We pose x̃ = x + ξ , or, more explicitly

x̃(X, �, t) = x̂(X, t) + χ (X, t)�,

and consider the deformation gradient

F̃ = (∇Xx̃)T , J̃ = det̃F.

By a standard derivation, accounting for Eq. (2.10), we obtain

(det̃F)· = (det̃F) ˙̃FF̃−1 = J̃ [∇ · v + ∇̃ · (Nξ )], (3.2)

where ∇̃ ≡ ∇x̃ and where we accounted for the independence of v on ξ . Let A be an arbitrary part of B and
consider the integral of �′(x̃, t) over At , denoting the element of volume by dṽ. Evaluating the material time
derivative by means of the transport theorem and Eq. (3.2), we get

d

dt

∫
At

�′(x̃, t) dṽ =
∫
At

[
∂�′

∂t
+ (v + Nξ ) · ∇̃�′ + �′∇ · v + �′∇̃ · (Nξ )

]
dṽ

=
∫
At

[
∂�′

∂t
+ v · ∇̃�′ + �′∇ · v + ∇̃ · (�′Nξ )

]
dṽ, (3.3)

If �′, and in turn �, is the density of a field which is conserved during the motion, the last integral on the
right-hand side of (3.3) must vanish for any part At and this fact implies

∂�′

∂t
+ v · ∇̃�′ + �′∇ · v + ∇̃ · (�′Nξ ) = 0, (3.4)

during the motion. In particular, if we choose At to coincide with Pt , we get∫
Pt

[
∂�′

∂t
+ v · ∇̃�′ + �′∇ · v + ∇̃ · (�′Nξ )

]
dv′ = 0. (3.5)

Now, we observe that in view of the previous positions,

∇̃ = [F + (∇X χ )�]−1F∇ = F−1[I + γ ξ ]−1F∇.

Then, accounting for the condition (2.5), we can replace ∇̃ with ∇ in (3.5) to obtain

0 =
∫
Pt

∂�′

∂t
dv′ + ∇ · v

∫
Pt

�′ dv′ + v · ∇
∫
Pt

�′ dv′ + ∇ ·
∫
Pt

�′Nξ dv′

= �v′
[
∂�

∂t
+ �∇ · v + v · ∇� + ∇ ·

(
N

1

�v′

∫
Pt

�′ξ dv′
)]

or, equivalently

�̇ + �∇ · v + ∇ ·
(
N

1

�v′

∫
Pt

�′ξ dv′
)

= 0. (3.6)

The previous analysis can be applied, in particular, to derive the conservation laws of mass and charge.
Letting �′ = ρ′ and accounting for equality (2.7), from (3.6) and (2.6)1, we obtain the law of mass

conservation
ρ̇ + ρ∇ · v = 0. (3.7)
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Concerning the charge density, letting �′ = σ ′, accounting for (2.9)1 and (2.6)2, from (3.6), we arrive at the
following law of conservation for bound charges

q̇ ′ + q ′∇ · v + ∇ · (Np) = 0. (3.8)

A similar result holds for free charges. In this case, we can proceed by considering an arbitrary portion Ât and
impose the condition

d

dt

∫
Ât

σ̂ (x + ξ̂ , t) dv = 0,

which yields ∫
Ât

[
∂σ̂

∂t
+ ∇ · (σ̂v) + ∇ · (σ̂ v̂)

]
dv = 0. (3.9)

In particular, if Ât = P̂t , owing to (2.13), we obtain

˙̂q + q̂∇ · v + ∇ · Ĵ = 0. (3.10)

Then, adding term by term Eqs. (3.8), (3.10), and using (2.12), we obtain the law of conservation for the total
charge, in the form of the well-known balance law

∂q

∂t
= −∇ · J. (3.11)

Dipole and quadrupole can be viewed as internal variables of the microcontinuum model. Here, we derive
suitable evolution equations for these quantities. From (2.9)1, by taking the material time derivative, we get

�v′(ṗ + (trN)p) =
∫
Pt

[
∂σ ′

∂t
ξ + (v + Nξ ) · (∇̃σ ′)ξ + σ ′Nξ + σ ′ξ trN

]
dv′ (3.12)

where, in view of (2.10), we have exploited the result ( j)· = j (trN) and applied the transport theorem. From
(3.4) applied to the charge density, we have

∂σ ′

∂t
+ (v + Nξ ) · ∇̃σ ′ = −σ ′∇ · v − σ ′∇̃ · (Nξ ).

Substituting into (3.12), we obtain

ṗ + p∇ · v = Np − 1

�v′

∫
Pt

σ ′[∇̃ · (Nξ )]ξ dv′ (3.13)

By applying the same arguments on ∇̃, exploited to obtain (3.6), we can recast Eq. (3.13) in the form

ṗ + p∇ · v = Np − (∇ · N)Q − N : γ Q (3.14)

By the same token, we arrive at the following evolution equation for the quadrupole density

Q̇ + Q∇ · v = 2Sym(NQ) − (∇ · N)Q − N : γ Q (3.15)

where

Q = 1

�v′

∫
Pt

σ ′ ξ ⊗ ξ ⊗ ξ dv′

is the electric octupole density. We finally observe that a similar evolution equation holds for the microinertia
tensor I . In this case, starting from (2.8), we obtain

İ = 2Sym(NI ) − (∇ · N)I − N : γ I (3.16)

where

I = 1

ρ�v′

∫
Pt

ρ′ ξ ⊗ ξ ⊗ ξ dv′.
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If terms of highest order in ξ are neglected in each equation, (3.14)–(3.16) reduce to

ṗ + p∇ · v − Np = 0,

Q̇ + Q∇ · v − 2Sym(NQ) = 0,

İ − 2Sym(NI ) = 0.

(3.17)

We finally observe that the previous derivations can be also applied to quantities pertaining to the continuum of
free charges, if we replace the time derivative of ξ̂ by the velocity v+ v̂. In particular, we exploit the quantities

p̂(x, t) = 1

�v′

∫
P̂t

σ̂ (x + ξ̂ , t) ξ̂ dv′, Q̂(x, t) = 1

�v′

∫
P̂t

σ̂ (x + ξ̂ , t) ξ̂ ⊗ ξ̂ dv′, (3.18)

to obtain a suitable expression for the conduction current Ĵ. Taking the material time derivative of (3.18)1,
accounting for (3.9) and (2.13), we get

˙̂p + p̂(∇ · v) = Ĵ − 1

�v′

∫
P̂t

σ̂ ξ̂ ∇ · v̂ dv′.

If we expand ∇ · v̂ about ξ̂ = 0, up to the second order, we obtain

Ĵ = ˙̂p + p̂∇ · (v + v̂) + (Q̂ · ∇)(∇ · v̂). (3.19)

Equation (3.19) shows that, beside v̂, the quantities p̂ and Q̂ characterize the conductive properties of the
present continuum model, describing the interaction of free charges with the microcontinuum.

4 Maxwell’s equations

In this section, we derive the actual form ofMaxwell’s equation for the continuum in terms of itsmicrostructure.
Our main objective was to arrive at the pertinent expressions for polarization andmagnetization for a consistent
electromagnetic micromorphic theory. Really, we restate, in a somewhat alternative way, the problem of a
microscopic derivation of Maxwell’s equations in continuous matter which traces back to the Lorentz electron
theory. Space averaging and statistical ensemble averaging have been exploited to this end (see [12,13]), and
later, a consistent formulation for classical continua has been obtained on the basis of the previous averaging
techniques (see [1] and references therein).

We denote by E(x, t) and B(x, t) the electric field and the magnetic induction valued at the center of mass
of the continuum particle and write the Maxwell’s equations pertaining to the material contribution of charge
and current densities valued at x, i.e., for ξ = 0. Omitting the arguments (x, t) in each term in the following
equations, using Heaviside–Lorentz electromagnetic units and denoting by c the speed of light in vacuum, we
have

∇ · B = 0, ∇ × E + 1

c

∂B
∂t

= 0 (4.1)

∇ · E = σ ′ + q̂, ∇ × B − 1

c

∂E
∂t

= 1

c
J′ + 1

c
(q̂v + Ĵ), (4.2)

where J′ = σ ′ ˙̃x. The effects of the continuum of free charges are taken into account, through the mean values
at x of density and current on P̂t , in the right-hand sides of (4.2). Equation (4.1) is formally the same as the
law on magnetic flux density and Faraday’s law in vacuum. In order to obtain the macroscopic form of Gauss’
law and Ampère’s law given in (4.2), we evaluate σ ′(x, t) and J′(x, t) in terms of macroscopic fields. This
can be achieved by expanding these quantities about x + ξ and averaging over the volume of the continuum
particle Pt . Concerning with Gauss’ law (see also [9]), by a Taylor expansion, up to order n,

σ ′(x, ξ , t) =
n∑

k=1

(−1)−1

(k − 1)!∇
(k−1)σ ′

∣∣∣∣
x+ξ

ξ (k−1),
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where ∇(k) denotes nth order differentiation with respect to x and ξ (k) = ξ ⊗ ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
k

. Consistently with

the approximation of Eq. (3.17), we consider here n = 2, and exploiting Eq. (2.9), we obtain

1

�v′

∫
Pt

σ ′(x, ξ , t) dv′ = q ′(x, t) − ∇ ·
(
p(x, t) − 1

2
∇ · Q(x, t)

)
.

Then, introducing the polarization, up to multipoles of order 2,

P = p − 1

2
∇ · Q, (4.3)

from (4.2)1, we obtain the Gauss’ law in the usual form

∇ · D = q, (4.4)

where D = E+P is the electric displacement. A less easy derivation is required for the Ampère’s law. Again,
by a Taylor expansion

J′(x, ξ , t) =
n∑

k=1

(−1)−1

(k − 1)!∇
(k−1)(σ ′ ˙̃x)

∣∣∣∣
x+ξ

ξ (k−1),

and up to terms of order 2 in ξ ,

1

�v′

∫
Pt

J′(x, ξ , t) dv′ = q ′v + 2Np − (∇ · p)v − (p · ∇)v

− ∇ · (NQ)T + 1

2
∇ · (QL) + 1

2
∇ · [(∇ · Q)v].

Then, exploiting the evolution Eq. (3.17)1,2, accounting for the identity

∇ · (a ⊗ b − b ⊗ a) = −∇ × (a × b),

after some rearrangements and exploiting the definition (4.3), we obtain

1

�v′

∫
Pt

J′(x, ξ , t) dv′ = q ′v + Np + ∂P
∂t

− ∇ × (v × P) − 1

2
∇ × μ

where the vector μ is, in components,

μi = εi jk(N jp − L jp)Qpk . (4.5)

Substituting into (4.2)2, and using (2.12), we get

∇ × B − 1

c

∂E
∂t

= 1

c
J + 1

c

∂P
∂t

− 1

c
∇ × (v × P) + 1

2c
∇ × μ .

Finally, posing

M = 1

2c
μ , M = M − 1

c
v × P,

and accounting for the definition of D, we obtain the usual form of the Ampère’s law,

∇ × H − 1

c

∂D
∂t

= 1

c
J, (4.6)

whereH is the magnetic field defined byB = H+M. The vectorM is the magnetization field andM turns out
to be themagnetization in the co-moving frame (see, e.g., [1]).We remark the essential role ofmicrodeformation
in defining the magnetization, via the tensorN in Eq. (4.5). Concluding the present derivation, we note that the
conservation of total charge (3.11) follows from the Ampère’s law (4.6), after taking the divergence of both
sides and accounting for the Gauss’ law (4.4).
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5 Micromechanical balance laws

In order to obtain the mechanical balance equations for the problem at hand, we derive force, moment of force,
and power densities. These derivations are the same as those shown in [7] apart from the present additional
terms due to free charges. We denote, respectively, by f

′em and f̂em the electromagnetic force on a point of the
continuum particle Pt and on the corresponding point in P̂t . In the following, for brevity, we omit the explicit
dependence on time,

f
′em(x + ξ ) = σ ′(x + ξ )

[
E(x + ξ ) + v + Nξ

c
× B(x + ξ )

]
,

f̂em(x + ξ̂ ) = σ̂ (x + ξ̂ )

[
E(x + ξ̂ ) + v + v̂(x + ξ̂ )

c
× B(x + ξ̂ )

]
.

The electromagnetic force density at x is

fem(x) = 1

�v′

∫
Pt

f
′em(x + ξ ) dv′ + 1

�v′

∫
P̂t

f̂em(x + ξ̂ ) dv′. (5.1)

According to the assumptions adopted in deriving Maxwell’s equations, we replace E and B with their values
at ξ̂ = 0 in P̂t . Then, we expand E and B about ξ = 0 in the first integral of Eq. (5.1), retaining terms up to
the second order in ξ . Exploiting (2.6)2, (2.9), and (2.13), we obtain

fem = q E + (p · ∇)E + 1

2
(Q · ∇)∇ E + 1

c
[(N − L)p] × B

+1

c
[(N − L)Q∇] × B + 1

2c
B × [(Q · ∇)LT ] + 1

c
Ĵ × B. (5.2)

where

E (x, t) = E(x, t) + 1

c
v × B(x, t),

is the electromotive intensity field. Analogous derivations for the moment of force and power densities yield

τ em(x) = 1

�v′

∫
Pt

(x + ξ ) × f
′em dv′ + 1

�v′

∫
P̂t

x × f̂em dv′ = x × fem(x) + cem(x). (5.3)

wem(x) = 1

�v′

∫
Pt

f
′em · (v + Nξ ) dv′ + 1

�v′

∫
P̂t

f̂em · (v + v̂), dv′

= fem(x) · v + tr(Cem(x)N) + Ĵ · E (x). (5.4)

where

Cem
i j = piE j +

[
Ei,k + 1

c
εi pq(Npk − L pk)Bq

]
Qkj , cemi = εi jkC

em
jk .

Similar results can be obtained for the mechanical contributions to force per unit mass, couple, and power
densities. In this case, no terms arise from the free charge continuum. Actually, the expansion of the force
microdensity f ′(x + ξ , t) about ξ = 0, accounting for (2.8), yields, at x,

f(x) = 1

ρ�v′

∫
Pt

ρ′(x + ξ ) f ′(x + ξ ) dv′ = f ′(x) + 1

2
I ∇(∇f ′(x)), (5.5)

τ (x) = 1

�v′

∫
Pt

ρ′(x + ξ ) × f ′(x + ξ ) dv′ = ρ[x × f(x) + c(x)], (5.6)

w(x) = 1

�v′

∫
Pt

ρ′(x + ξ ) f ′(x + ξ ) · (v + Nξ ) dv′ = ρ[f(x) · v + tr(I T (∇f(x))N)], (5.7)
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where

ci = εi jk f ′
k,lI jl .

The balance equations for momentum, moment of momentum, and energy can be derived by a standard
procedure introducing the (second order) stress tensorsT, S, the (third order) couple stress tensorm, according
to the classical micromorphic continuum theory (see [5,7]). We do not repeat here the details of this derivation,
but, accounting for the presence of the electric current contributions included in Eqs. (5.2)–(5.4), we give the
resulting general balance laws. To this end, we recall the definition of the rate of spin inertia tensor, which in
the present notations reads

σ = 1

�v′

∫
Pt

ρ′(x + ξ )ξ̈ ⊗ ξ dv′.

Owing to (2.10), we can write

σ = ṄI + NNI .

Then, denoting by e the internal energy per unit mass, we obtain

ρv̇ = ρf + fem + ∇ · T, (5.8)

ρσ = ρ(∇f)TI + Cem + TT − S + ∇ · m. (5.9)

ρė = tr(SN) − tr(TN − TL) + mi jk N jk,i + ρh − ∇ · q + Ĵ · E , (5.10)

where h and q are, respectively, the heat supply per unit mass and the heat flux. We observe that Eq. (5.9) is
the dual form of the vectorial balance of moment of momentum. Here, S is a symmetric tensor, and only the
skew symmetric parts of Cem and T effectively contribute to the right-hand side of (5.9).

6 Constitutive model for electromagneto-elastic conductors

In view of the next derivations, we rewrite the balance law of energy in a more convenient form. Introducing
the following tensors (see [5,7])

ai j = Li j − Ni j , bi jk = Ni j,k, ci j = 1

2
(Ni j + N ji ),

Eq. (5.10) takes the following form

ρė = Si j c ji + Ti j ai j + mi jkb jki + ρh − qi,i + ĴiEi . (6.1)

Denoting by η the entropy density, we write the second law of thermodynamics as

ρη̇ ≥ ρ
h

θ
− ∇ · q

θ
, (6.2)

where θ is the absolute temperature. Introducing the free energy density ψ = e − ηθ and eliminating h from
(6.1) and (6.2), we obtain the following Clausius–Duhem inequality

ρ(ψ̇ + ηθ̇) ≤ Si j c ji + Ti j ai j + mi jkb jki − 1

θ
qiθ,i + ĴiEi . (6.3)

In order to formulate the constitutive assumptions, compatibly with the second law, we rewrite inequality (6.3)
with respect to the reference configuration and introduce the following second Piola–Kirchhoff stress tensors

S = JXSXT , Y = JF−1Tχ , M = JF−1mXT χ .

Besides, the heat flux, the conduction current, and the electromotive intensity field take the following material
form

q = JF−1q, Ĵ = JF−1Ĵ, E = E F.
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Accordingly, exploiting the time rate strains, given by (2.4), the inequality (6.3) can be rewritten in the following
form

ρ0(ψ̇ + ηθ̇) − 1

2
SHK ĊHK − YHK ĊHK − MHK L �̇K LH + 1

θ
qHGH − ĴHEH ≤ 0, (6.4)

where ρ0 = ρ J andG = ∇Xθ . The last term in the left-hand side of (6.4) can be written more explicitly, using
the result (3.19). To this end, by defining the following material fields

P̂ = JF−1p̂, Q̂ = JF−1Q̂F,

we obtain the form of (3.19) according to the reference configuration

Ĵ = ˙̂
P + L̂P̂ + (Q̂ · ∇X)(∇ · v̂), (6.5)

where

L̂ = F−1[L + (∇ · v̂)I]F.

Then, inequality (6.4) takes the following explicit form

ρ0(ψ̇ + ηθ̇) − 1

2
SHK ĊHK − YHK ĊHK − MHK L �̇K LH + 1

θ
qHGH − ˙̂

PHEH − ĴHEH ≤ 0 (6.6)

where
Ĵ = L̂P̂ + (Q̂ · ∇X)(∇ · v̂). (6.7)

We are now in a position to assume the pertinent constitutive dependence of the free energy. We firstly observe
that the set of constitutive variables encloses the strain measures C, C, �, which account for macro- and
microdeformations. As to the interaction with the free charge continuum, we may refer to q̂ , P̂, Q̂, as the
pertinent field variables, according to (3.18) and (3.19). As can be easily verified from inequality (6.6), in view
of the independence of constitutive variables,ψ does not depend on q̂ and Q̂ so, accounting for the dependence
on the temperature θ , we pose

ψ = ψ̃(C,C, �, θ, P̂).

Accordingly, in order that inequality (6.6) be valid, the following constitutive equations must hold

S = ρ0ψ̃C, Y = ρ0ψ̃C, M = ρ0ψ̃�, η = ψ̃θ , (6.8)

E = ρ0ψ̃P̂
, (6.9)

where, for any variable A, ψ̃A denotes the partial derivative of ψ̃ with respect to A. Besides, we get the
following residual dissipative inequality

Ĵ · E − 1

θ
q · G ≥ 0. (6.10)

To obtain the complete set of governing equations with respect to the material configuration, we introduce the
first Piola–Kirchhoff stress tensor T = JF−1T and the following material fields,

f = f χ , � = χ σ X T , I = XI X T .

Then, Eq. (3.17)3 yields
İ = 0, (6.11)

and the balance Eqs. (5.8) and (5.9) become

ρ0v̇ = ρ0f + J fem + ∇X · T, (6.12)

ρ0� = ρ0[(∇Xf)
T − f�]C−T

I + CYT C−1 − CS + DR · M, (6.13)

where

(DR · M)HK = MLHK ,L + MLHM�KML − MLMK�MHL .
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Moreover, posing

D = JF−1D, B = JF−1B, J = JF−1J, H =
(
H − v

c
× D

)
F,

Maxwell’s equations take the following material form

∇X · D = q0, ∇X · B = 0, (6.14)

∇X × E + 1

c
Ḃ = 0, ∇X × H − 1

c
Ḋ = 1

c
J, (6.15)

where q0 = Jq . Finally, the charge conservation (3.11) is replaced by

∂q0
∂t

= q0∇ · v − ∇X · J. (6.16)

Taking into account the dependence of fem, D, and H on p and Q, we conclude that Eqs. (6.6), (6.11)–(6.16),
and (3.17)1,2 represent the system of nonlinear governing equations for the micromorphic electromagneto-
elastic conductor. These equations need the complementary prescription of constitutive Eqs. (6.8) and (6.9).
In particular, Eq. (6.9) can be considered, alternatively, as a definite statement on E or on P̂, provided ψ̃

P̂
be

invertible. Moreover, additional constitutive equations are required in general for q and Ĵ according to (6.10)
and (6.7). Incidentally, we observe that if contributions of second order in ξ̂ are discarded in the conductive
current (6.7), the quantity Q̂ can be neglected and inequality (6.10) implies a thermodynamic constraint on ψ̃

P̂

or its inverse.

7 Perfect conductors and Ohm’s law for conductors

In this section, we restrict our attention to the conductive properties of the electromagneto-elastic continuum
deriving some consequence of Eqs. (6.5), (6.9), and (6.10).

As a first step, we look for a consistent condition which characterizes the ideal case of perfect conductors.
Commonly, this condition relies on the assumption that a special constitutive equation holds for the conductive
current, i.e., the elementary form of the Ohm’s law, where Ĵ is proportional to E . By definition, perfect con-
ductors are electric conductors with null conductive dissipation for arbitrary J. Usually, they are characterized
by the requirement that a finite electromotive intensity E produces an unbounded magnitude of Ĵ or, in other
words, the electric conductivity is infinite. In order that this assumption be compatible with a finite dissipation,
expressed by the thermodynamic inequality (6.10) or its equivalent forms, E is required to vanish.

The constitutive model described in the previous section suggests a different characterization of perfect
conductors, which is independent on the constitutive equation introduced for the electric current. From the
above definition, we immediately obtain the following statement.

Proposition Let B be an electromagneto-elastic conductor described according to the constitutive model of
Sect. 6. A necessary and sufficient condition for B to be a perfect conductor is that the free energy ψ̃ do not
depend on P̂.

Owing to (6.9) and (6.10), this condition implies E = 0 with a vanishing dissipation due to the elec-
tric current. In this case, we obtain E = 0 in the spatial configuration of B and the Maxwell’s equations,
corresponding to (6.14)1, and (6.15) reduce to

∇ ·
(
P − v

c
× B

)
= q,

∂B
∂t

− ∇ × (v × B) = 0,

∇ × H − 1

c

∂

∂t

(
P − v

c
× B

)
= 1

c
(qv + Np + Ĵ).

(7.1)

These last equations, under the additional hypothesis of null charge q and null dipole and quadrupole densities
(no polarization and magnetization), correspond to the well-known results of ideal elastic conductors (see [1]).
We remark that the independence of the previous characterization on the choice of Ohm’s law is a natural and
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expected fact. Really, differently from the nonideal case, in the governing Eq. (7.1), which are coupled with
the mechanical balance laws, the conduction current Ĵ is one of the unknown variables and no constitutive
assumptions are needed for it.

Now,we consider a conductor with not null dissipative current and assume that the function ψ̃
P̂
be invertible

with respect to P̂. From Eq. (6.9), we obtain

P̂ = �(C,C, �, θ;E) ≡ �(�;E),

where we have introduced the set � = {C,C, �s, θ}. Denoting by �E the partial derivative of � with respect
to E, we get

˙̂
P = �E(�;E)Ė + �∗(�̇;E), (7.2)

where �̇ = {Ċ, Ċ, �̇, θ̇} and �∗ is a homogeneous linear function of the set �̇. In the following, we neglect
the term of second order in ξ̂ in Eq. (6.7) and write

Ĵ = L̂�(�;E).

It is worth remarking that, although � does not depend on G, the quantity L̂, in general, depends on E and G
via the divergence of the conduction velocity v̂, which is an undefined quantity. Then, inequality (6.10) can be
written as

(L̂�)(�;E,G) · E − 1

θ
q(�;E,G) · G ≥ 0. (7.3)

Besides, the conduction current becomes

Ĵ = �E(�;E)Ė + �∗(�̇;E) + (L̂�)(�;E,G). (7.4)

Equation (7.4) represents the generalized nonlinear Ohm’s law for the present electromagneto-elastic model.
It accounts for relaxation effects via the first two terms in the right-hand side. The term proportional to Ė is
due to the interaction of free charges with the microcontinuum, and the term �∗ arises from the inertial effects
of macro- and microdeformations in the continuum. We note that, differently from the common generalized
Ohm’s law in rigid conductors (see, e.g., [14] or [15]), here the relaxation does not depend on the free charge
inertia, which is ignored. As a consequence, proper frequencies at which the present relaxation effects become
noticeable are much lower than those at which the inertia of free charges becomes relevant.

In general, inequality (7.3) allows for the coupling of heat conduction and conductive current via the
constitutive dependence of the heat flux onE andG. We are not interested here in such thermo-electromagneto-
elastic effects, but we observe that, in comparison with some analysis in the literature, the present model yields
similar, although not equivalent, modified Ohm’s and Fourier’s laws (see [16,17]).

In order to explain the consequence of the Ohm’s law (7.4) in comparison with the classical theory of elastic
conductors, we derive a modified version of the evolution equation for the magnetic field which represents
a standard result on electromagnetic deformable media. To this end, we simplify Eq. (7.4) neglecting the
relaxation contribution �∗ and consider a not polarizable and not magnetizable conductor with q = 0.
Moreover, we discard thermal effects assuming L̂ to be independent on G. Consequently, (7.3) reduces to

(L̂�)(�;E) · E ≥ 0. (7.5)

We rewrite Eq. (7.4) in the spatial configuration as

Ĵ = π̂
e
( Ė + LT E ) + 1

J
[L + (∇ · v̂)I]F� (7.6)

where π̂
e = 1

J F�EFT . From inequality (7.5), we also have

[Lhp + (∇ · v̂)δhp]FpL�LEh ≥ 0, (7.7)

and assuming the following linear dependence on E ,

∇ · v̂ = α + βpEp, FpL�L = γp + η̂phEh,
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from (7.7), we obtain the following constraints

βp = 0, γp = 0, αη̂ph ≡ ηph positive definite.

Then, the linearized form of (7.6) reads

Ĵh = πe
hk Ėk + ηhkEk, (7.8)

where π e and η are constant tensors. Under the previous assumptions, the Maxwell’s Eqs. (4.1) and (4.6)
become

∇ · H = 0 ∇ × E + 1

c

∂H
∂t

= 0, (7.9)

∇ × H − 1

c

∂E
∂t

= 1

c
( π e Ė + η E ) (7.10)

where E = E + v
c × H. For isotropic media, πe

hk = πeδhk and ηhk = ηδhk with η > 0. In this case, taking
the curl of both sides of (7.10) and using (7.9), we arrive at the following result

1

c2

[
(1 + πe)

∂2H
∂t2

+ (πe∇ · v + η)
∂H
∂t

+ (πe∇ · v̇ + η∇ · v)H
]

= �H + 1

c
πe∇ × (v · ∇E). (7.11)

If πe = 0, Eq. (7.8) yields the usual Ohm’s law and (7.11) reduces to the known magnetic transport equation
for H in deformable conductors with conductivity η (see [1,18]). If, in addition, very large values of η are
considered, this equation can be approximated by (7.1)2, valid for perfect conductors.

The main difference in Eq. (7.11) with respect to the classical result is the presence of additional convective
and time rate convective terms proportional, respectively, to ∇ · v and ∇ · v̇. These terms modify the balance
between diffusive and convective behavior of the magnetic field in the conductor. Finally, for rigid conductors
at rest, the presence of πe in the coefficient of the second-order time derivative ofH implies a modification of
both velocity and attenuation of magnetic waves.

8 Concluding remarks

Themicromorphic theory on the basis of this work accounts for a direct connection betweenmicrostructure and
electric charge distribution. As shown in Sect. 4, this allows us to derive the macroscopic Maxwell’s equations
starting from dipole and quadrupole densities and their evolution equations. Polarization and magnetization
are thus obtained consistently, avoiding the introduction of additional constitutive assumptions as occurs in
the classical micromorphic electromagnetic continuum approaches (see [5,6]).

The present description of electric conduction shows the essential role of microstructure, via the quantities
(3.18), in taking into account the interaction of charge carriers with the elastic microcontinuum. On the one
hand, this model gives rise to an explicit expression for the conductive electric current Ĵ (see Eq. (3.19)),
and on the other hand, it allows for the dependence of the free energy on p̂, thus achieving a constitutive
characterization of ideal and not ideal conductors. Relaxation effects on electric current arise naturally from
this approach and can be compared with those described by the evolution equation for Ĵ, often proposed
according to thermodynamic considerations, to account for inertial effects [14,15].

As it can be easily recognized, the analysis of electric conduction developed in Sect. 7 for not polarized and
not magnetized conductors yields an electromagnetic formulation which holds independently on accounting
for the mechanical microstructure.We finally remark that if, otherwise, dipole and quadrupole densities are not
discarded in the analysis of Sects. 6 and 7, it is possible, in principle, to develop pertinent continuum models
for polarizable conductors and, in particular, for piezoelectric semiconductors. As shown in the literature, the
analysis of such media often requires the introduction of a noticeable number of phenomenological variables
accounting for different types of charge carriers (see [19,20]).
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