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Abstract The mechanical response, serviceability, and load-bearing capacity of materials and structural com-
ponents can be adversely affected due to external stimuli, which include exposure to a corrosive chemical
species, high temperatures, temperature fluctuations (i.e., freezing–thawing), cyclic mechanical loading, just
to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from
aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of
degradation of materials, as the materials in these applications are often subjected to adverse environments.
As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and
multi-functional materials that exhibit high ductility have been developed and widely used, for example, as
infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of model-
ing these materials will not be adequate. In this paper, we study degradation of materials due to an exposure
to chemical species and temperature under large strain and large deformations. In the first part of our research
work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain
semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady
behaviors of degrading hyperelastic solids.

Keywords Degradation · Aging · Continuum damage mechanics · Coupled chemo–thermo–mechano
analysis · Semi-analytical solutions · Constitutive modeling · Hyperelasticity

List of symbols

ρ Density of solid in deformed configuration (kgm−3)
A Specific Helmholtz potential (J kg−1)
ζ Dissipation functional (J kg−1 s−1)
ψ Strain energy density functional (J m−3)
λ, μ Lamé parameters (Pa)
κ Bulk modulus (Pa)
u Displacement (m)
v Velocity (m s−1)
ϑ Temperature (K)
c Concentration (l)
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Rs Specific vapor constant (J kg−1 K−1)
cp Heat capacity (J kg−1 K−1)

MϑE Thermal expansion tensor (J m−3 K−1)
McE Chemical expansion tensor (J m−3)
dϑc Thermo–chemo coupled parameter (J kg−1 K−1)
� Specific chemical potential (J kg−1)
η Specific entropy (J kg−1 K−1)
Dϑϑ Thermal diffusion tensor (m2 s−1)
D�� Diffusivity tensor (m2 s−1)
Dϑ� , D�ϑ Dufour–Soret effect tensors (m2 s−1)
T Cauchy stress (Pa)
h Diffusive flux vector (kgm−2 s−1)
q Heat flux vector (J m−2 s−1)
h Volumetric source (kgm−3 s−1)
q Volumetric heat source (J m−3 s−1)

1 Introduction and motivation

Material and structural degradation is a major problem in infrastructure and various other real-life applications.
Most of thewell-knownmanifestations, such as “wear out,” “fracture,” “spalling,” and “section loss,” are related
to the phenomenon of degradation [6]. Virtually, everymaterial degradeswhen subjected to hostile environment
and external stimuli. Importance of these phenomena has triggered a surge in research to developmore resistible
materials. Consequently, understanding the general behavior of degrading materials has attracted the interest
of researchers. A fundamental study of degradation is crucial to several branches of engineering: aerospace,
mechanical, civil, and biomedical. Moreover, some newmaterials such as fiber-reinforced polymers and multi-
functional materials that exhibit high ductility have been widely used recently, for example, as infrastructural
materials or in medical devices (e.g., stents). In order to model these materials, the traditional small-strain
assumption will not be sufficient anymore.

In a nutshell, degradation means the loss in either serviceability or functionality. To be precise, a material
is said to be undergoing thermal degradation at a spatial point x ∈ 
 if the available energy density under
isothermal condition is lower than the reference available isothermal power at that particular point. That is,
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Similarly, the chemical/moisture degradation can be defined as follows:
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where A denotes the specific Helmholtz potential of the material,
 is the degrading body under consideration,
t is the time of interest, and ϑref and cref are the specified reference temperature and reference concentration,
respectively.Note that degradationnot only reduces the durability ofmaterials but also altersmaterial properties.
For instance, material damage can induce anisotropy in thermal conductivity and diffusivity [59,74,82].

Herein, we develop a coupled continuum mathematical model for thermal and chemical-induced degrada-
tion of solids, which are initially hyperelastic. We now outline three main reasons for such a need.

1. There is irrefutable experimental evidence that many modern infrastructural materials used in repair and
retrofitting applications exhibit large deformations. For example, the popular high-early-strength engineered
cementitious composites (ECC) are capable of delivering a compressive strength of 21 MPa within 4h after
placement. Moreover, the long-term tensile strain capacity of ECC members is more than 2% [45,76].

2. In order to understand degradation mechanisms due to moisture, chemical, and temperature, coupling at
various levels is needed (which is due to balance laws, material parameters, boundary conditions, and
initial conditions). With existing and popular multi-physics packages such ABAQUS [1], ANSYS [4],
and COMSOL [18], it is possible to couple certain degradation mechanisms to some extent at material
parameters, boundary conditions, and initial conditions. However, such packages do not offer flexibility to
couple important heat and mass transfer terms in balance laws. This is of utmost importance in capturing
the effects of chemo–thermo–mechano degradation.
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3. Finally, when a new model or a thermodynamic framework is developed, stability of the solutions for
the corresponding initial boundary value problem needs to be shown. However, such an analysis is rarely
performedwhen a new degradationmodel/framework is developed in the literature. Herein, for the proposed
degradation framework we shall perform stability analysis in the sense of Lyapunov. Subsequently, this
methodology shall be used to construct a robust computational framework in the part II of the paper.

Hence, due to the above reasons small-strain assumptions to model degradation and healing behavior of these
infrastructural systems are rarely valid. The proposed framework takes into account the underlying degradation
mechanisms.Correspondingly, the respective parameters have a physicalmeaning and canbe calibrated through
experiments.

It should be emphasized that elasticity is an idealization. There is no material whose response is perfectly
elastic. But there are situations in which the response of certain materials under normal conditions can be ide-
alized to be hyperelastic, for example, large blood arteries and rock. Many of these materials function in hostile
environments and are constantly subjected to adverse external stimuli. One often is interested in the unsteady
response of the bodies made of hyperelastic materials subjected to degradation/healing. The application areas
in mind are the response of high-performance cementitious materials (which undergo large strains and large
deformations) and several important coupled deformation–thermal-transport processes in biomechanics and
biomedicine. In the next couple of subsections, we shall discuss various degradation mechanisms and the
deficiencies in the existing frameworks in modeling chemo–thermo–mechano degradation.

1.1 Degradation mechanisms

There are many mechanisms that can result in the degradation of materials and structures. In general, the
degradation mechanisms can be divided into four categories: mechanical processes, chemical reactions, bio-
logical degradation [29], and radiation [39]. For mechanical processes, the performance of materials can be
affected adversely by fatigue [37], pressure loading [63], and swelling of solid mixtures [13]. Examples of
chemical degradation include humid and alkaline effects [8], exposure to chlorides and carbon dioxide [26],
and calcium leaching [25]. Biological degradation refers to the dissolution of materials by bacteria or other
microorganisms. Degradation induced by radiation includes radiation damage as well as other mechanical and
chemical processes triggered by radiation.

The coupling effects between these mechanisms can have a significant impact on the rate of deterioration
of materials and structures. For instance, see Table 1 for some important factors that affect the degradation
modeling in infrastructural materials such as concrete. Therefore, developing an appropriate and general model
for material degradation is useful to predict the life span of a given structure. A comprehensive understanding
of chemo–thermo–mechano degradation not only plays a pivotal role in improving the quality and reliability
of existing infrastructure, but also has a tremendous impact on the economy [34]. In this paper, we shall
assume that predominant degradation mechanisms are moisture and temperature. We propose a general three-
way strongly coupled degradation model based on a thermodynamic framework. This three-way coupling is
between mechanical, thermal, and chemical transport processes.

Table 1 Various degradation mechanics and their primary manifestation

Degradation factor Primary manifestation

Physical processes
Cracking Reduced durability
Vibration Cracking
Freezing and thawing Cracking/scaling/disintegration
Abrasion/erosion/cavitation Section loss
Thermal exposure/thermal cycling Cracking/spalling/strength loss
Chemical processes
Efflorescence/leaching Increased porosity
Phosphate Surface deposits
Sulfate attack Volume change/cracking
Acids/bases Disintegration/spalling/leaching
Alkali-aggregate reactions Disintegration/cracking

Many other factors can be found in [55] for cementitious materials and concrete structures
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1.2 Thermodynamics of chemo–thermo–mechano degradation

Herein, we shall provide a brief review and current status of thermal and chemical degradation. In the literature,
thermal degradation is modeled based on variants of thermo-elasticity by incorporating damage variables.
Some popular research works in this direction are [81] for modeling thermo-mechanical damage processes in
heterogeneous cementitious materials and [3] on the behavior of reinforced concrete slabs exposed to fire. On
the other hand, some popular research works for the chemical degradation are [8] on the environmental effects
of alkalinity and humidity on concrete slabs, [16] on moisture damage mechanisms occurring within asphaltic
materials and pavements, [11] on thermal andmoisture effects on structural stiffness and damping of laminated
composites, and [78,79] on fluid-induced damage and absorption in polymeric composites. However, none of
the above-mentioned papers on thermal or chemical degradation have a proper thermodynamic basis.

There are two popular approaches to constructing thermodynamically-consistent degradation models. The
first approach is based on the theory of the internal variable, wherein a scalar (or a tensor) variable is introduced
to model the degree of damage [27,63,69,77]. For instance, the damage variable may represent the measure
of the fraction of broken cross-links or micro-cracks in a representative volume element of the body [38,44,
75]. The main disadvantage of this approach is that it may not be always possible to measure the internal
variables through experiments or associate them to physical quantities/parameters. However, due to the recent
advances in experimental and characterization techniques (e.g., non-destructive experimental methods [24,28]
and digital image correlation techniques [61,71]) it is now possible to measure and assign physical meaning
to an internal variable in some scenarios. For instance, internal variable can correspond to fracture density in a
representative volume element of the body. In some very complicated problems (e.g., degradation of polymers
due to oxidation), an internal approach can have a distinctive advantage. In these complicated problems, it
may not be possible to include all the coupled physical and chemical processes, which can be either due to
lack of current understanding of various underlying processes or due to intractability of the resulting problem.
In such scenarios, the internal variable approach can offer a viable modeling approach.

The second approach is to build a thermodynamic framework by modeling all the relevant coupled
processes. This achieved by taking into account the dependence of material properties on the deformation of
the solid, temperature, and concentration of chemical species. The degradation parameters under this approach
have physical basis and can be calibrated using experiments (e.g., see Sect. 5 of this paper). Herein, we shall
employ the second approach to developing a thermodynamically-consistent degradation model. It should be
noted that certain research works exist in the literature wherein the degradation models using the second
approach, for example, see [21,40,41,53]. However, it appears that the above-cited works suffer from the main
drawback that they considered thermodynamics of chemo–thermo–mechano degradation in the context of a
closed system as opposed to an open system, which is the approach taken in this paper. For instance, div[�h]
and grad[�] • h are not taken into account in the aforementioned papers. These terms are responsible for mass
transfer in balance of energy and second law of thermodynamics [see Eqs. (2.16), (2.20) in Sect. 2]. In other
words, their treatment of mass transfer is pure mechanical. In strict sense, such a treatment does not fall under
open system thermodynamics.

1.3 Scope of the paper

The main contributions and the scope of the paper can be enumerated as follows:

1. We derive a general chemo–thermo–mechano degradation model by appealing to the maximization of rate
of dissipation. It will be shown that the proposed model can recover many popular models. For exam-
ple, Fickian model, Fourier model, Dufour–Soret model, thermo-elasticity, chemoelasticity [68], chemo–
thermo-elasticity [19,68], and the small-strain moisture degradation model proposed in [52] are all special
cases of the proposed model.

2. We calibrate the proposed degradation model (specifically, we calibrated for deformation-dependent dif-
fusivity) with an existing experimental data set available. The data set pertains to glass, which is a brittle
material. For this calibration case, thermal effects are not considered as the data for temperature and
deformation-dependent thermal conductivity is not available for glassy fibers (as per our knowledge). Such
a study is straightforward, whenever deformation-dependent conductivity data set is available. This calibra-
tion study should provide confidence in employing the proposed constitutive model to model degradation
of various brittle and quasi-brittle materials such as ceramics, glass fibers, and concrete.
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3. A systematic mathematical analysis is presented for the proposed model under large/finite deformations.
In particular, we shall show that the unsteady solutions under the proposed degradation model are bounded
and are stable in the sense of Lyapunov.

4. Last but not the least, semi-analytical solutions to several canonical problems are presented, which provide
insights into the behavior of degrading structural members. This is valuable for developing better design
and safety codes.

The rest of the paper is organized as follows. Section 2 introduces the notation, mathematical preliminaries,
and the relevant balance laws. Section 3 presents a mathematical model for degradation of materials due to
moisture and temperature, which is valid even under finite deformations and large strains. The constitutive
relations are obtained by appealing to the maximization of rate of dissipation hypothesis, which ensures that
the constitutive model satisfies the second law of thermodynamics a priori. In Sect. 4, the proposed model is
calibrated with an experimental data set. The coupled initial boundary value problem arising from the proposed
degradation model is presented in Sect. 5. We also show the solutions of the proposed mathematical model are
bounded and stable. In Sect. 6, solutions to several canonical problems are presented to illustrate the predictive
capabilities of the proposedmodel and to highlight the effects of degradation on the structural behavior. Finally,
conclusions are drawn in Sect. 7.

A list of the main symbols used in the paper is provided in the nomenclature.

2 Notation, preliminaries, and balance laws

Let us consider a body B. The body occupies a reference configuration 
0(B) ⊂ R
nd , where “nd” denotes

the number of spatial dimensions. A point in the reference configuration is denoted by p ∈ 
0(B). We
denote the time by t ∈ [0, T ], where T is the length of the time interval of interest. Due to motion, the
body occupies different spatial configurations with time. We denote the configuration occupied by the body
at time t by 
t (B) ⊂ R

nd . A corresponding spatial point will be denoted by x ∈ 
t (B). The gradient and
divergence operators with respect to p are, respectively, denoted by Grad[•] and Div[•]. Similarly, the gradient
and divergence operators with respect to x are, respectively, denoted by grad[•] and div[•].

The motion of the body is mathematically described by the following invertible mapping:

x = ϕ(p, t) (2.1)

The displacement vector field can then be written as:

u = x − p = ϕ(p, t) − p (2.2)

The velocity vector field is defined as:

v = ẋ := ∂ϕ(p, t)

∂t
(2.3)

where a superposed dot indicates the material/total time derivative, which is the derivative with respect to time
holding the reference coordinates fixed. The gradient of motion (which is also referred to as the deformation
gradient) is defined as:

F = Grad[x] ≡ ∂ϕ(p, t)

∂p
= I + Grad[u] (2.4)

where I denotes the second-order identity tensor. The corresponding right Cauchy–Green tensor is denoted
by:

C = FTF (2.5)

where (•)T denotes the transpose of a second-order tensor. The velocity gradient with respect to x and the
symmetric part of the velocity gradient are, respectively, defined as follows:

L := grad[v] ≡ ḞF−1 (2.6)

D := 1

2

(

L + LT) (2.7)
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The Green-St. Venant strain tensor is defined as:

E = 1

2
(C − I) = 1

2

(

Grad[u] + Grad[u]T + Grad[u]TGrad[u]) (2.8)

In those situations in which the following assumption holds:

max
p∈
0(B),t∈[0,T ]

√

‖ϕ(p, t) − p‖2 + ‖Grad[u]‖2 � 1 (2.9)

one is justified to employ the linearized strain tensor:

El = 1

2

(

Grad[u] + Grad[u]T) ≈ 1

2

(

grad[u] + grad[u]T) (2.10)

where ‖ • ‖ denotes the Frobenius norm [5].
Since we will also be dealing with processes other than the mechanical deformation, we need to introduce

quantities, which are in addition to the ones associatedwith the kinematics.Wewill denote the temperature byϑ
and the specific entropy by η. The mass fraction of the chemical species is denoted by c, and the corresponding
chemical potential is denoted by �. The temperature, mass fraction of chemical species, entropy, and chemical
potential are all scalar fields, while the displacement, velocity, and acceleration are vector fields. In some
situations, it may be needed to explicitly indicate the functional dependence of these quantities. We employ a
standard notation, whichwill be illustrated through the temperature field. The temperature in terms of reference
coordinates and spatial coordinates will be denoted as follows:

ϑ = ϑ̃(p, t) = ϑ̂(x, t) (2.11)

2.1 Balance laws

In our study, we take the entire degrading body to be the thermodynamic system. Moreover, we assume this
thermodynamic system to be open. That is, heat and mass transfers can occur across the boundary of the
system. We now document the balance laws that govern the evolution of the chosen system.

The balance of mass for the solid in the degrading body takes the following form:

ρ̇ + ρ div[v] = 0 (2.12)

where ρ is the density of the solid in the deformed configuration 
t (B). The balance of a chemical species,
which is being transported in the degrading body, can be mathematically written as:

ρċ + div[h] = h (2.13)

where h is the mass transfer flux vector in the deformed configuration and h is the volumetric source of
the chemical species in the deformed configuration. We assume that the chemical species cannot take partial
stresses, which is a reasonable assumption in the degradation of materials due to small concentrations of
moisture. One can handle large moisture contents by introducing partial stresses and using the theory of
interacting continua (which is often referred to mixture theory) [12]. We do not address such issues, as our
focus is degradation due to small concentrations of moisture or chemicals. The balance of linear momentum
for the solid can be written as:

ρv̇ = div[T] + ρb (2.14)

where b is the specific body force and T is the Cauchy stress in the solid. Assuming that there is no internal
couples, the balance of angular momentum of the solid reads:

T = TT (2.15)

Assuming that the balance of linear and angular momenta (i.e., Eqs. (2.14), (2.15)) holds, the balance of energy
of the system (i.e., the first law of thermodynamics) can be written as:

ρ
d

dt
(A + ϑη) = T • D − div[�h] + �h − div[q] + q (2.16)
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where A is the specific Helmholtz potential, q is the heat flux vector in the deformed configuration, and q is
the volumetric heat source in the deformed configuration. In our study, we assume the Helmholtz potential
A to depend on F, c and ϑ . We also have the following relations for the chemical potential and the specific
entropy:

� := +∂A

∂c
(2.17)

η := −∂A

∂ϑ
(2.18)

Assuming the balance of chemical species to hold, we then have the following convenient form for the balance
of energy:

ρ

(
∂A

∂F
FT • D + ϑη̇

)

= T • D − div[q] − grad[�] • h + q (2.19)

The reduced energy dissipation equation (by assuming that all the aforementioned balance laws to hold) takes
the following form:

ρ

(
∂A

∂F
FT • D

)

= T • D − 1

ϑ
grad[ϑ] • q − grad[�] • h − ρζ, ζ ≥ 0 (2.20)

where ζ is the specific rate of dissipation functional, which is non-negative. The above equation is a stronger
version than the second law of thermodynamics, which is an integral inequality. The second law of thermo-
dynamics does not assert that the rate of entropy production be non-decreasing at each and every point in the
system/body.

2.2 The maximization of rate of dissipation

Among the various methodologies to derive constitutive relations (e.g., see [48]), the maximization of rate of
dissipation hypothesis put forth by Ziegler [83] is an attractive procedure. Herein, we extend this procedure
to the open thermodynamic system that is under consideration. We obtain the constitutive relations using the
maximization of rate of dissipation hypothesis, which needs the prescription of two functionals—theHelmholtz
potential and the dissipation functional. We assume the functional dependence of the Helmholtz potential and
the dissipation functional to be Â(F, c, ϑ) and ζ̂ (D, grad[ϑ], grad[�];F, ϑ, c).

The mathematical statement of the maximization of rate of dissipation can be written as follows:

maximize
D,grad[ϑ],grad[�] ρζ = ρζ̂ (D, grad[ϑ], grad[�];F, ϑ, c) (2.21a)

subject to ρ

(
∂A

∂F
FT • D

)

= T • D − 1

ϑ
grad[ϑ] • q − grad[�] • h − ρζ (2.21b)

Note thatρζ ismaximizedwith respect to arguments to the left of “;.”Using themethodofLagrangemultipliers,
the above-constrained optimization problem is equivalent to the following unconstrained optimization problem:

extremize
D,grad[ϑ],grad[�],�t

ρζ̂ (D, grad[ϑ], grad[�];F, ϑ, c)

+ �t

(

ρ

(
∂A

∂F
FT • D

)

− T • D + 1

ϑ
grad[ϑ] • q + grad[�] • h + ρζ

)

(2.22)

where �t is the Lagrange multiplier enforcing the constraint (2.21b). The first-order optimal conditions give
rise to the following relations:

T = ρ
∂A

∂F
FT +

(
1 + �t

�t

)

ρ
∂ζ

∂D
(2.23a)

1

ϑ
q = −

(
1 + �t

�t

)

ρ
∂ζ

∂grad[ϑ] (2.23b)
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h = −
(
1 + �t

�t

)

ρ
∂ζ

∂grad[�] (2.23c)

ρ

(
∂A

∂F
FT • D

)

− T • D + 1

ϑ
grad[ϑ] • q + grad[�] • h + ρζ = 0 (2.23d)

The above equations can be obtained by taking (Gâteaux) variation of the objective function in Eq. (2.22) with
respect toD, grad[ϑ], grad[�], and�t , respectively. By straightforwardmanipulations on Eqs. (2.23a)–(2.23d),
the Lagrange multiplier �t can be explicitly calculated as follows:

�t =
[

ζ

∂ζ
∂D • D + ∂ζ

∂grad[ϑ] • grad[ϑ] + ∂ζ
∂grad[�] • grad[�] − 1

]−1

(2.24)

If the rate of dissipation functional ζ is a homogeneous functional of order two with respect to D, grad[ϑ],
and grad[�], we then have

∂ζ

∂D
• D + ∂ζ

∂grad[ϑ] • grad[ϑ] + ∂ζ

∂grad[�] • grad[�] = 2ζ (2.25)

which further implies that �t = −2. The constitutive relations under �t = −2 will simplify to:

T = ρ
∂A

∂F
FT + 1

2
ρ

∂ζ

∂D
(2.26a)

q = −ϑ

2
ρ

∂ζ

∂grad[ϑ] (2.26b)

h = −1

2
ρ

∂ζ

∂grad[�] (2.26c)

It should be emphasized that the dissipation functional need not be a homogeneous functional of order two
in terms of F, c and ϑ . The maximization of the rate of dissipation hypothesis certainly does not require such
an assumption. However, we will make such an assumption in Sect. 3, as it is convenient and the resulting
constitutive relations can still model the desired degradation mechanisms.

2.3 Governing equations in the reference configuration

Since we are also interested in developing a computational framework and obtaining numerical solutions, it
will be convenient to write the balance laws in the reference configuration. To this end, we introduce:

J ≡ det[F] (2.27)

where det[•] denotes the determinant. The balance of mass in the reference configuration can be written as:

ρ0 = Jρ (2.28)

where ρ0 is the density of the undeformed solid. The balance of chemical species in the reference configuration
can be rewritten as:

ρ0ċ + Div[h0] = h0 (2.29)

where h0 = JF−1h is the diffusive flux vector in the reference configuration and h0 = Jh is the volumetric
source in the reference configuration. The balance of linear momentum in the reference configuration takes
the following form:

ρ0v̇ = Div[P] + ρ0b (2.30)

where P = JTF−T is the first Piola–Kirchhoff stress. The balance of angular momentum in the reference
configuration takes the following form:

PFT = FPT (2.31)
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In the reference configuration, the balance of energy can be written as:

ρ0

(
∂A

∂F
• Ḟ + ϑη̇

)

= P • Ḟ − Div[q0] − Grad[�] • h0 + q0 (2.32)

where q0 = JF−1q is the heat flux vector in the reference configuration and q0 = Jq is the volumetric heat
source in the reference configuration. The reduced energy dissipation equation in the reference configuration
can be rewritten as:

ρ0

(
∂A

∂F
• Ḟ
)

= P • Ḟ − 1

ϑ
Grad[ϑ] • q0 − Grad[�] • h0 − ρ0ζ0 (2.33)

where ζ0 = ζ is the non-negative rate of dissipation functional in the reference configuration.

2.3.1 Maximization of rate of dissipation in the reference configuration

The corresponding mathematical statement can be written as follows:

maximize
Ḟ,Grad[ϑ],Grad[�]

ρ0ζ0 = ρ0ζ̃ (Ḟ,Grad[ϑ],Grad[�];F, ϑ, c) (2.34a)

subject to ρ0

(
∂A

∂F
• Ḟ
)

= P • Ḟ − 1

ϑ
Grad[ϑ] • q0 − Grad[�] • h0 − ρ0ζ0 (2.34b)

Using the method of Lagrange multipliers, one can obtain the following equivalent unconstrained optimization
problem:

extremize
Ḟ,Grad[ϑ],Grad[�],�0

ρ0ζ̃ (Ḟ,Grad[ϑ],Grad[�];F, ϑ, c)

+ �0

(

ρ0

(
∂A

∂F
• Ḟ
)

− P • Ḟ + 1

ϑ
Grad[ϑ] • q0 + Grad[�] • h0 + ρ0ζ0

)

(2.35)

where �0 is the Lagrange multiplier enforcing the constraint given by Eq. (2.34b). The first-order optimality
conditions give rise to the following constitutive relations:

P = ρ0
∂A

∂F
+
(
1 + �0

�0

)

ρ0
∂ζ0

∂Ḟ
(2.36a)

1

ϑ
q0 = −

(
1 + �0

�0

)

ρ0
∂ζ0

∂Grad[ϑ] (2.36b)

h0 = −
(
1 + �0

�0

)

ρ0
∂ζ0

∂Grad[�] (2.36c)

ρ0

(
∂A

∂F
• Ḟ
)

− P • Ḟ + 1

ϑ
Grad[ϑ] • q0 + Grad[�] • h0 + ρ0ζ0 = 0 (2.36d)

Similar to the derivation presented earlier in the context of current configuration, the Lagrange multiplier �0
can be explicitly calculated as follows:

�0 =
[

ζ0
∂ζ0
∂Ḟ

• Ḟ + ∂ζ0
∂Grad[ϑ] • Grad[ϑ] + ∂ζ0

∂Grad[�] • Grad[�] − 1

]−1

(2.37)

If the rate of dissipation functional in the reference configuration ζ0 is a homogeneous functional of order two,
we have

∂ζ0

∂Ḟ
• Ḟ + ∂ζ0

∂Grad[ϑ] • Grad[ϑ] + ∂ζ0

∂Grad[�] • Grad[�] = 2ζ0 (2.38)

which further implies that �0 = −2. The constitutive relations under �0 = −2 take the following form:

P = ρ0
∂A

∂F
+ 1

2
ρ0

∂ζ0

∂Ḟ
(2.39a)
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Helmholtz potential Rate of dissipation
functional

Maximization of rate
of dissipation

Stress Heat flux Diffusion flux

Balance of mass Balance of linear
momentum

Balance of
energy

Balance of
chemical species

Evolution
equation for α

Displacement, temperature,
concentration, and internal variable

Solve coupled equations

Fig. 1 Overarching idea of the proposed degradation framework: This flowchart shows the overarching idea behind the proposed
framework. We appeal to the maximization of rate of dissipation hypothesis to obtain constitutive relations for the stress, heat
flux, diffusion flux, and evolution equation for an internal variable. By solving the resulting coupled equations (i.e, balance laws,
constitutive relations, and boundary and initial conditions), one can obtain the displacement, temperature, concentration, and
internal variable fields

q0 = −ϑ

2
ρ0

∂ζ0

∂Grad[ϑ] (2.39b)

h0 = −1

2
ρ0

∂ζ0

∂Grad[�] (2.39c)

The overarching idea behind the proposed chemo–thermo–mechano degradation model is shown in Fig. 1.
In the next section, we will develop the proposed constitutive model by appealing to the maximization of rate
of dissipation.

3 A general constitutive model for chemo–thermo–mechano degradation

Under themaximization of rate of dissipation hypothesis, the constitutive relations can be obtained by prescrib-
ing two functionals—the Helmholtz potential and the dissipation functional. Philosophically, the Helmholtz
potential quantifies the way in which the material stores energy, whereas the dissipation functional quantifies
theway inwhich thematerial dissipates energy. For our proposed chemo–thermo–mechano degradationmodel,
we prescribe the following functional forms for the specific Helmholtz potential and the rate of dissipation
functional:

A = Â(F, c, ϑ) = 1

ρ0
ψ − 1

2

cp
ϑref

{ϑ − ϑref}2 − 1

ρ0
{ϑ − ϑref}MϑE • E

+ dϑc {ϑ − ϑref} {c−cref}− 1

ρ0
{c−cref}McE • E + Rsϑref

2
{c − cref}2 (3.1)

ζ = ζ̂ (D, grad[ϑ], grad[�];F, ϑ, c) = cp
ϑ
grad[ϑ] • Dϑϑgrad[ϑ] + 1

ϑ
grad[ϑ] • Dϑ�grad[�]

+ 1

ϑ
grad[�] • D�ϑgrad[ϑ] + 1

Rsϑref
grad[�] • D��grad[�] (3.2)

where Rs = R/M . Rs and R denote the specific vapor constant and the universal vapor constant, respectively,
M is themolecular mass of chemical species. ϑref and cref are the specified reference temperature and reference
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mass concentration, which depend on the underlying boundary value problem. We denote cp as the coefficient
of heat capacity, dϑc as the thermo-chemo coupled parameter [68],MϑE as the anisotropic coefficient of thermal
expansion (which is assumed to be independent of temperature, concentration, and strain), and McE as the
anisotropic coefficient of chemical expansion due to concentration (which is also assumed to be independent
of temperature, concentration, and strain). Both MϑE and McE are assumed to be symmetric. Dϑϑ is the
anisotropic thermal conductivity tensor and D�� is the anisotropic diffusivity tensor. Dϑ� corresponds to the
anisotropic Soret effect tensor, which characterizes the transport of chemical species caused by temperature
gradient. Similarly, D�ϑ is the Dufour effect tensor, which represents the heat flow caused by a concentration
gradient.

Remark 3.1 In chemo–thermo-elasticity and inmodeling degradation ofmaterials due to transport and reaction
of chemical species, coefficient of chemical expansion McE and thermo-chemo coupling parameter dϑc play
a vital role (see [68, Chapter-5] and references therein). Induced strains due to chemical expansivity will
be significant in harsh environmental conditions and cannot be neglected [68]. Considerable inquest has been
made in the literature to experimentally measureMcE in ceramics [2,9,51], laminated and polymer composites
[10,14,68], elastomers and biological materials [32,43,54], and concrete structures [15,72,73]. However,
adequate progress has not been made yet to develop constitutive models and computational frameworks for
such chemo–thermo-elastic materials or materials undergoing chemical-induced degradation. Herein, we shall
take a step forward to address this issue.

Remark 3.2 It should be noted that in the absence of electrical and magnetic fields, all of the above tensors
are symmetric [12,19,36]. Moreover, from the Onsager reciprocal relations (which was put forth by Onsager
in 1930s [57,58]) we have the following relationship between the Soret effect tensor and the Dufour effect
tensor.

Dϑ� = D�ϑ (3.3)

Additionally, physics demands that the tensors Dϑϑ and D�� are positive definite.

Remark 3.3 Note that the specific Helmholtz potential and correspondingly the dissipation functional for
diffusion can also be modeled using the following expressions:

Ac = Rsϑrefc{ln[c] − 1} (3.4)

ζc = c

Rsϑref
grad[�] • D��grad[�] (3.5)

Both Eqs. (3.1)–(3.2) and (3.4)–(3.5) result in similar partial differential equation structure for modeling
Fickian diffusion.

Under the proposed model, the specific entropy and chemical potential take the following form:

η = −∂A

∂ϑ
= − 1

ρ0

∂ψ

∂ϑ
+ cp

ϑref
{ϑ − ϑref} + 1

ρ0
MϑE • E − dϑc{c − cref} (3.6)

� = ∂A

∂c
= 1

ρ0

∂ψ

∂c
+ Rsϑref{c − cref} − 1

ρ0
McE • E + dϑc{ϑ − ϑref} (3.7)

From Eqs. (2.26a)–(2.26c), we have the constitutive relations in deformed configuration as:

T = ρ
∂A

∂F
FT = 1

J

∂ψ

∂F
FT − 1

J
{ϑ − ϑref}FMϑEFT − 1

J
{c − cref}FMcEFT (3.8a)

q = −ϑ

2
ρ

∂ζ̂

∂grad[ϑ] = −ρcpDϑϑgrad[ϑ] − ρ

2
Dϑ�grad[�] − ρ

2
D�ϑgrad[�] (3.8b)

h = −1

2
ρ

∂ζ̂

∂grad[�] = − ρ

Rsϑref
D��grad[�] − ρ

2ϑ
Dϑ�grad[ϑ] − ρ

2ϑ
D�ϑgrad[ϑ] (3.8c)
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The rate of dissipation functional for the degradation model in the reference configuration is taken as follows:

ζ = ζ̃ (Ḟ,Grad[ϑ],Grad[�];F, ϑ, c)

= cp
ϑ
Grad[ϑ] • DϑϑGrad[ϑ] + 1

ϑ
Grad[ϑ] • Dϑ�Grad[�]

+ 1

ϑ
Grad[�] • D�ϑGrad[ϑ] + 1

Rsϑref
Grad[�] • D��Grad[�] (3.9)

where Dαβ = F−1DαβF−T , in which α and β represent ϑ or �. Correspondingly, the constitutive relations in
the reference configuration take the following form:

P = ρ0
∂A

∂F
= ∂ψ

∂F
− {ϑ − ϑref}FMϑE − {c − cref}FMcE (3.10a)

q0 = −ϑ

2
ρ0

∂ζ̃

∂Grad[ϑ] = −ρ0cpDϑϑGrad[ϑ] − ρ0

2
Dϑ�Grad[�] − ρ0

2
D�ϑGrad[�] (3.10b)

h0 = −1

2
ρ0

∂ζ̃

∂Grad[�] = − ρ0

Rsϑref
D��Grad[�] − ρ0

2ϑ
Dϑ�Grad[ϑ] − ρ0

2ϑ
D�ϑGrad[ϑ] (3.10c)

3.1 Coupling terms for the degradation model

The following hyperelastic material models will be employed in this paper:

ψ = λ

2
(tr[E])2 + μE • E St. Venant-Kirchhoff model (3.11a)

ψ = κ

2
(ln[J ])2 + μE • E Modified St. Venant-Kirchhoff model (3.11b)

ψ = μtr[E] + μln[J ] + λ

2
(ln[J ])2 Neo-Hookean model (3.11c)

where ψ is the stored strain energy density functional, λ and μ are the Lamé parameters, and κ = λ + 2μ
3

is the bulk modulus. Recall that J = det[F]. The Lamé parameters in the degrading model are given by the
following expressions:

λ(x, c) = λ0(x) − λ1(x)
c

cref
− λ2(x)

ϑ

ϑref
(3.12a)

μ(x, c) = μ0(x) − μ1(x)
c

cref
− μ2(x)

ϑ

ϑref
(3.12b)

where λ0 and μ0 are the Lamé parameters of the virgin material. λ1 and μ1 are the parameters that account
for the effect of concentration of chemical species on degradation of solid. λ2 and μ2 are the parameters that
account for the temperature effect on the degrading solid. It should be noted that λ1, μ1, λ2, and μ2 are all
positive. Furthermore, these parameters are constrained such that the bulk modulus and shear modulus are
strictly positive.

3.1.1 Deformation-dependent diffusivity

The effect of deformation on diffusivity is modeled as follows:When tensile and shear strains are predominant,
we have the following constitutive model

D�� = D0 + (DT − D0)
(exp[ηT IE] − 1)

(exp[ηT ErefT ] − 1)
+ (DS − D0)

(exp[ηS I IE] − 1)

(exp[ηS ErefS] − 1)

+ (DMS − D0)
(exp[ηMS I I IE] − 1)

(exp[ηMSErefMS] − 1)
(3.13)
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where IE, I IE, and I I IE are the first, second, and third invariants of the Green-St. Venant strain tensor,
respectively. These are defined as follows:

IE := tr[E] (3.14a)

I IE := √

2 dev[E] • dev[E] =
√

2

3
(3tr[E2] − (tr[E])2) (3.14b)

I I IE := det

[
1

I IE
dev[E]

]

(3.14c)

where dev[E] := E − 1
3 tr[E]I is the deviatoric part of E. These invariants are used to model the effect of

dilation, magnitude of distortion, and mode of distortion on the diffusivity of the solid. ηT , ηS , and ηMS are
non-negative parameters. ErefT , ErefS , and ErefMS are reference measures of the tensile strain, shear strain,
and mode of shear strain, respectively.D0,DT ,DS , andDMS are, respectively, the reference diffusivity tensors
under no strain, tensile strain, and shear strain.

When compression and shear strains are predominant, deformation-dependent diffusivity is modeled as
follows:

D�� = D0 + (D0 − DC )
(exp[ηT IE] − 1)

(exp[ηT ErefT ] − 1)
+ (DS − D0)

(exp[ηS I IE] − 1)

(exp[ηS ErefS] − 1)

+ (DMS − D0)
(exp[ηMS I I IE] − 1)

(exp[ηMSErefMS] − 1)
(3.15)

where ηC is a non-negative parameter, ErefC is a reference measure of the compression strain, and DC is the
reference diffusivity tensor under compressive strain.

Remark 3.4 Note that deformation-dependent diffusivity given by Eqs. (3.13) and (3.15) can be constructed
using a different set of invariants of a given strain tensor. These invariants can be either principal or Hencky
type [20,46,62] based on the nature of material and associated experimental data. The proposed framework
can accommodate such models with minor modifications.

In case of transversely isotropic materials with fibers running along the direction Mt f , the following
invariants are needed to model deformation-dependent diffusivity in addition to the invariant set given by
Eqs. (3.14a)–(3.14c)

I VE := Mt f • EMt f (3.16a)

VE := Mt f • E2Mt f (3.16b)

For more details on selection of invariants for transversely isotropic or orthotropic materials, see [35,46,56].

3.1.2 Deformation-dependent thermal conductivity

The effect of deformation of the solid on thermal conductivity is modeled as follows [7]:

Dϑϑ = K0ϑ(1 + IE)−δ (3.17)

where δ is a non-negative parameter. K0ϑ is the reference conductivity tensor under no strain. Based on
molecular dynamics simulations, Bhowmick and Shenoy [7] suggested δ to be 9.59 and K0ϑ = 4.61ϑ−1.45

(for certain brittle-type materials). For various other ductile or brittle-type materials, these parameters can be
determined by experiments or can be constructed using Lennard–Jones potential in molecular dynamics.

Remark 3.5 Due to the lack of experimental data, we assume that Dufour and Soret tensors do not depend on
the deformation of solid. However, it should be noted that the proposed thermodynamic and computational
framework can accommodate deformation-dependent Dufour and Soret tensors with minor modifications
(whenever such an experimental evidence is available).
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Thermal degradation

Proposed chemo-thermo-mechano
degradation model

No degradationNo diffusion Isothermal

Chemo-thermo-
elasticity
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Thermo-elasticity Hyper-elasticity Dufour-Soret
model

Chemo-elasticity

No deformation Small strain No deformation

Fourier model Linear elasticity Fickian model

Assumption

Model

Fig. 2 Special cases of the proposed chemo–thermo–mechano degradation model: Many existing degrading and non-degrading
constitutive models are special cases of the proposed hierarchical model, with appropriate assumptions

3.2 Special cases of the general degradation model and their thermodynamic status

The following popular non-degradation constitutive models can be shown as special cases of the proposed
degradation model, as shown in Fig. 2, when the material parameters are assumed to be independent of
concentration, temperature, and deformation of the solid. That is, the Lamé parameters and Dαβ (α and β
represent either ϑ or �) are independent of c, ϑ , and E.
1. Fourier and Fickian models: The standard heat conduction constitutive model is obtained by

assuming the solid to be rigid and mass concentration of diffusing chemical species to be equal to zero.
Similarly, to recover the standard Fickian model we assume the solid to be rigid and temperature of the
homogenized body to be constant.

2. Dufour–Soret model: This model is obtained by assuming the solid to be rigid. Furthermore, the
thermo-chemo coupling parameter dϑc is neglected.

3. Linearized elasticity and hyperelasticity:Toobtain hyperelastic constitutivemodels,
we assume isothermal conditions and mass concentration of diffusing chemical species to be equal to zero.
The linearized elasticity model can be recovered from any given hyperelastic model by assuming that the
small-strain assumption given by Eq. (2.9) holds.

4. Thermo-elasticity: The standard thermo-elasticity model can be recovered by assuming mass
concentration of diffusing chemical species to be equal to zero. The material parameters are assumed to
be independent of temperature and deformation.

5. Chemoelasticity: Similarly, the standard chemoelasticity model can be recovered by assuming
isothermal conditions. The material parameters are assumed to be independent of concentration and defor-
mation.

6. Chemo-Thermo-elasticity: Herein, we assume that the material parameters are independent of
concentration, temperature, and deformation. In addition, thermo-chemo coupling parameter dϑc, Dufour
tensor, and Soret tensor are neglected.

One can also derive specialized (thermo-mechano and chemo-mechano) degradation models:

1. Thermo-mechano degradation model:Thismodel is obtained from the thermo-elasticity model
by relaxing the assumption that material parameters are independent of temperature and deformation.
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2. Chemo-mechano degradation model: Similar to thermo-mechano degradation model, this
degradation model is obtained from the chemoelasticity model by relaxing the assumption that mater-
ial parameters are independent of concentration and deformation.

3.2.1 Status of the degradation model in [52]

The small-strain chemo-mechano degradation model proposed in [52] is a special case of the proposed chemo–
thermo–mechano degradation and can be obtained under a plethora of assumptions. These assumptions include
steady-state response, small strains, and isothermal conditionswith negative volumetric heat source in the entire
degrading body. One also needs to neglect chemo–thermo, chemo–mechano, and thermo–mechano couplings.
Moreover, the functional forms of the specific Helmholtz potential and rate of dissipation functional need to
be:

A = 1

ρ
ψ + Rsϑref

2
{c − cref}2 (3.18)

ζ = 1

Rsϑref
grad[�] • D��grad[�] (3.19)

where the stored strain energy density functional is given by:

ψ = ψ̂(El , c) = λ(c)

2
(tr[El ])2 + μ(c)El • El (3.20)

Under the small-strain assumption given by Eq. (2.9), the Cauchy stress, chemical potential, and mass transfer
flux vector can be written as:

T = ρ
∂A

∂El
= λ(c)tr[El ]I + 2μ(c)El (3.21)

� = ∂A

∂c
= Rsϑref{c − cref} (3.22)

h = −1

2
ρ

∂ζ̂

∂grad[�] = − ρ

Rsϑref
D��grad[�] (3.23)

The balance of chemical species and the balance of linear momentum for the solid are given by Eqs. (2.13)
and (2.14). Under the isothermal condition, the balance of energy simplifies to the following expression:

q = − ρ

Rsϑref
grad[�] • D��grad[�] (3.24)

which means that q needs to be non-positive in order to maintain the isothermal condition. The deformation-
dependent diffusivity D�� is based on the small-strain assumption, which is obtained by linearizing the
Eqs. (3.13) and (3.15). Note that this model is developed based on the experimental evidence that the rel-
ative diffusion rate varies exponentially with respect to the trace of strain [49,50]. In this paper, we have taken
a step further to calibrate these materials parameters according to the experimental data for finite strains based
on the model given by Eqs. (3.13) and (3.15).

4 Calibration with experimental data

In this section, we will calibrate the proposed model for the diffusivity using the experimental data set reported
in [49,50]. These experiments were conducted on spherical shells made of glass, which is a brittle material.
These papers report the variation of diffusivity under various deformation modes: tension, compression, and
shear. The calibration study presented below, which also includes a statistical analysis of the fit, will be valuable
in two ways. First, it demonstrates the predictive capabilities of the proposed constitutive model and provides
confidence in the model to be able to apply to other brittle materials like ceramics and even to quasi-brittle
materials like concrete with appropriate modifications. Second, it provides order-of-magnitude estimates for
various parameters in the diffusivity model for realistic materials. This will guide in the selection of values for
these parameters in the subsequent numerical studies.
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pi
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0.01

Fig. 3 Calibration with experimental data: A pictorial description of the degrading shell used for calibrating the proposed model
with the experimental data. The inner pressure varies in the range of 0 to 100 psi. Experiments measure the change in diffusivity
as well as the strain of the thin spherical shell. The obtained data can be used to calibrate the proposed model
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Fig. 4 Calibration with experimental data: This figure compares the experimental data reported in [49,50] with the proposed
constitutivemodel. The sample size is taken to be three. The strain invariants are given by Eqs. (3.14a)–(3.14b). A good agreement
has beenobserved between the experimental data and the proposed constitutivemodel for the diffusivity under tensile, compressive,
and shear strains

Figure 3 provides the geometry and the loading on a spherical shell. The inner and outer radii are, respec-
tively, ri = 0.99 and ro = 1.0. The boundary conditions for the deformation subproblem are that the pressure
within the sphere is varied from pi = 0 to pi = 0.68947MPa (100 psi) and the external surface is traction free.
The diffusion can be assumed to be isotropic; therefore, the diffusivity tensor is simplified to a scalar. In this
scenario, it can be assumed that the tensile strain is predominant. Hence, the shear-related terms in Eq. (3.13)
can be ignored and then it can be simplified as follows:

D = D0 + (DT − D0)
(exp[ηT IE] − 1)
(

exp[ηT ErefT ] − 1
) (4.1)

The sample size to estimate the parameters in the proposed deformation-diffusivity model has been taken to be
three. It has been reported that D0 = 7.26× 10−13 m2/s for glass fibers by [49]. Based on the chosen sample
size and value of D0, the estimated diffusivity parameters are given as follows:

ηT = 1.43 × 104, DT = 23.39 × 10−13 m2/s, ErefT = 1.833 × 10−3 (4.2)

Using the experimental data reported in [50] under compressive and shear strains, and following a similar
procedure as before, the following diffusivity parameters are obtained:

ηC = 401.19, DC = 8.66 × 10−13 m2/s, ErefC = 1.0 × 10−3 (4.3a)

ηS = −239.61, DS = 8.65 × 10−13 m2/s, Eref S = 3.0 × 10−3 (4.3b)

We then compared the proposed model (which is obtained based on sample size of 3 points) with the
experimental data set of 10 points. Figure 4 shows the relation between the relative diffusion coefficient D/D0
and various strain invariants. From this figure, it is evident that the proposed model is in a good agreement
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Table 2 A statistical analysis of the fit

Sample size Mean data Standard deviation data Coefficient of determination

Tension Compression Shear Tension Compression Shear Tension Compression Shear

10 1.507 1.093 1.114 0.526 0.073 0.068 0.988 0.999 0.997
25 1.505 1.094 1.108 0.511 0.062 0.065 0.986 0.999 0.997
50 1.521 1.095 1.107 0.515 0.062 0.062 0.987 0.999 0.997
75 1.391 1.097 1.115 0.468 0.062 0.059 0.984 0.999 0.997

This table provides the goodness of fit of the proposed model with the experimental data set reported in [49,50]. Analysis is
performed for various extracted sample sizes and under tension, compression, and shear strains. It is observed that the coefficient
of determination is close to unity

with the experimental data. Table 2 provides a statistical analysis on the fit of the experimental data with the
proposed model. The coefficient of determination is close to unity. This means that the proposed model based
on parameter set given by Eqs. (4.2)–(4.3b) is a good fit to the set of experimental data of various sample sizes.
To calibrate DMS , ηMS , and ErefMS , we need additional experimental data related to mode of shear. However,
such a data set to calibrate the effect of distortion due to shear on the diffusivity of glass is currently not
available in the literature. Therefore, we did not calibrate DMS , ηMS , and ErefMS . However, one can calibrate
these parameters in a similar fashion as discussed earlier once the required experimental data are available.

5 Initial boundary value problem and mathematical analysis

From the above statements, the governing equations for the proposed chemo–thermo–mechano degrading
model are stated as follows. Let the boundary of 
0(B) be denoted as ∂
0 and the corresponding unit
outward normal to this boundary be denoted by n̂0(p). Similarly, ∂
t denotes the boundary of 
t (B) and the
corresponding unit outward normal to this boundary is denoted by n̂(x, t). For the deformation subproblem, the
boundary is divided into two complementary parts: �D

u and �N
u such that �D

u ∪ �N
u = ∂
0 and �D

u ∩ �N
u = ∅.

�D
u is the part of the boundary on which displacement is prescribed and �N

u is the part of the boundary on
which traction is prescribed.

Similarly, for the transport and thermal subproblem, the boundary is divided into complementary parts:
�D
c and �N

c and �D
ϑ and �N

ϑ such that �D
c ∪ �N

c = ∂
0, �D
ϑ ∪ �N

ϑ = ∂
, �D
c ∩ �N

c = ∅, and �D
ϑ ∩ �N

ϑ = ∅.
�D
c is the part of the boundary on which concentration is prescribed. �N

c is the part of the boundary on which
total/diffusive flux is prescribed. �D

ϑ is the part of the boundary on which temperature is prescribed. �N
ϑ is the

part of the boundary on which thermal flux is prescribed. In case of steady-state analysis, it should be noted
that the meas

(

�D
c

)

> 0, meas
(

�D
ϑ

)

> 0, and meas
(

�D
u

)

> 0. However, such a condition is not required for
studying transient problems.

5.1 Governing equations of the proposed model

The governing equations for the deformation subproblem take the following form:

ρ0v̇(p, t) = Div[P] + ρ0b(p, t) in 
0×]0, I[ (5.1a)

u(p, t) = up(p, t) on �D
u ×]0, I[ (5.1b)

Pn̂0(p) = tp(p, t) on �N
u ×]0, I[ (5.1c)

u(p, t = 0) = ui(p) in 
0 (5.1d)

v(p, t = 0) = vi(p) in 
0 (5.1e)

where up(p, t) denotes the prescribed displacement on the boundary and tp(p, t) is the prescribed traction on
the boundary. ui(p) and vi(p) are the initial conditions for the displacement and velocity, respectively.

The governing equations for the transport subproblem take the following form:

ρ0ċ(p, t) + Div[h0] = h0(p, t) in 
0×]0, I[ (5.2a)

c(p, t) = cp(p, t) on �D
c ×]0, I[ (5.2b)
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h0 • n̂0(p) = hp(p, t) on �N
c ×]0, I[ (5.2c)

c(p, t = 0) = ci(p) in 
0 (5.2d)

where cp(p, t) denotes the prescribed concentration on the boundary, hp(p, t) is the prescribed total/diffusive
flux on the boundary, and ci(p) is the initial condition for the concentration field.

The governing equations for the thermal subproblem take the following form:

ρ0ϑ(p, t)η̇ = −Div[q0] − Grad[�] • h0 + q0(p, t) in 
0×]0, I[ (5.3a)

ϑ(p, t) = ϑp(p, t) on �D
ϑ ×]0, I[ (5.3b)

q0 • n̂0(p) = qp(p, t) on �N
c ×]0, I[ (5.3c)

ϑ(p, t = 0) = ϑ i(p) in 
0 (5.3d)

where ϑp(p, t) denotes the prescribed temperature on the boundary, qp(p, t) is the prescribed heat flux on the
boundary, and ϑ i(p) is the initial condition for the temperature field.

5.2 On the stability of unsteady solutions

We now show that the unsteady solutions under the proposed mathematical model for degradation are stable
in the sense of a dynamical system. There are different notions of stability, and herein we shall establish the
stability in the sense ofLyapunov [22]. For the entire analysis presented in this section,we assumehomogeneous
Dirichlet boundary conditions on the entire boundary for the diffusion and thermal subproblems. Let

χ :=

⎧

⎪⎨

⎪⎩

ϕ
v
ϑ
c

⎫

⎪⎬

⎪⎭

(5.4)

Consider the following functional, which is defined on the reference configuration:

V(χ) :=
∫


0(B)

ρ0

(

A + ϑη + 1

2
v • v

)

d
0 + �mech,ext(ϕ) (5.5)

where �mech,ext(ϕ) is the potential energy due to external mechanical loading, which is assumed to be con-
servative. This implies the following

d

dt
�mech,ext(ϕ) = −

∫


0(B)

ρ0b • v d
0 −
∫

�N
u

tp • v d�0 (5.6)

In the literature, the above functional has been shown to be a Lyapunov functional for linearized thermo-
elasticity and for thermo-hyperelasticity. For example, see [17,23,30] and references therein. Herein, we shall
show that the above functional is a legitimate Lyapunov functional for the proposed degradation model, and
specifically use theLyapunov’s secondmethod for stability (which is a classical result in the theory of dynamical
systems; e.g., see [31,70,80]) to establish the stability of the solutions under the proposed degradation model.

To this end, we shall take the reference or equilibrium state as:

χeq :=

⎧

⎪⎨

⎪⎩

ϕeq
0
0
0

⎫

⎪⎬

⎪⎭

(5.7)

where ϕeq is the static equilibrium deformation. The above functional is a candidate for Lyapunov functional,
as it satisfies:

V(χ = χeq) = 0 and V(χ �= χeq) > 0 (5.8)
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We now show that dV
dt ≤ 0. Let us start by writing:

dV

dt
=

∫


0(B)

ρ0

(
∂A

∂F
• Ḟ + ∂A

∂ϑ
ϑ̇ + ∂A

∂c
ċ + ϑ̇η + ϑη̇ + v • v̇

)

d
0 + d

dt
�mech,ext(ϕ)

=
∫


0(B)

ρ0 (� ċ+ϑη̇) d
0+
∫


0(B)

ρ0

(
∂A

∂ϑ
+η

)

ϑ̇ d
0+
∫


0(B)

(

ρ0v • v̇+P • Ḟ
)

d
0+ d

dt
�mech,ext(ϕ)

=
∫


0(B)

ρ0 (� ċ + ϑη̇) d
0

= −
∫


0(B)

�Div[h0] d
0 −
∫


0(B)

ϑ − ϑref

ϑ
Div[q0] d
0 −

∫


0(B)

ϑ − ϑref

ϑ
Grad[�] • h0 d
0

=
∫


0(B)

Grad[�] • h0 d
0 −
∫


0(B)

(

1 − ϑref

ϑ

)

Div[q0] d
0 −
∫


0(B)

(

1 − ϑref

ϑ

)

Grad[�] • h0 d
0

=
∫


0(B)

ϑref

ϑ

(
1

ϑ
Grad[ϑ] • q0 + Grad[�] • h0

)

d
0 = −
∫


0(B)

ϑref

ϑ
ζ0 d
0 (5.9)

Since ζ0 > 0 if χ �= χeq, ϑ, ϑref > 0, one can conclude that

dV

dt
< 0 (5.10)

From the Lyapunov stability of continuous systems [22,31], one can conclude that χ = χeq is asymptotically
stable.

6 Semi-analytical solutions to canonical problems

In this section, we shall appeal to semi-inversemethods to obtain solutions to some popular canonical boundary
value problems [56]. Incompressible neo-Hookean chemo–thermo–mechano degradation model is considered
here. Similar analysis can be performed for other compressible and incompressible chemo-mechano, thermo-
mechano, and chemo–thermo–mechano degradation models. Coordinate system under consideration is either
spherical or cylindrical. In all the problems discussed below, we assume concentration and temperature to
be functions of time t and radius r (which is a current configuration variable). This assumption is often
made because the underlying problem has either cylindrical or spherical symmetry. We also assume that the
volumetric sources corresponding to temperature and concentration are equal to zero. In this paper, as we are
mainly interested in degradation of solid due to temperature and transport of chemical species, we shall neglect
Dufour effect, Soret effect, thermo-chemo coupling parameter dϑc, and anisotropic coefficient of thermal and
chemical expansions. In order to reduce the complexity of finding solutions based on semi-inverse method for
deformation subproblem, we shall neglect the inertial effects and body forces.

Based on the assumptions provided here, the governing equations for the transport subproblem in cylindrical
coordinates reduce to:

ρ
∂c

∂t
+ 1

r

∂rhr
∂r

= 0, c(r = ri , t) = ci , c(r = ro, t) = co, c(r, t = 0) = c0 (6.1)

where hr is the mass transfer flux in the radial direction. Similarly, the governing equations for the thermal
subproblem in cylindrical coordinates can be written as:

ρϑ
∂η

∂t
+ 1

r

∂rqr
∂r

= −∂�

∂r
hr, ϑ(r = ri , t) = ϑi , ϑ(r = ro, t) = ϑo, ϑ(r, t = 0) = ϑ0 (6.2)
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where qr is the heat flux in the radial direction. In spherical coordinates, the governing equations for the
transport subproblem are:

ρ
∂c

∂t
+ 1

r2
∂r2hr

∂r
= 0, c(r = ri , t) = ci , c(r = ro, t) = co, c(r, t = 0) = c0 (6.3)

The governing equations for the thermal subproblem in spherical coordinates are:

ρϑ
∂η

∂t
+ 1

r2
∂r2qr

∂r
= −∂�

∂r
hr, ϑ(r = ri , t) = ϑi , ϑ(r = ro, t) = ϑo, ϑ(r, t = 0) = ϑ0 (6.4)

Another quantity of interest in material degradation is the extent of damage at a particular location or along
the cross section of the degrading body. In case of incompressible neo-Hookean chemo–thermo–mechano
degradation model, this quantity can be defined as follows:

Dμ(x, t) := μ

μ0
= 1 −

(
μ1c

μ0cref

)

−
(

μ2ϑ

μ0ϑref

)

(6.5)

For virgin material, Dμ = 1. If Dμ approaches zero, then the material has degraded the most. In addition,
Eq. (6.5) also provides the following information:

� Amount of degradation at a given location and time,
� The parts of the body that suffered extensive damage, and
� The effect of temperature and moisture (or concentration of chemical species) on the mechanical properties

of materials.

6.1 Inflation of a degrading spherical shell

Wenowstudy the behavior of a degrading (thick) spherical shell subjected to pressure loading. Figure 5 provides
a pictorial description of the boundary value problem. In addition to the obvious theoretical significance, this
problem has relevance to safety, reliability, and defect monitoring of degrading spherical structures (such as a
tank shell and a bearing structure) due to pressure loading.

Due to the spherical symmetry of the problem, spherical coordinates are used to analyze the inflation of
degrading spherical shell. Consider a spherical body of inner radius Ri and outer radius Ro defined in the
reference configuration as follows:

Ri ≤ R ≤ Ro, 0 ≤ � ≤ π, 0 ≤ � ≤ 2π (6.6)

where (R, �, �) are the spherical polar coordinates in the reference configuration. The inner and outer surfaces
R = Ri and R = Ro are, respectively, subjected to pressures pi and po with pi ≥ po. That is, the thick cylinder
is inflated with pressure. The deformation in the current configuration can be described as follows:

ri ≤ r = m(R) ≤ ro, θ = �, φ = � (6.7)

pi

po = atm

Ri Ro

Fig. 5 Inflation of a degrading spherical shell: A pictorial description of degrading shell in the reference configuration. The shell
is subjected to an inner pressure pi and an outer pressure po
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where (r, θ, φ) are the spherical polar coordinates in the current configuration and ri and ro are, respectively,
the inner and outer radii of the shell in the current (deformed) configuration. The deformation gradient, the
left Cauchy–Green tensor, and the right Cauchy–Green tensor have the following matrix representations:

{F} =
⎛

⎝

dm
dR 0 0
0 m

R 0
0 0 m

R

⎞

⎠ , {C} = {B} =

⎛

⎜
⎜
⎝

(
dm
dR

)2
0 0

0 m2

R2 0

0 0 m2

R2

⎞

⎟
⎟
⎠

(6.8)

Incompressibility implies that

r = m(R) = 3
√

R3 + r3i − R3
i ri ≤ r ≤ ro (6.9)

where ro = 3
√

R3
o + r3i − R3

i . The nonzero components of the Cauchy stress are:

Trr = −p + μ(c, ϑ)

(
dm

dR

)2

= −p + μ(c, ϑ)
R4

r4
, Tθθ = Tφφ = −p + μ(c, ϑ)

r2

R2 (6.10)

The governing equations for the balance of linear momentum in the spherical polar coordinates (e.g., see [65])
reduce to:

∂Trr
∂r

+ 2Trr − Tθθ − Tφφ

r
= 0,

∂p

∂θ
= 0,

∂p

∂φ
= 0 (6.11)

The above equations imply that p is independent of θ and φ. That is,

p = p(r, t) (6.12)

From Eqs. (3.6) and (3.7), the specific chemical potential and specific entropy for the degrading spherical shell
are given as follows:

� = 1

ρ0

∂ψ

∂c
+ Rsϑref{c − cref} = − μ1

2ρ0cref

(
R4

r4
+ 2

r2

R2 − 3

)

+ Rsϑref{c − cref} (6.13a)

η = − 1

ρ0

∂ψ

∂ϑ
+ cp

ϑref
{ϑ − ϑref} = μ1

2ρ0ϑref

(
R4

r4
+ 2

r2

R2 − 3

)

+ cp
ϑref

{ϑ − ϑref} (6.13b)

Before deriving thegoverning equations for the degrading shell problem,we shall do thenon-dimensionalization
by choosing primary variables and associated reference quantities that are convenient for studying this problem.
To distinguish, we shall denote all the non-dimensional quantities using a superposed bar. We shall take μ0,
Ro, ϑref , cref , and D0 as the reference quantities, which give rise to the following non-dimensional quantities:

r = r

Ro
, R = R

Ro
, D�� = D��

D0
, Dϑϑ = Dϑϑ

D0
(6.14)

μ1 = μ1

μ0
, μ2 = μ2

μ0
, c = c

cref
, ϑ = ϑ

ϑref
, t = D0t

R2
o

(6.15)

With the stress field in Eq. (6.10), we shall integrate Eq. (6.11) and then have the following nonlinear equation
in deformation subproblem after non-dimensionalization:

T rr (R = Ri , t) − T rr (R = Ro, t) = po − pi =
Ro∫

Ri

2μ(c, ϑ)

(

R
6 −

(

R
3 + r3i − R

3
i

)2
)

(

R
3 + r3i − R

3
i

) 7
3

dR (6.16)



1868 C. Xu et al.

In order to reduce the complexity in finding semi-analytical solutions, we shall assume ∂r
∂t � ∂ϑ

∂t . Substituting
Eqs. (6.13a) and (6.13b) into the constitutive relations of the proposed model, the governing equations of these
two subproblems (6.3), (6.4) can be written as follows after non-dimensionalization:

∂c

∂t
−
(

2D��

r
+ ∂D��

∂r

)

∂c

∂r
− D��

∂2c

∂r2
= 2ω

∂D��

∂r

(

R
4

r5
− r

R
2

)

− 6ωD��

(

1

R
2 + R

4

r6

)

(6.17)

ϑ
∂ϑ

∂t
−
(

2
Dϑϑ

r
+ ∂Dϑϑ

∂r

)

∂ϑ

∂r
− Dϑϑ

∂2ϑ

∂r2
= τD��

(

∂c

∂r
− 2ω

(

r

R
2 − R

4

r5

))2

(6.18)

where ω and τ are two non-dimensional parameters, which have the following expressions:

ω = μ1

ρ0Rsϑrefc2ref
, τ = Rsc2ref

cp
(6.19)

These two non-dimensional parameters can show the strength of coupling effect in chemical potential and
specific entropy. The nonlinear equation (6.16) enables us to find r i at various t for given c(R, t) and ϑ(R, t).
However, it should be noted that c(R, t) and ϑ(R, t) are also a function of r i in case of strong coupling. This is
because diffusivity and thermal conductivity depend on the invariants of strain E. Hence, the integral equation
(6.16) and partial differential equations (6.17) and (6.18) are strongly coupled. By strong coupling, we mean
that diffusivity and thermal conductivity depend on the mechanical deformation, and by weak coupling, we
mean that the diffusivity and thermal conductivity do not depend on strain or stress. The selection of strong
versus weak coupling depends onmaterial properties. In general, a systematic sensitivity analysis is required to
offer a concrete guidance criterion (e.g., variance-based or distance-based global sensitivity analysis [66,67]),
which is beyond the scope of this paper.

6.1.1 Steady-state analysis for shell degradation

For steady state, we have hrr2 = C1 and qrr2 +�hrr2 = C2, where C1 and C2 are integration constants. This
implies that c and ϑ are the solutions of the following ODEs:

D��r
2 dc

dr
− 2D��ω

(

r3

R
2 − R

4

r3

)

+ C1 = 0 (6.20a)

Dϑϑr
2 dϑ

dr
+ τ

(

w

2

(

R
4

r4
+ 2

r2

R
2 − 3

)

− c + 1

)

C1 + C2 = 0 (6.20b)

where the integration constants C1 and C2 are determined from the boundary conditions for the transport
and thermal subproblems. Under weak coupling (i.e., Dϑϑ and D�� are constants), a simplified form of the
analytical solutions for c and ϑ can be obtained as follows:

c = ω

(

r2

R
2 + R

4

2r4

)

+ B1

r
+ A1, ϑ = −τ B2

1D��

2Dϑϑr2
+ Z1

r
+ Y1 (6.21)

where A1, B1, Y1, and Z1 are constants, which are given in terms of the boundary conditions ci , co, ϑ i , and
ϑo as follows:

A1 = ci − B1

r i
− ω

(

r2i

R
2 + 8R

4

r4i

)

(6.22a)

B1 = r iro
r i − ro

(

co − ci − ω

(

r2o

R
2 + 8R

4

r4o
− r2i

R
2 − 8R

4

r4i

))

(6.22b)

Y1 = ϑ i + τ B2
1D��

2Dϑϑr2i
− Z1

r i
(6.22c)
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Z1 = r i − ro
r iro

(

ϑo − ϑ i − τ B2
1D��

2Dϑϑ

(

1

r2i
− 1

r2o

))

(6.22d)

6.1.2 Unsteady analysis for shell degradation

Herein, we shall integrate Eq. (6.16) using trapezoidal rule (trapz function in MATLAB [47]). The method
of horizontal lines [60,64] and shooting method [33] are used to obtain numerical solutions to Eqs. (6.17) and
(6.18). In the method of horizontal lines, the time is discretized first followed by spatial discretization. The

time interval of interest [0, I] is divided into N non-overlapping subintervals such that�t = I
N and tn = n�t .

tn is called the integral time level, where n = 0, . . . , N . �t is the time step, which is assumed to be uniform.
Employing the method of horizontal lines with backward Euler time-stepping scheme, we obtain the following
ODEs at each time level for Eqs. (6.17) and (6.18):

d2c(n+1)

dr2
+
(

2

r (n)
+
(

1

D
(n)

��

)

dD��

dr

∣
∣
∣
∣
t=tn

)

dc(n+1)

dr
− c(n+1)

D
(n)

�� �t
= 6ω

⎛

⎜
⎝

1
(

R
(n)
)2 +

(

R
(n)
)4

(

r (n)
)6

⎞

⎟
⎠

− c(n)

D
(n)

�� �t
−
(

2ω

D
(n)

��

)(

dD��

dr

∣
∣
∣
∣
t=tn

)
⎛

⎜
⎝

(

R
(n)
)4

(

r (n)
)5

− r (n)

(

R
(n)
)2

⎞

⎟
⎠ (6.23)

d2ϑ
(n+1)

dr2
+
(

2

r (n)
+
(

1

D
(n)

ϑϑ

)

dDϑϑ

dr

∣
∣
∣
∣
t=tn

)

dϑ
(n+1)

dr
− ϑ

(n)
ϑ

(n+1)

D
(n)

ϑϑ�t
= −

(

ϑ
(n)
)2

D
(n)

ϑϑ�t

− τD
(n)

��

D
(n)

ϑϑ

⎛

⎜
⎝

dc

dr

∣
∣
∣
∣
t=tn

− 2ω

⎛

⎜
⎝

(

r (n)
)

(

R
(n)
)2 −

(

R
(n)
)4

(

r (n)
)5

⎞

⎟
⎠

⎞

⎟
⎠

2

(6.24)

where c(n) = c(r , t = tn) and ϑ
(n) = ϑ(r , t = tn). Algorithm 1 describes a procedure to determine c(r , t),

ϑ(r , t), and ri at various times using an iterative nonlinear numerical solution strategy. The following values
are assumed for the non-dimensional parameters in the strong coupling simulations:

Algorithm 1 Inflation of a degrading spherical shell (numerical methodology to find r i , c, and ϑ)
1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-dimensional initial conditions,

MaxIters (which is taken to be equal to 100), tolerances ε
(r)
tol , ε

(c)
tol , and ε

(ϑ)
tol .

2: Evaluate r i at t = 0 based on Eq. (6.16).
3: for n = 1, 2, . . . , N do
4: for j = 1, 2, . . . do
5: if j > MaxIters then
6: Solution did not converge in specified maximum number of iterations. EXIT.
7: end if
8: Diffusion subproblem: Given r ( j)

i , solve Eq. (6.23) to obtain c( j+1). Herein, we use shooting method to solve the
ODEs.

9: Heat conduction subproblem: Given r ( j)
i and c( j+1), solve Eq. (6.24) to obtainϑ

( j+1)
. Similarly, we use shooting

method to solve the nonlinear ODEs.
10: Deformation subproblem: Given c( j+1) and ϑ

( j+1)
, solve for r ( j+1)

i given by Eq. (6.16) using bisection method.

11: if ‖r ( j+1)
i − r ( j)

i ‖ < ε
(r)
tol , ‖c( j+1) − c( j)‖ < ε

(c)
tol , and ‖ϑ( j+1) − ϑ

( j)‖ < ε
(ϑ)
tol then

12: OUTPUT: r ( j+1)
i , c( j+1), and ϑ

( j+1)
. EXIT.

13: else
14: Update the guess: r ( j)

i ← r ( j+1)
i .

15: end if
16: end for
17: end for
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Fig. 6 Inflation of a degrading spherical shell: This figure shows the hoop stress T θθ as a function of R at various instants of time
due to an inner pressure of pi = 0.5. Analysis is performed under strongly coupled chemo–thermo–mechano degradation. Note
that the stress is increasing with time under degradation
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Fig. 7 Inflation of a degrading spherical shell: This figure shows the hoop stress T θθ as a function of R at t = 0.1 for various
inner pressures pi . Analysis is performed for strongly coupled chemo–thermo–mechano degradation. T θθ increases in a nonlinear
fashion as the pressure loading increases, which is different from the case as time progresses

Ro = 1, Ri = 0.5, �t = 0.01, t = 2, ω = 0.05, τ = 0.2, ci = 0, ϑ0 = 0.5

co = 1, ϑ i = 0.5, ϑo = 1, μ0 = 1, μ1 = 0.3, μ2 = 0.4, D0 = 1, DT = 1.5,

DS = 1.2, ηT = ηS = 1, ErefT = ErefS = 1, K 0 = 1, δ = 10 (6.25)

The physical meaning for boundary conditions and initial conditions for this problem is as follows: The body
is initially assumed to be in its virgin state and there is no moisture/diffusant/inert chemical species in the
body. Also, the body’s temperature is constant initially. After time t = 0, the inner and outer boundaries of the
spherical shell are held at zero and constant concentration. Such aboundary condition canbemaintained through
a suction/sink mechanism, wherein the moisture/inert species are removed continuously and temperature is
held fixed.

In weakly coupling problem, we use D0, K 0 as D
(n)

�� and D
(n)

ϑϑ , respectively. It should be noted that these
values are constructed based on the (brittle-type) material parameters such as glass, ceramics, and concrete.

The numerical results are shown in Figs. 7, 8, 9, 10 and 11, which reveal the following conclusions on the
overall behavior of degrading spherical shells under inflation:

1. Degradation versus non-degradation:After degradation, a spherical shellwhich is initially homogeneous
is not homogeneous anymore, see Fig. 10.
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Fig. 8 Inflation of a degrading spherical shell: This figure shows the chemical potential as a function of the reference location R
at t = 0.2 due to various inner pressures pi under different cases. One can see that for non-degrading shell, the chemical potential
is unchanged with respect to pressure loading. However, for strong coupling, it increases with pi in a nonlinear fashion when
non-dimensional parameter ω is small enough. This is because for small ω, diffusion takes the dominance in the coupling effect.
When pressure loading increases, the diffusivity is increasing due to the growing tr[E]. For large ω, the deformation is dominant
in the coupling, which is −I E term in chemical potential. Since the first invariant I E is always positive in this problem, chemical
potential is decreasing when the pressure loading increases

2. Due to degradation, creep-like behavior is observed in Fig. 9. Therefore, as time progresses, hoop stresses
increase in Fig. 6. We need to note that the shell ceases to creep after a certain period of time, which is the
moment when the transport of chemical species and heat conduction are close to steady states.

3. As the pressure loading increases, the hoop stress is increasing in a nonlinear fashion in Fig. 7, which is
significantly different from the non-degradation shell.

4. In Fig. 8, for non-degrading shell, the chemical potential is unchanged with respect to pressure loading.
However, for strong coupling, it increases with pi in a nonlinear fashion when ω is small enough. This is
because for small ω, diffusion takes the dominance in the coupling effect. When pressure loading increases,
the diffusivity is increasing due to the growing strain. For large ω, the deformation is dominant in the
coupling, which is −I E term in chemical potential. Since the first invariant I E is always positive in this
problem, chemical potential is decreasing when the pressure loading increases.

5. Thermo-dominated versus chemo-dominated degradation: As Fig. 10 shows, weak coupling over-
predicts the amount of degradation compared to the full (or strong) coupling when thermal degradation
dominates. This is becausewhen the thermal degradation dominants, the thermal conductivity decreases due
to the increase in strain (note that the first invariant of strain is always positive in this problem). However,
in chemo-dominated degradation, weak coupling underpredicts the amount of degradation compared to the
strong coupling case.

6. In case of strong coupling, healing-like behavior is observed at early time steps in thermo-dominated degra-
dation (but still remains below that of the virgin material), see Fig. 11. This is because of the deformation-
dependent thermal diffusivity in the entire body (due to which temperature gets lower than the initial
condition). Hence, the material damage is less than that of at t = 0. However, this heal-like behavior
becomes less distinct (or even doesn’t exist) when the chemo-degradation achieves the dominance.

7. Strong versus weak coupling: Quantitatively and qualitatively, extent of damage for both strong and
weak coupling is considerably different, see Figs. 9, 11.

6.2 Bending of a degrading beam

Herein, we shall consider pure bending of a degrading beam. At time t = 0, a finite degrading beam is suddenly
bent by an action of pure end moments. For t > 0, the centerline of the beam becomes a sector of a circle of
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Fig. 9 Inflation of a degrading spherical shell: This figure shows the plot of inner radius r i in current configuration as a function of
the inner pressure pi for strongly and weakly coupled chemo–thermo–mechano degradation problem. Note that in weak coupling
the heat conductivity and diffusivity are both constants, while the Lamé parameters still depend on concentration and temperature.
We take μ1 = 0.3 and μ2 = 0.4 for thermo-dominated degradation. For chemo-dominated degradation, we have μ1 = 0.7 and
μ2 = 0.1. For a given pi , one can see that r i for weak coupling is larger than strong couplingwhen thermal degradation dominates.
This is because IE is always positive in this problem, the thermal conductivity decreases due to the increase in IE. However,
when moisture-induced degradation dominates, r i for weak coupling is smaller than strong coupling problem. From this figure,
we can observe creep-like behavior for all the case studies. a Thermo-dominated degradation, b chemo-dominated degradation
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Fig. 10 Inflation of a degrading spherical shell: This figure shows the extent of damage as a function of the reference location at
various instants of time due to inner pressure pi = 0.5. Different values are chosen forμ1 andμ2 for thermo-dominant and chemo-
dominant degradation. Analysis is performed for strongly coupled case. For thermo-dominated problem, healing-like behavior is
observed at early time steps. This is because of the deformation-dependent thermal diffusivity. As ϑ ≤ ϑ0, the material damage
is less than that of at time t = 0 (but still remains below that of the virgin material). However, this heal-like behavior becomes
less distinct (or even does not exist) when the chemo-degradation achieves the dominance. a Thermo-dominated degradation, b
chemo-dominated degradation

radius rc. This centerline is held fixed for all the time. Subsequently, the stresses in the degrading beam are
allowed to relax. In addition, it is assumed that the material remains isotropic with respect to the reference
configuration throughout the degradation process. These assumptions enable us to employ the counterpart of
universal deformations (also known as semi-inverse method) [56] to study such degrading beams.

A pictorial description of the initial boundary value problem is shown in Fig. 12. The degrading beam is
defined as follows:

−L ≤ X ≤ L , −W ≤ Y ≤ W, −H ≤ Z ≤ H (6.26)

where (X, Y, Z) are the Cartesian coordinates in the reference configuration. We assume that the deformation
to be as follows:
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Fig. 11 Inflation of a degrading spherical shell: This figure shows the extent of damage as a function of the reference location
at t = 1 for various inner pressures ‘pi ’. Analysis is performed for thermo-dominated degradation. As the pressure increases,
for the weakly coupled problem, the extent of damage decreases. This means that when the inflation pressure pi increases,
the body degrades more significantly. However, this is not the case for the strongly coupled problem. In this particular case,
thermo-mechano coupling dominates and plays a vital role. As IE ≥ 0, the strain-dependent thermal conductivity decreases as
the pressure loading increases. Hence, there is less damage in the material due to the decrease in temperature values as compared
to weakly coupled chemo–thermo–mechano degradation problem. aWeak coupling degradation, b strong coupling degradation
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θ
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r

Fig. 12 Bending of a degrading beam: A pictorial description of degrading beam in both reference and current configurations.
Bending moment is applied at the two ends of the beam just after time t = 0. Oref and Ocurr correspond to the origin in the
reference and current configurations

r =
√

2X

α
+ β, θ = Y

γ
, z = Z (6.27)

where (r, θ, z) are the cylindrical polar coordinates in the current configuration.When X = 0, we have β = r2c .
It should be noted that α and γ are all unknown time-dependent parameters. These unknowns are evaluated
from the incompressibility constraint, traction boundary conditions, and pure end moments. To reduce the
complexity in finding semi-analytical solutions, we shall assume rc is given. The faces X = −L and X = L
are subjected to ambient atmospheric pressure “patm.” Upon deformation, the corresponding deformed faces
ri and ro are maintained at patm, where ri = √

r2c − 2γ L and ro = √

r2c + 2γ L are the inner and outer radius
of the degrading beam. This gives the following traction boundary conditions:

Trr (X = −L , t) = Trr (X = L , t) = patm (6.28)
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The deformation gradient F, right Cauchy–Green tensor C, and left Cauchy–Green tensor B for the degrading
beam are given as follows:

{F} =
⎛

⎝

1
αr 0 0
0 r

γ
0

0 0 1

⎞

⎠ {C} = {B} =
⎛

⎜
⎝

1
α2r2

0 0

0 r2

γ 2 0
0 0 1

⎞

⎟
⎠ (6.29)

For incompressible degrading neo-Hookean material, we have αγ = 1 and the nonzero components of the
Cauchy stress tensor are given as follows:

Trr = −p + μ(c, ϑ)γ 2

2γ X + r2c
, Tθθ = −p + μ(c, ϑ)

(

2γ X + r2c
)

γ 2 , Tzz = −p + μ(c, ϑ) (6.30)

The balance of linear momentum in the cylindrical polar coordinates reduces to the following:

∂Trr
∂r

+ Trr − Tθθ

r
= 0,

∂p

∂θ
= 0,

∂p

∂z
= 0 (6.31)

The bending moment in the deformation subproblem can be evaluated based on the following formula:

Mbeam(t) =
∫

Across

Tθθ (r − rneu)dA

= 2H

L∫

−L

Tθθ (−
√

r2c + 2γ Xneu +
√

r2c + 2γ X)
γ

√

r2c + 2γ X
dX (6.32)

where dA = 2Hdr , rneu = √

r2c + 2γ Xneu is the neutral axis location, and Xneu is the value at which Tθθ = 0.
The chemical potential, specific entropy for the degrading beam are given as follows:

� = 1

ρ0

∂ψ

∂c
+ Rsϑref{c − cref} = − μ1

2ρ0cref

(
γ 2

r2
+ r2

γ 2 − 2

)

+ Rsϑref{c − cref} (6.33a)

η = − 1

ρ0

∂ψ

∂ϑ
+ cp

ϑref
{ϑ − ϑref} = μ1

2ρ0ϑref

(
γ 2

r2
+ r2

γ 2 − 2

)

+ cp
ϑref

{ϑ − ϑref} (6.33b)

Most of the non-dimensional quantities are same as that of the degrading shell problem except for the following:

r = r

rc
, X = X

rc
, γ = γ

rc
, t = D0t

r2c
(6.34)

Using Eqs. (6.27)–(6.31), we have the following nonlinear equation in γ

L/rc∫

−L/rc

μ(c(X , t), ϑ(X , t))
(

γ 4 − (

2γ X + 1
)2
)

γ
(

2γ X + 1
)2 dX = 0 (6.35)

From (6.35), γ |t=0 is given as follows:

γ |t=0 = 1

rc

√

−2L2 +
√

4L4 + r4c (6.36)

which is the case for homogeneous neo-Hookean material. As rc is given, the parameter γ is bounded above
and below as follows:

−rc
2L

< γ <
rc
2L

(6.37)
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which can be used in finding the solution for the nonlinear equation given by (6.35). It should be noted that
γ |t=0 satisfies the inequality given by (6.37).

From Eqs. (6.1) and (6.2), the final form for the governing equations for transport and thermal subproblems
for degrading beam is given as follows:

∂c

∂t
−
(

D��

r
+ ∂D��

∂r

)

∂c

∂r
− D��

∂2c

∂r2
= ω

∂D��

∂r

(
γ 2

r3
− r

γ 2

)

− 2ωD��

(
1

γ 2 + γ 2

r4

)

(6.38)

ϑ
∂ϑ

∂t
−
(

Dϑϑ

r
+ ∂Dϑϑ

∂r

)

∂ϑ

∂r
− Dϑϑ

∂2ϑ

∂r2
= τD��

(
∂c

∂r
+ ω

(
γ 2

r3
− r

γ 2

))2

(6.39)

6.2.1 Steady-state and unsteady analysis for beam degradation

In case of steady state, we have hrr = C1 and qrr + �hrr = C2, where C1 and C2 are integration constants.
Equations (6.38) and (6.39) imply that c and ϑ are the solutions of the following ODEs:

D��r
dc

dr
− D��ω

(

γ 2

r2
− r2

γ 2

)

+ C1 = 0 (6.40a)

Dϑϑr
dϑ

dr
+ τ

(

w

2

(

γ 2

r2
+ r2

γ 2 − 2

)

− c + 1

)

C1 + C2 = 0 (6.40b)

In case of weak coupling (where Dϑϑ and D�� are constants), the solutions for c and ϑ take the following
simplified form:

c = −ω

2

(

γ 2

r2
+ r2

γ 2

)

+ B2ln[r ] + A2, ϑ = −τ B2
2D��

2Dϑϑ

ln[r ]2 + Z2ln[r ] + Y2 (6.41)

where the constants A2, B2, Y2, and Z2 (which depend on the boundary conditions) are as follows:

A2 = ci − B2ln[r i ] + ω

2

(

γ 2

r2i
+ r2i

γ 2

)

(6.42a)

B2 = 1

ln[ro] − ln[r i ]

(

co − ci − ω

2

(

γ 2

r2i
+ r2i

γ 2 − γ 2

r2o
− r2o

γ 2

))

(6.42b)

Y2 = ϑ i + τ B2
2D��

2Dϑϑ

ln[r i ]2 − Z2ln[r i ] (6.42c)

Z2 = 1

ln[ro] − ln[r i ]

(

ϑo − ϑ i − τ B2
2D��

2Dϑϑ

(

ln[r i ]2 − ln[ro]2
)

)

(6.42d)

For unsteady analysis, we employ method of horizontal lines with backward Euler time-stepping scheme. This
gives the following ODEs at each time level for Eqs. (6.38) and (6.39):

d2c(n+1)

dr2
+
(

1

r (n)
+
(

1

D
(n)

��

)

dD��

dr

∣
∣
∣
∣
t=tn

)

dc(n+1)

dr
− c(n+1)

D
(n)

�� �t
= 2ω

(

1
(

γ (n)
)2 +

(

γ (n)
)2

(

r (n)
)4

)

− c(n)

D
(n)

�� �t
−
(

ω

D
(n)

��

)(

dD��

dr

∣
∣
∣
∣
t=tn

)((

γ (n)
)2

(

r (n)
)3 − r (n)

(

γ (n)
)2

)

(6.43)

d2ϑ
(n+1)

dr2
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(

1

r (n)
+
(

1

D
(n)

ϑϑ

)

dDϑϑ

dr

∣
∣
∣
∣
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− 2τωD
(n)

��

D
(n)

ϑϑ

((

γ (n)
)2

(

r (n)
)3 − r (n)

(

γ (n)
)2

)

dc

dr

∣
∣
∣
∣
t=tn

− τD
(n)

�� ω2

D
(n)

ϑϑ

((

γ (n)
)2

(

r (n)
)3 −

(

r (n)
)

(

γ (n)
)2

)2

(6.44)

Algorithm 2 describes a procedure to determine c(r , t), ϑ(r , t), and γ at various times using an iterative
nonlinear numerical solution strategy. The boundary conditions for diffusion and thermal subproblems are the
same as the degrading shell problem. The other parameters are assumed in the strongly coupling simulations
as follows:

L = 1, rc = 1, �t = 0.1, t = 2, ω = 0.05, τ = 0.5, μ0 = 1, μ1 = μ2 = 0.4, D0 = 1,

DT = 2.0, DS = 1.5, ηT = ηS = 1, ErefT = ErefS = 1, K 0 = 1, δ = 10 (6.45)

In case of weak coupling, we have D0 as D
(n)

�� and K 0 as D
(n)

ϑϑ , respectively.

Algorithm 2 Pure bending of degrading beam (numerical methodology to find γ , c, and ϑ)
1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-dimensional initial conditions,

MaxIters (which is taken to be equal to 100), tolerances ε
(γ )
tol , ε

(c)
tol , and ε

(ϑ)
tol .

2: Evaluate γ at t = 0 based on Eq. (6.36). Use this as an initial guess for solving nonlinear equation given by (6.35) or guess γ
based on Eq. (6.37).

3: for n = 1, 2, . . . , N do
4: for i = 1, 2, . . . do
5: if i > MaxIters then
6: Solution did not converge in specified maximum number of iterations. EXIT.
7: end if
8: Diffusion subproblem: Given γ (i), solve Eq. (6.43) to obtain c(i+1). Herein, we use shooting method to solve the

ODEs.
9: Heat conduction subproblem: Given γ (i) and c(i+1), solve Eq. (6.44) to obtainϑ

(i+1)
. Similarly, we use shooting

method to solve the ODEs.
10: Deformation subproblem: Given c(i+1) and ϑ

(i+1)
, solve for γ (i+1) given by Eq. (6.35) using bisection method.

11: if ‖γ (i+1) − γ (i)‖ < ε
(γ )
tol , ‖c(i+1) − c(i)‖ < ε

(c)
tol , and ‖ϑ(i+1) − ϑ

(i)‖ < ε
(ϑ)
tol then

12: OUTPUT: γ (i+1), c(i+1), and ϑ
(i+1)

. EXIT the inner loop.
13: else
14: Update the guess: γ (i) ← γ (i+1).
15: end if
16: end for
17: end for

The numerical results are shown in Figs. 13, 14, 15 and 16, which reveal the following conclusions on the
overall behavior of bending of degrading beams:

1. Degradation versus non-degradation: The main observation is that the neutral axis shifts further to
the left in Fig. 13, similar to the phenomenon observed in viscoelastic solids [42]. Moreover, in case of
weak coupling for some instants of time the maximum stress does not occur at either tensile or compressive
sides of the beam after the onset of degradation. This is of primal importance in regard to the calculation
of failure loads/moments due to material damage. Hence, a simple approach based on strength of materials
or a more complex finite elasticity theory to calculate stresses without accounting for degradation will lead
to erroneous results.

2. Initially at t = 0 and when there is no degradation, the response is that of a homogeneous neo-Hookean
material, see Fig. 16. On the onset of degradation, the material ceases to be homogeneous.

3. In Fig. 14, moment relaxation is observed for weak and strong coupling degradation. Note that the moment
is a constant without degradation. Moreover, although diffusion is dominant in the coupling effect for
chemical potential, one can still observe the deformation effect on � as compared to no degradation case
in Fig. 15.

4. Strong versus weak coupling: One can see that T θθ for strong coupling is considerably different from
the weak coupling in Fig. 13. This is because the degradation progress is dependent on the deformation,
concentration of the diffusing chemical species, and temperature of the body.

5. In Fig. 16, the extent of damage is monotonic for weak coupling, which is not the case for strong coupling
(which helps in identifying regions that need retrofitting).
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Fig. 13 Bending of a degrading beam: This figure shows the plot of hoop stress T θθ as a function of the reference location of the
cross section at various instants of time. The stress distribution is not linear, which is the case for finite deformation beam bending
problem. Herein, we observe that the neutral axis shifts further to the left. Moreover, in case of weak coupling for some instants
of time the maximum stress does not occur at either tensile or compressive sides of the beam after the onset of degradation. a
Weak coupling degradation, b strong coupling degradation
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Fig. 14 Bending of a degrading beam: This figure shows the plot of bendingmoment at various instants of time for both strong and
weak coupling chemo–thermo–mechano degradation. Moment relaxation is observed for both cases; however, in weak coupling
the moment declines at a much faster rate than that in strong coupling case. Note that the bending moment is a constant without
degradation

Remark 6.1 It should be mentioned that [63] have shown that the neutral axis shifts under pure bending of a
polymer beam under mechanical degradation. However, their approach is based on internal variables and by
employing a semi-inverse method. Herein, we have illustrated a similar behavior of a degrading beam using
the proposed chemo–thermo–mechanical framework, which considers various coupled processes, as opposed
to a lumped internal variable approach.

6.3 Torsional shear of a degrading cylinder

A pictorial description of the degrading cylindrical annulus of finite length is shown in Fig. 17. The bottom
of the cylinder is fixed and just after time t = 0, a twisting moment is applied. We analyze the material
degradation and corresponding structural response due to the torsional shear for a prescribed angle of twist.
Initially, the body is a homogeneous neo-Hookean material and there is no transport of chemical species in
the body. For time t > 0, the outer boundary of the cylinder is always exposed to moisture (or a diffusing
chemical species). The inner surface of the degrading annular cylinder is held at zero concentration. This can
be achieved by constructing a mechanism which continuously removes the moisture (or diffusing chemical



1878 C. Xu et al.

-1 -0.5 0 0.5 1
X

-1.5

-1.0

-0.5

0.0
C

he
m

ic
al

 p
ot

en
tia

l

Strong coupling, t = 0.0
Strong coupling, t = 0.1
Strong coupling, t = 1.0
No degradation, t = 0.0
No degradation, t = 0.1
No degradation, t = 1.0

Fig. 15 Bending of a degrading beam: This figure shows the plot of chemical potential as a function of the reference location of
the cross section at various instants of time when there is no degradation and for strong coupling cases. In the strong coupling
scenario, although diffusion process is dominant, one can still observe that the deformation has a significant effect on chemical
potential as compared with non-degradation case

-1 -0.5 0 0.5 1
X

0.0

0.2

0.4

0.6

0.8

1.0

Ex
te

nt
 o

f d
am

ag
e 

(μ
/μ

0)

No degradation
t = 0.0
t = 0.1
t = 0.2
t = 0.5
t = 1.0

-1 -0.5 0 0.5 1
X

0.0

0.2

0.4

0.6

0.8

Ex
te

nt
 o

f d
am

ag
e 

(μ
/μ

0) t = 0.0
t = 0.1
t = 0.2
t = 0.5
t = 1.0

(a) (b)
Fig. 16 Bending of a degrading beam: This figure shows the extent of damage as a function of the reference location of the
cross section at various instants of time (due to the application of bending moment). Note that analysis is performed for both
strongly coupled and weakly coupled chemo–thermo–mechano degradation. One can see that a virgin beam, which is initially
homogeneous, is no longer homogeneous after degradation. In addition, the extent of damage is monotonic for weak coupling,
which is not the case for strong coupling. Such a phenomena has implications in damage control and retrofitting of the degrading
beams. a Strong coupling degradation, b weak coupling degradation

species) from the inner boundary of the degrading cylinder. Hence, one can control the concentration of the
moisture at both inner and outer surfaces. Similar type of initial and boundary conditions is enforced for the
thermal counterpart.

Consider a closed cylindrical body of inner radius Ri , outer radius Ro, and height L defined as follows:

Ri ≤ R ≤ Ro, 0 ≤ � ≤ 2π, 0 ≤ Z ≤ L (6.46)

where (R, �, Z) are the cylindrical polar coordinates in the reference configuration. Under torsional shear,
the deformation can be described as follows:

r = R, θ = � + g(Z , t), z = �Z (6.47)
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Fig. 17 Torsional shear of a degrading cylinder: A pictorial description of the degrading cylinder under torsion in the reference
configuration. Ri and Ro are, respectively, the inner and outer radii of the cylinder. X , Y , and Z are the Cartesian coordinates in
the reference configuration. The bottom of the cylinder is fixed and a twisting moment is applied at the top of the cylinder for
t ≥ 0

The components of the deformation gradient F can be written as:

{F} =
⎛

⎝

1 0 0
0 1 rg′
0 0 �

⎞

⎠ where g′ := ∂g(Z , t)

∂Z
(6.48)

Incompressibility implied that � = 1. The components of the right Cauchy–Green tensor C and the left
Cauchy–Green tensor B can be written as:

{C} =
⎛

⎝

1 0 0
0 1 rg′
0 rg′ 1 + (

rg′)2

⎞

⎠ {B} =
⎛

⎝

1 0 0
0 1 + (

rg′)2 rg′
0 rg′ 1

⎞

⎠ (6.49)

The nonzero components of the Cauchy stress T are given as follows:

Trr = −p + μ(c, ϑ), Tθθ = −p + μ(c, ϑ)
(

1 + (

rg′)2)

Tzz = −p + μ(c, ϑ), Tθ z = Tzθ = μ(c, ϑ)rg′ (6.50)

The balance of linear momentum in the cylindrical polar coordinates reduces to the following:

−∂p

∂r
+ μ(c, ϑ)r

(

g′)2 = 0, −1

r

∂p

∂θ
+ μ(c, ϑ)rg′′ = 0, −∂p

∂z
= 0 (6.51)

Symmetry in the problem implies that ∂p
∂θ

= 0, which further implies that g′′ = 0. Hence, g(Z , t) takes the
following form:

g(Z , t) = �1(t)Z + �2(t) (6.52)

where �1 and �2 are evaluated based on the input data. As the bottom of the cylinder is fixed, we have
g(Z = 0, t) = 0, which implies �2(t) = 0.
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The chemical potential and specific entropy are given as follows:

� = 1

ρ0

∂ψ

∂c
+ Rsϑref{c − cref} = −μ1r2�2

1

2ρ0cref
+ Rsϑref{c − cref} (6.53a)

η = − 1

ρ0

∂ψ

∂ϑ
+ cp

ϑref
{ϑ − ϑref} = μ1r2�2

1

2ρ0ϑref
+ cp

ϑref
{ϑ − ϑref} (6.53b)

Most of the non-dimensional quantities remain the same as that of the previous initial boundary value problems
except for the following:

R = R

Ro
, ψ = ψRo, t = D0t

R2
o

(6.54)

The non-dimensional twisting moment M(t) satisfies:

M(t) = 2π

Ro∫

Ri

μ(c(R, t), ϑ(R, t))�1R
3
dR (6.55)

The Poynting effect for hyperelastic materials shall be also studied. It implies the axial length change for a
cylinder under shear. The non-dimensional normal force required to keep the length unchanged can be written
as follows:

N (t) = π

Ro∫

Ri

μ(c(R, t), ϑ(R, t))�
2
1R

3
dR (6.56)

From Eqs. (6.1) and (6.2), the final form of the governing equations for transport and thermal subproblems
can be written as:

∂c

∂t
−
(

D��

r
+ ∂D��

∂r

)

∂c

∂r
− D��

∂2c

∂r2
= −ω�

2
1

(

2D�� + r
∂D��

∂r

)

(6.57)

ϑ
∂ϑ

∂t
−
(

Dϑϑ

r
+ ∂Dϑϑ

∂r

)

∂ϑ

∂r
− Dϑϑ

∂2ϑ

∂r2
= τD��

(
∂c

∂r

)2

− 2τωD��r�
2
1
∂c

∂r
+ τD��ω2r2�

4
1 (6.58)

One needs to solve Eqs. (6.56)–(6.58) to obtain c(r , t), ϑ(r , t), and M(t). Algorithm 3 describes a numerical
solution procedure to solve these equations at various times for a given angle of twist per unit length.

Algorithm 3 Torsional shear of a degrading cylinder (numerical methodology to find M , c, and ϑ)
1: INPUT: Non-dimensional material parameters, non-dimensional boundary conditions, and non-dimensional initial conditions.
2: for n = 1, 2, . . . , N do
3: Diffusion subproblem: Given�1, solve Eq. (6.62) to obtain c(n). Herein, we use shootingmethod to solve the ODEs.

4: Heat conduction subproblem: Given�1 and c(n), solve Eq. (6.63) to obtain ϑ
(n)

. Similar to diffusion subproblem,
we use shooting method to solve the nonlinear ODEs.

5: Deformation subproblem: Given c(n) and ϑ
(n)

, solve for M
(n)

given by Eq. (6.56).
6: end for
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6.3.1 Steady-state and unsteady response of degrading cylinder under torsional shear

In the case of steady state, c and ϑ are the solutions of the following ODEs:

D��r
2 dc

dr
− D��ωr�

2
1 + C1 = 0 (6.59a)

Dϑϑr
dϑ

dr
+ τ

(
ω

2
r2�

2
1 − c + 1

)

C1 + C2 = 0 (6.59b)

where C1 and C2 are integration constants. Under weak coupling (where Dϑϑ and D�� are constants), a
simplified form of the analytical solutions for c and ϑ is given as follows:

c = ω

2
r2�

2
1 + B3ln[r ] + A3, ϑ = −τ B2

3D��

2Dϑϑ

ln[r ]2 + Z3ln[r ] + Y3 (6.60)

where A3, B3, Y3, and Z3 are constants, which are obtained by the corresponding boundary conditions for
thermal and diffusion subproblem. These are given as follows:

A3 = ci − B3ln[r i ] − ω

2
r2i �

2
1 (6.61a)

B3 = 1

ln[ro] − ln[r i ]
(

co − ci − ω

2

(

r2o�
2
1 − r2i �

2
1

))

(6.61b)

Y3 = ϑ i + τ B2
3D��

2Dϑϑ

ln[r i ]2 − Z3ln[r i ] (6.61c)

Z3 = 1

ln[ro] − ln[r i ]

(

ϑo − ϑ i − τ B2
3D��

2Dϑϑ

(

ln[r i ]2 − ln[ro]2
)

)

(6.61d)

For unsteady analysis, method of horizontal lines with backward Euler time-stepping scheme is employed.
This gives the following ODEs at each time level:
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The boundary conditions for diffusion and thermal subproblems are the same as that of the previous boundary
value problems.

The following non-dimensional parameters are assumed in the numerical simulations:

Ro = 1, Ri = 0.5, �t = 0.1, t = 2, ω = 0.05, τ = 0.8, μ0 = 1, μ1 = 0.5, μ2 = 0.2,

D0 = 1, DT = 1.5, DS = 1.2, ηT = ηS = 0.1, ErefT = ErefS = 1, K 0 = 1, δ = 10 (6.64)

The numerical results are shown in Figs. 18 and 19, which reveals the following important conclusions on the
overall behavior of degrading structural members under torsional shear:

1. The numerical results in Fig. 18 reveal that there is relaxation of moment for fixed deformation. In addition,
the twisting moment required to maintain a fixed angle of twist decreases with increase in μ1. Similar type
of behavior is observed when μ1 is kept constant and μ2 is varied.
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Fig. 18 Torsional shear of a degrading cylinder: This figure shows the twisting moment at various instants of time due to a given
angle of twist per unit length of the cylinder, �1 = 0.75. One can see that as μ1 increases the twisting moment required to keep
�1 unchanged, decreases. Similar type of behavior is observed when μ1 is kept constant and μ2 is varied. Herein, the main
observation is that moment relaxation not only depends on material degradation but also on the geometry of the degrading body.
a Moment under different μ1, b moment under different Ri
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Fig. 19 Torsional shear of a degrading cylinder: This figure shows the non-dimensionalized normal force N due to Poynting
effect at various instants of time. Analysis is performed for a given angle of twist per unit length of the cylinder, �1 = 0.75.
When there is no degradation, the normal force is constant. However, due to degradation one can see that the normal force relaxes
over time. The decrease in this normal force for weak coupling is higher than that for the strong coupling

2. In Fig. 18, we also observe moment relaxation due to material degradation when both the transport and
thermal subproblems are close to steady states. Moreover, one can see that moment relaxation depends on
the geometry of the specimen. These aspects differentiate the stress relaxation due to degradation from the
stress relaxation due to viscoelasticity.

3. We observe that the normal force due to Poynting effect is decreasing over time as a result of degradation, see
Fig. 19. Without degradation, the normal force is a constant (which is the case for hyperelastic materials).
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7 Concluding remarks

This paper has made several contributions to the modeling of degradation of materials due to the presence of an
adverse chemical species and temperature.First, a consistentmathematicalmodel has been derived that has firm
continuum thermodynamics underpinning. The constitutive relations, which give rise to coupled deformation–
thermal transport equations, have been derived by appealing to the maximization of the rate of dissipation,
which is a stronger version of the second law of thermodynamics. The proposed model is hierarchical in
the sense that it recovers many existing models as special cases. Second, the materials parameters have been
calibrated with an experimental data set available in the literature. Third, it has been shown that the unsteady
solutions to the proposed degradation model are bounded and stable in the sense of Lyapunov even under
large deformations and large strains. Last but not the least, using several canonical problems in degradation
mechanics, we illustrated the effects of chemical degradation and thermal degradation on the response of a
body that is initially hyperelastic. Some of the main features of degradation and of the proposed model can be
summarized as follows:

(C1) Degradation introduces spatial inhomogeneity. That is, a material which is originally homogeneous may
cease to be homogeneous due to degradation.

(C2) The proposed mathematical model can provide the variation of important quantities like chemical poten-
tial within the body, which is essential in incorporating chemical reactions into the modeling. Of course,
one needs to provide other essential information (e.g., stoichiometry, law of mass action, dissipation
due to chemical reactions, reaction rates, exothermic vs. endothermic energy changes) to incorporate
chemical reactions.

(C3) In a coupled chemo–thermo–mechano degradation problem, for instance degrading shell problem,
thermo-mechanical coupling plays a vital role in evaluating extent of damage and pressure loading.
For thermo-dominated problem, healing-like behavior is observed at early time steps. This is because of
the deformation-dependent thermal diffusivity. However, this healing-like behavior becomes less distinct
(or does not even exist) when the chemo-degradation achieves the dominance (see Fig. 10).

(C4) The extent of damage in a structural member can be both qualitatively and quantitatively different under
strong and weak couplings between mechanical, thermal, and transport processes. More importantly,
weak coupling may overpredict the material degradation in some cases, while in other cases it may
underpredict the degradation. It is, therefore, of paramount importance to select the extent of coupling
between the mechanical, thermal, and chemical processes.

(C5) The usual assumptions on either kinematics or stresses, which may be justified for non-degrading mem-
bers, may no longer hold under degradation. For example, assumptions on the location of neutral axis or
the location of the maximum stress on the outer fibers in beam bending will not hold under degradation.

(C6) Degrading structural members may exhibit some responses that are typically associated with viscoelas-
ticity. In particular, we have shown that degradation can induce stress relaxation and creep in the response
of the materials even in the case of finite-sized bodies. In contrast to a viscoelastic body (which creeps
continuously upon the application of a load), the body undergoing chemical degradation ceases to creep
for practical purposes after a certain period of time. This the moment when the transport of chemi-
cal species is close to a steady state, if there is no volumetric source and the boundary conditions are
unchanged over time. A similar trend holds even in the case of thermal degradation. This characteristic
behavior of degrading solids can be used to differentiate the creep associated with viscoelasticity and
degradation. Moreover, stress relaxation due to degradation depends on the geometry of the specimen,
which is also different from the case due to viscoelasticity.

A possible future research work can be toward incorporating fatigue and fracture into the degradation
modeling. A related scientific question can be toward addressing the effect of material degradation on the
crack initiation and its propagation.
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