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Abstract The kinematics of generalized continua is investigated and key points concerning the definition
of overall tangent strain measure are put into evidence. It is shown that classical measures adopted in the
literature for micromorphic continua do not obey a constraint qualification requirement, to be fulfilled for
well-posedness in optimization theory, and are therefore termed redundant. Redundancy of continuawith latent
microstructure and of constrained Cosserat continua is also assessed. A simplest, non-redundant, kinematic
model ofmicromorphic continua, is proposed by dropping themicrocurvature field. The equilibrium conditions
and the related variational linear elastostatic problem are formulated and briefly discussed. The simplest model
involves a reduced number of state variables and of elastic constitutive coefficients, when compared with other
models ofmicromorphic continua, being still capable of enriching theCauchy continuummodel in a significant
way.

Keywords Tangent strain measures · Generalized continua · Micromorphic and micropolar models ·
Redundant kinematics · Non-redundant formulations · Simplest micromorphic model · Micromechanics

1 Introduction and motivation

A large class of engineeringmaterials, deformable porous solids, composites, polymers, crystals, microcracked
solids and biological tissues, such as bones and muscles, are natural candidates to be modeled by means of the
theory of micromorphic continua.

Indeed, in consideringmaterials withwell-organizedmicrostructures, aCauchy continuum theory appears
to be unable to provide a satisfactory modeling. This is the case for engineering materials in which sharply
contrasting materials properties or highly heterogeneous hierarchical microstructures are present.

The adoption of more complex models is commonly considered as compelling to describe the essential
features of the mechanical behavior of complex materials characterized by a microstructure spanning several
length scales. For these materials, it is rather unlikely to get, as a suitable macroscopic model, the simple
standard Cauchy continuum.
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Micromorphic mechanics is presently a quite active field of research both from theoretical and applied
points of view. For this reason a reflection concerning the foundations of the present state of the art and the
verification of essential mechanical well-posedness requirements, can be considered to be advisable.

As a matter of fact, in investigating the formulation of various proposals of micromorphic and micropolar
continua, the first author became convinced, some 15 years ago [1], of the fact that most classical models do
show an evident redundancy of their kinematical tangent strain descriptors.

This feature has been a main obstacle for the application of such generalized continua to engineering
problems, due to the ensuing intractable multitude of constitutive parameters required by the models, even in
the simulation of linear elastic behaviors.

The present paper, which is an outcome of the long-term scientific collaboration between the authors,
provides a rather detailed illustration of the matter, performed with the adoption of an intrinsic formalism,
aimed at emphasizingmechanical concepts rather than analytical developments.No components of the involved
tensor fields will appear in the treatment.

The ultimate target is to underline essential critical features of classical models of generalized continua and
to present a proposal of a simplest model of micromorphic continuum, free from redundancies but still capable
of enriching the Cauchy continuummodel in a significant way. Effectiveness of the model in providing useful
simulations for applications will be discussed in further investigations.

2 Generalities

A generalized 3D continuum is conceived as a macro-body, a Cauchymedium, with 3Dmicrobodies attached
at each of its points.

In the micromorphic models of generalized continua considered in [2–4] the microbodies are assumed
to undergo an arbitrary act of motion with a microuniform gradient. The overall kinematics is described by
the field of spatial macro-velocities and by a field of linear operators intended to describe the homogeneous
distortion rate of the microbodies. Investigations on classical models are carried out in [5,6] and a hierarchy
of models of generalized continua is considered in [7].

A review of pertinent literature has been provided in [8] and a clear exposition of the kinematics of polar
media may be found in [9]. Mathematical tools aimed to assessing existence and uniqueness results for the
relaxed micromorphic model proposed in [10] have been contributed in [11–15]. Detailed bibliographic lists
are included in the references above.

A main starting point in the revisitation of the theory of generalized continua presented in this paper,
consists in showing that the classical micromorphic models proposed by Mindlin [3], Eringen and Şuhubi
[4], Germain [16] are kinematically redundant. The same applies to subsequent modifications. A preliminary
communication on the matter was given by the second author in [17].

The plan is the following.
Essentials of kinematical aspects of Cauchy 3D continua are briefly recalled in Sect. 3 for comparison

sake. Tangent strain measures of the classical generalized models proposed in [3,4,16] are collected in Sect. 4.
According to a basic criterion in the theory of optimization [18], constraint qualification is imposed to the

implicit representation of rigid body motions. In Sects. 4 and 5 classical kinematical models for generalized
continua are displayed and the redundancy of the involved kinematics is put into evidence.

The overall tangent strain measure adopted in the relaxed micromorphic model, proposed in [10,15] is
displayed in Sect. 6 and non-redundancy is inferred.

The simplest non-redundant model is proposed in Sect. 7 by dropping the microcurvature term from
Mindlin formulation, and the basic equilibrium equations are displayed.

The variational formulation of the relevant elastostatic problem is derived and briefly discussed in Sects. 8
and 9. The essential innovative contributions brought to the topic are summarized in the concluding Sect. 10
with a synoptical comparison of the complexity of the investigated models.

3 Cauchy continuum: kinematical model

Let us preliminarily recall some kinematical notions for a Cauchy 3D continuum as reformulated in the
context of 4D space–time Euclid manifold E in [19–21].
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On a placement Ω in the dynamical trajectory manifold TE ⊂ E ,1 the spatial velocity field is denoted by
v : Ω �→ TSΩ , with SΩ spatial slice containing Ω and T tangent functor.

In continuum mechanics a peculiar notion concerns the definition of rigid velocity fields. These fields,
also termed infinitesimal isometries, play a primary role in the definition of dynamical equilibrium and in the
formulation of consistent constitutive relations [22–24].

Definition 1 (Rigid spatial velocity fields) Spatial velocity fields v : Ω �→ TSΩ are said to be rigid if the
length of any line-segment drawn in Ω does not tend to change by the effect of the motion.2

The length measurement tool is the covariant, positive definite and symmetric metric tensor g : Ω �→
Cov(TΩ) and the rate of variation of a length during the motion is evaluated by means of the covariant tensor
defined by the Lie-derivative:

LV(g) : Ω �→ Cov(TΩ), (1)

where V = ∂α=0 ϕα is the space–time velocity of the motion ϕα : TE �→ TE along the trajectory TE . The
splitting into time and space components gives

V = v + Z, (2)

with Z : E �→ TE is the rigging of time arrows.
Then, if t ∈ TΩ is a versor tangent to a placement Ω , the rate of variation of its length during the motion

is expressed by
1
2 LV(g)(t , t), being g(t , t) = 1. (3)

An implicit description of the linear space of rigid spatial velocities in Ω is provided by Euler formula
for the tangent strain

1
2 LV(g) = g · sym∇(v) = 0. (4)

This is the starting point for introducing the notion of stress field in the Cauchy continuum, as Lagrange
multiplier of the rigidity constraint [1,16,26,27].

The next result will be referred to in discussing the kinematics of generalized continua. A proof can be
found in [1,28].

Lemma 1 (Euler’s kinematical lemma) The vanishing, at a point x ∈ Ω of a 3D connected body, of the
gradient of the tangent strain operator sym∇(v) implies the vanishing of the second gradient of the spatial
velocity field at the same point, i.e.,

∇(sym∇(v))x = 0 �⇒ (∇2v)x = 0. (5)

Condition Eq. (4) implies that the macro-velocity field is C∞(Ω). The proof of this regularity property
follows from the theory of elliptic differential equations [29, p. 384, fn. 21], [30]. The implication in Lemma 1
extends to the nonlinear case of finite displacements [1]. Under the stronger assumption that sym(∇v) = 0, a
kinematical result similar to Lemma 1 is well-known [31, §7], and its nonlinear version is named Liouville
rigidity Lemma, see [14,32].

4 Micromorphic continua: classical formulations

A 3Dmicromorphic body is geometrically described by a 3D bounded and connected domainΩ , kinematically
modeled according to Cauchy theory, and by an overlying microstructure.

At each point x ∈ Ω , a 3D linear space TxΩ tangent to the domain Ω and a microbody Mx are con-
sidered. The microbody undergoes an act of motion at the microscale with a homogeneous microgradient

1 The dynamical trajectory TE is an embedded submanifold of the event manifold E [25].
2 Infinitesimal isometries are often characterized in literature by the property that the distance between any pair of material

points does not tend to change. This definition is not applicable to wires, that can be heaped up or developed in a straight line
without changing their length, or to thin plane sheets, that can be bent around a cylinder without changing the lengths of their
material lines.
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G : TΩ �→ TΩ of the microvelocity field, as described in [3, (1.7) p.5]. The microgradient operator is addi-
tively decomposed as3

G = sym(G) + skew(G). (6)

The symmetric and the skew-symmetric part, evaluated according to the metric tensor g : Ω �→ Cov(TΩ),
respectively describe the overall tangent strain and the act of rotation (spin) of the 3D microbody.

Definition 2 (Generalized rigid kinematics) The overall rigid body kinematics in a generalized continuum is
characterized by the following properties.

1. The underlying Cauchy continuum undergoes a rigid act of motion, as expressed by vanishing of the
tangent macro-strain sym∇(v) = 0, Eq. (4).

2. Each microbody undergoes a uniform rigid act of motion, a requirement expressed by vanishing of the
tangent microstrain sym(G) = 0.

3. The microspin field skew(G) is spatially uniform, as expressed by the condition ∇(skew(G)) = 0.
4. The macro-micro relative spin vanishes, a requirement expressed by the condition

skew(∇(v)) = skew(G). (7)

If the tangent microstrain sym(G) is assumed to vanish identically, then themicromorphicmodel is termed
micropolar.

Unlike the Cauchy model, in which the tangent strain is well-characterized by the kinematic differential
operator sym∇, several choices have been made in the literature in order to provide an implicit description for
the rigid body kinematics of a generalized continuum, to fulfill the conditions listed in items 1, 2, 3, 4.

Classical examples of overall tangent strain measures are those proposed by Mindlin [3], Eringen and
Şuhubi [4], Germain [16], whose essential features are discussed below.

The assumed overall tangent strain are conveniently represented by the block matrix formulations:

1. Mindlin and Germain overall tangent strain

B
[
v

G

]
=

⎡
⎢⎣

0 ∇
∇ −I

sym∇ 0

⎤
⎥⎦ ·

[
v

G

]
=

⎡
⎢⎣

∇(G)

∇(v) − G

sym∇(v)

⎤
⎥⎦ , (8)

2. Eringen and Şuhubi overall tangent strain

B
[
v

G

]
=

⎡
⎢⎣
0 ∇
∇ −I

0 sym

⎤
⎥⎦ ·

[
v

G

]
=

⎡
⎢⎣

∇(G)

∇(v) − G

sym(G)

⎤
⎥⎦ . (9)

Note that 27 + 9 + 6 = 42 parameters are involved in both Eqs. (8) and (9).
The two models are equivalent. This may be seen by splitting the gap ∇(v) − G into symmetric and

skew-symmetric parts and observing the linear dependence of the set of tensors

sym∇(v), sym(G), sym(∇(v) − G). (10)

Each of the tangent strain measures in Eqs. (8) and (9) is equivalent to the following one which will be
referred to as the Mindlin–Eringen model.

B
[
v

G

]
=

⎡
⎢⎢⎢⎣

0 ∇
0 sym

sym∇ 0

skew∇ −skew

⎤
⎥⎥⎥⎦ ·

[
v

G

]
=

⎡
⎢⎢⎢⎣

∇(G)

sym(G)

sym∇(v)

skew(∇(v) − G)

⎤
⎥⎥⎥⎦ . (11)

The microcurvature field ∇(G), appearing in Eqs. (8), (9) and (11) as component of the overall tan-
gent strain, is considered as responsible for the introduction of a characteristic length scale in the modeling.

3 In the recent literature the microgradient operator is often denoted by P and termed micro (plastic) distortion [10, p. 645].
We do not append this meaning for sake of freedom in the physical interpretation of micromorphic constitutive models.
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This stems out of the fact that the ratio between the physical dimensions of the terms ∇(G) and sym∇(v) is
[L−1], so that, consequently, the ratio between the physical dimensions of the dual microstress and macro-
stress terms will be [L]. Adopting the standard elastic moduli of Cauchy model as reference, a factor [L2]
will appear in the elastic constitutive relations.

A fully coupled elastic relation involves 42×43/2 = 903 elastic coefficients. Uncoupled elasticity requires
only 27 × 28/2 + 9 × 10/2 + 6 × 7/2 = 378 + 45 + 21 = 444 elastic coefficients.

4.1 Kinematic redundancy

In investigating constrained problems of optimization theory, it is emphasized that constraint qualification
conditions must be fulfilled [18].

A similar requirement applies to the conditions expressing the property of rigidity in the kinematics of
generalized continua.

Definition 3 (Constraint qualification) A kinematic operator B which provides an implicit description of a
manifold of feasible fields, is said to meet a constraint qualification if no other implicit description can be
constructed by extracting a strictly more economical condition from the given operator.

As proven below, although natural and commonly assumed in optimization theory, the kinematic operators
for classical micromorphic continua, exposed in Eqs. (8) and (9), do not fulfill the qualification requirement
and are therefore termed redundant.

Proposition 1 (Redundancy of classical models) The tangent strain measures proposed by Mindlin, Ger-
main, Eringen and Şuhubi, here reproduced in Eqs. (8) and (9), and in the equivalent formulation (11), are
redundant.

Proof In a connected 3D macro-body at a placement Ω , the vanishing of the lowest three components of the
overall tangent strain in Eq. (11) implies the vanishing of the top one. To prove this statement we have to show
that

sym(G) = 0
sym∇(v) = 0

skew(∇(v) − G) = 0

⎫⎬
⎭ �⇒ ∇(G) = 0. (12)

If sym∇(v) = 0 in Ω then, by Euler kinematical Lemma 1, we have that

∇∇(v) = 0. (13)

If in addition sym(G) = 0 and skew(∇(v) − G) = 0 in Ω , then G is constant and skew-symmetric and
hence the microcurvature component ∇(G) of the overall tangent strain vanishes identically in Ω . This proves
redundancy of the classical models for micromorphic continua. 
�

We emphasize that redundancy is a purely kinematical notion which is independent of the constitutive
modeling. As evident from the implications in Eq. (12), kinematic redundancy stems out of the microcurvature
term ∇(G).

4.2 Equilibrium

Differential and boundary equilibrium conditions for the classical micromorphic kinematic model formulated
by Eq. (11) are deduced from the following abstract expression of Green’s formula [27]∫

Ω

〈s,B · p〉 · μ =
∫

Ω

〈
B′
0 · s,p〉 · μ +

∮
∂Ω

〈N · s, Γ · p〉 · ∂μ, (14)

where a dot · denotes linear dependence on the subsequent item,
– p is the overall field of macro-micro kinematic parameters,
– s is the overall field of stress parameters,
– B is the kinematic operator,
– B′

0 is the formal adjoint differential equilibrium operator,
– N and Γ are the flux and boundary value operators,
– μ and ∂μ are the volume form in Ω and the area form on the boundary ∂Ω ,
– 〈, 〉 is the duality pairing.
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4.2.1 Equilibrium equations for Mindlin–Eringen model

The macro–micro-kinematical field p (with 3+ 9 = 12 scalar parameters) and the overall tangent strain ε and
stress field s (with 27 + 9 + 6 = 42 scalar parameters) are expressed by the block matrices

p =
[
v

G

]
, ε =

⎡
⎢⎢⎢⎣

∇(G)

sym(G)

sym∇(v)

skew(∇(v) − G)

⎤
⎥⎥⎥⎦ , s =

⎡
⎢⎢⎢⎣
Tcurv

Tmicro

Tmacro

Tgap

⎤
⎥⎥⎥⎦ . (15)

The overall tangent strain field adopted in [3,16] is represented by the kinematic operator B in Eq. (11).
Without loss in generality we may assume that

⎧⎪⎪⎨
⎪⎪⎩

Tmicro = sym(Tmicro),

Tmacro = sym(Tmacro),

Tgap = skew(Tgap).

(16)

Then Green’s formula writes

∫
Ω

〈 ⎡
⎢⎢⎢⎣
Tcurv

Tmicro

Tmacro

Tgap

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

∇(G)

sym(G)

sym∇(v)

skew(∇(v) − G)

⎤
⎥⎥⎥⎦

〉
· μ = −

∫
Ω

〈[
Div(Tgap + Tmacro)

DIV(Tcurv) + Tgap

]
,

[
v

G

]〉
· μ

+
∮

∂Ω

〈[
(Tgap + Tmacro) · n

Tcurv · n
]

, Γ

[
v

G

]〉
· ∂μ.

(17)

The differential and boundary equilibrium operators B′
0 and N write thus

B′
0 =

[
0 0 −Div −Div

−DIV 0 0 −I

]
, N =

[
0 0 I I

·n 0 0 0

]
, (18)

and the equilibrium conditions are given by

B′
0

⎡
⎢⎢⎢⎣
Tcurv

Tmicro

Tmacro

Tgap

⎤
⎥⎥⎥⎦ =

[
bv
bG

]
, N

⎡
⎢⎢⎢⎣
Tcurv

Tmicro

Tmacro

Tgap

⎤
⎥⎥⎥⎦ =

[
tv
tG

]
, (19)

and explicitly ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Div(Tmacro + Tgap) = bv, in Ω,

−DIV(Tcurv) − Tgap = bG, in Ω,

(Tmacro + Tgap) · n = tv, on ∂Ω,

Tcurv · n = tG, on ∂Ω.

(20)



Micromorphic continua: non-redundant formulations 1665

5 Micropolar continua: classical formulations

A clear exposition of kinematics of micropolar continua can be found in a recent paper by Del Piero [9].
The model there proposed is the micropolar analog of the Mindlin–Eringen model of Eq. (11), under the
assumption that

sym(G) = 0, (21)

so that, setting
w = 1

2axial skew(G), (22)

the overall tangent strain is expressed by

B
[
v

w

]
=

⎡
⎢⎣

0 ∇
0 sym∇

curl −I

⎤
⎥⎦ ·

[
v

w

]
=

⎡
⎢⎣

∇(w)

sym∇(v)

curl(v) − w

⎤
⎥⎦ . (23)

To describe the pair {v,w} 3+ 3 = 6 scalar kinematic parameters are involved and 9+ 6+ 3 = 18 scalar
parameters are required for the overall tangent strain.

For a coupled linear elastic relation, 18 × 19/2 = 162 elastic coefficients are thus needed, while, for an
uncoupled elastic relation, as many as 45 + 6 + 21 = 72 elastic coefficients are required in the anisotropic
case.

Contrary to the statement in [9], where the components of the tangent strain in Eq. (23) are qualified as
free generalized deformations, the model so defined is redundant since

sym∇(v) = 0

curl(v) − w = 0

}
�⇒ ∇(w) = 0. (24)

The same model was also adopted in [33].
In the continuum with latent microstructure considered by Capriz in [34], and investigated by Del Piero

in [9] under the name of constrained Cosserat continuum, the kinematical constraint w = curl(v) in the
micropolar model of Eq. (23) is assumed to be identically fulfilled.

The overall kinematical field p (with 3 + 3 = 6 scalar parameters) and the overall stress field s (with
9 + 6 = 15 scalar parameters) are then expressed in block matrix notation by

p =
[
v

w

]
, s =

[
Tcurv

Tmacro

]
. (25)

The overall tangent strain is represented by the kinematic operator B, expressed as a block matrix by

B
[
v

w

]
=

[
0 ∇

sym∇ 0

]
·
[
v

w

]
=

[ ∇(w)

sym∇(v)

]
, (26)

with Tmacro = sym(Tmacro) and the kinematic constraint

w = 1
2 axial skew∇(v) = curl(v). (27)

Then Green’s formula writes∫
Ω

〈[
Tcurv

Tmacro

]
,

[ ∇(w)

sym∇(v)

]〉
· μ = −

∫
Ω

g(Div(Tmacro) , v) + g(Div(Tcurv) , curl(v)) · μ

= −
∮

∂Ω

g(TA
macro · v ,n) + g(TA

curv · curl(v) ,n) · ∂μ.

(28)

This leads to complex bulk and boundary equilibrium conditions [9].
The model is still redundant due to the implication in Eq. (24).
For a coupled linear elastic relation, 15 × 16/2 = 120 elastic coefficients are needed, while, for an

uncoupled elastic relation, as many as 45 + 21 = 66 elastic coefficients are required in the anisotropic case.
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6 Micromorphic continua: the relaxed model

In recent papers [10,15]Neff and coworkers have proposed a relaxed model of micromorphic continuumwith
a significant reduction of the number of independent parameters defining the overall tangent strain measure.

In the relaxed model, the overall tangent strain, expressed in our notations, is given by

B
[
v

G

]
=

⎡
⎢⎣

0 Curl

0 sym

sym∇ −sym

⎤
⎥⎦ ·

[
v

G

]
=

⎡
⎢⎣

Curl(G)

sym(G)

sym(∇(v) − G)

⎤
⎥⎦ . (29)

The number of involved kinematical parameters is halved from 42 (for the classical models in Sect. 4) to
9 + 6 + 6 = 21.

In the anisotropic case, with a coupled elastic relation, 21 × 22/2 = 231 elastic coefficients are needed,
while uncoupled elasticity involves as many as 45 + 21 + 21 = 87 elastic coefficients.

These are to be compared respectively with the huge number of 903 and 444 parameters needed by the
classical models described in Sect. 4.

The overall tangent strainmeasure adopted in the relaxedmicromorphic continuummodel is non-redundant
since

sym(G) = 0

sym(∇(v) − G) = 0

}
/�⇒ Curl(G) = 0. (30)

Fulfillment of the requirements in Definition 2 and existence and uniqueness of the relevant elastostatic
problem are discussed in [6,11–14] by assessment of inequalities in involved functional spaces.

A reasoning analogous to the one leading to Eq. (11) shows that the relaxed model in Eq. (29) is equivalent
to the following one which allows for a more direct comparison with the classical model in Eq. (11).

B
[
v

G

]
=

⎡
⎢⎣

0 Curl

0 sym

sym∇ 0

⎤
⎥⎦ ·

[
v

G

]
=

⎡
⎢⎣
Curl(G)

sym(G)

sym∇(v)

⎤
⎥⎦ . (31)

7 Micromorphic continua: the simplest model

The simplest model for a micromorphic 3D body can be formulated by dropping the microcurvature term
∇(G), in the Mindlin–Germain model Eq. (8). As a consequence the model is non-redundant.

The introduction, in the usual way, of a characteristic length scale has no more room and so also the issues
evidenced in [35].

The resulting tangent strain measure is expressed by the kinematic operator

B
[
v

G

]
=

⎡
⎢⎣

0 sym

sym∇ 0

skew∇ −skew

⎤
⎥⎦ ·

[
v

G

]
=

⎡
⎢⎣

sym(G)

sym∇(v)

skew(∇(v) − G)

⎤
⎥⎦ . (32)

We remark a drastic reduction of involved kinematical parameterswith respect to the classicalmicromorphic
continua discussed in Sect. 4, from 42 to 6 + 3 + 6 = 15. By setting

p =
[
v

G

]
, s =

⎡
⎢⎣
Tmicro

Tmacro

Tgap

⎤
⎥⎦ , (33)

with the properties in Eq. (16). The operators of differential and boundary equilibrium B′
0 and N write as

B′
0 =

[
0 −div −div

I 0 −I

]
, N =

[
0 ·n ·n
0 0 0

]
, (34)
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and the equilibrium conditions take the form

B′
0

⎡
⎢⎣
Tmicro

Tmacro

Tgap

⎤
⎥⎦ =

[
bv
bG

]
, N

⎡
⎢⎣
Tmicro

Tmacro

Tgap

⎤
⎥⎦ =

[
tv
tG

]
. (35)

and explicitly ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div(Tmacro + Tgap) = bv, in Ω,

Tmicro − Tgap = bG, in Ω,

(Tmacro + Tgap) · n = tv, on ∂Ω,

0 = tG, on ∂Ω.

(36)

From Eqs. (16) and (36) we infer that {
Tmicro = sym(bG),

−Tgap = skew(bG).
(37)

Introducing the effective body force and contact tractions as{
b := bv − Div(skew(bG)),

t := tv + skew(bG) · n,
(38)

the equilibrium conditions are expressed by{ −Div(Tmacro) = b, in Ω,

Tmacro · n = t, on ∂Ω.
(39)

In the simplest model the symmetric macro-stress Tmacro is subject to the standard Cauchy equilibrium
conditions with bulk and boundary force distributions given by Eq. (38), and the microstress is expressed by
Tmicro = sym(bG).

The model can be equivalently formulated by assuming as overall kinematical and stress fields the triplets

p =
⎡
⎢⎣

v

sym(G)

w

⎤
⎥⎦ , s =

⎡
⎢⎣
Tmicro

Tmacro

Tgap

⎤
⎥⎦ , (40)

with
w := 1

2axial skew(G). (41)
The overall kinematic operator B is thus provided by

B

⎡
⎢⎣

v

sym(G)

w

⎤
⎥⎦ =

⎡
⎢⎣

0 I 0

sym∇ 0 0

curl 0 −I

⎤
⎥⎦ ·

⎡
⎢⎣

v

sym(G)

w

⎤
⎥⎦ =

⎡
⎢⎣

sym(G)

sym(∇v)

curl(v) − w

⎤
⎥⎦ , (42)

and the operators of differential and boundary equilibrium B′
0 and N write as

B′
0 =

⎡
⎢⎣
0 −div −div

I 0 −I

0 0 0

⎤
⎥⎦ , N =

⎡
⎢⎣
0 ·n ·n
0 0 0

0 0 0

⎤
⎥⎦ . (43)

A non-redundant model for a micropolar 3D body is deduced from Eq. (32) by setting

sym(G) = 0, Tmicro = 0. (44)

Dropping the leading terms, the overall tangent strain and stress become

B
[
v

w

]
=

[
curl(v) − w

sym∇(v)

]
, s =

[
Tmacro

Tgap

]
. (45)

and the equilibrium equations are formally given by Eq. (39).
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8 Linear elastostatics

In the simplest non-redundant micromorphic model described by the kinematics in Eq. (32), there are 15 scalar
components of the tangent strain measure and hence as many as 15 × 16/2 = 120 linear elastic coefficients
for a fully coupled linear anisotropic elastic behavior with Green potentials.

This multitude is to be compared with the huge number of 903 elastic coefficients for Mindlin’s model in
Eq. (8).4

The geometrically linearized variational elastostatic problem, will be displayed with reference to the sim-
plest micropolar model described by Eq. (45).

Let us denote by L the linear space of macro-velocity fields in Ω conforming with linear boundary
conditions, by � = L∗ the dual space of load distributions and by H the space of square integrable tangent
vector fields in Ω .

Assuming a linear elastic relation between the stress and the overall tangent strain

s = E · B(p), p =
[
v

w

]
, (46)

with v ∈ L macro-velocity field, w ∈ H microspin field, E symmetric and positive definite constitutive
operator, the elastostatic problem is expressed by the following variational condition involving the bilinear
form a of elastic energy and the overall force distribution f acting over the body

a(E · B(p) ,B(δp)) = 〈f, δp〉. (47)

The overall force distribution is composed by the effective macro-loading � ∈ � and by the microloading
c ∈ H , so that

〈f, δp〉 := 〈�, δv〉 + 〈c, δw〉. (48)

In the spirit of geometric linearization, velocities and microspin will be treated as small displacements and
small rotations. In the formalism of block matrices the linear elastic relation is then expressed by

[
Tmacro

Tgap

]
=

[
E11 E12

E21 E22

]
·
[

sym∇(v)

curl(v) − w

]
, (49)

with E11,E22 positive definite and symmetric and E21 = EA
12 such that the Schur complements E11 −

E12E
−1
22 E21 and E22 − E21E

−1
11 E12 are positive definite.

The representative matrices of E11, E22 and E12,E21 do respectively have 3 × 4/2 = 6, 6 × 7/2 = 21
and 3 × 6 = 18 elastic coefficients, for a total of 9 × 10/2 = 45 elastic coefficients.

The bilinear form of the elastic energy functional is then expressed by

a(p , δp) :=
∫

Ω

(
〈E11 · sym∇(v), sym∇(δv)〉 + 〈E22 · (curl(v) − w), curl(δv) − δw〉

+ 〈E12 · (curl(v) − w), sym(∇(δv))〉 + 〈E21 · (sym∇(v), curl(δv) − δw〉
)

· μ,

(50)

with the related quadratic energy functional:

1
2 a(p ,p) :=

∫
Ω

1
2

(
〈E11 · sym∇(v), sym∇(v)〉 + 〈E22 · (curl(v) − w), curl(v) − w〉

+ 2 〈E12 · (sym∇(v), curl(v) − w〉
)

· μ.

(51)

4 In [3, p. 14], with reference to the redundant micromorphic model, Mindlin observes that: Only 42 × 43/2 = 903 of the
42× 42 = 1764 coefficients are independent. That this feature makes the general micromorphic model suitable for anything and
nothing and has severely hindered the application of micromorphic models, is a comment reported in [10].
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9 Coupled versus uncoupled elasticity and characteristic length

From the variational formulation Eq. (47) and the expression Eq. (50) of the elastic energy functional, per-
forming the variation δw ∈ H while holding δv = 0, we get the condition

E22 · (curl(v) − w) + E21 · (sym∇(v)) = −c. (52)

Therefore, under the special assumptions of vanishing microloading (c = 0) and uncoupled elasticity
(E12 = 0) it follows that w = curl(v) and the micropolar simplest elastic model collapses into the one of a
standard elastic continuum.

This is not the case when a coupled linear elasticity is considered or when non-elastic contributions to the
overall tangent strain are included in the constitutive relation.

The absence of a curvature term makes the usual procedure, leading to the introduction of a (squared)
characteristic length on the basis of a special constitutive assumption, unfeasible. A characteristic length
may however be introduced in the new micropolar model by a geometric argument which does not involve
constitutive aspects [36]. The simplest non-redundant micromorphic model proposed in this paper appears to
be a proper candidate for the simulation of complex material behaviors.

10 Closing remarks

The outcomes of the present paper and the essential feature of the proposed simplest micromorphic and
micropolar models may be summarized as follows.

1. Classical kinematical models of generalized continua are shown to be based on tangent strain measures
that fail to meet the constraint qualification prescription of optimization theory.

2. The micromorphic models proposed byMindlin [3],Germain [16], Eringen and Şuhubi [4], are shown
to be kinematically redundant. Also redundant are the micropolar models considered by Capriz [34] and
Del Piero [9].

3. The relaxed model of micromorphic continuum, formulated by Neff and coworkers [10,15], provides
a drastic reduction of the number of kinematical parameters, The relevant differential expression of the
overall tangent strain measure is non-redundant.

4. The simplest non-redundant model, here formulated by dropping the redundant microcurvature term, is
characterized by a further reduction of the number of kinematical parameters, as depicted, for coupled
and uncoupled linear elasticity, in Tables 1 and 2, respectively for micromorphic and micropolar models.
A characteristic length scale may be introduced in the simplest micropolar model by purely geometric
considerations [36].

5. Differential and boundary equilibrium conditions are displayed, and the variational formulation of the
linearized elastostatic problem for the simplest non-redundant model is developed and briefly discussed.

The simplest model is free from the inherent conceptual weakness of most redundant models proposed in
literature and could contribute to open the way for an improved applicability of the theory of micromorphic
and micropolar continua to engineering problems.

Effectiveness of the proposed model will be tested in a further research activity devoted to applications to
complex material problems of engineering interest.

Table 1 Elastic parameters: micromorphic model

Coupled elasticity Uncoupled elasticity

Mindlin–Eringen 903 444
Neff et al. 231 87
Romano–Barretta 120 48

Table 2 Elastic parameters: micropolar model

Coupled elasticity Uncoupled elasticity

Del Piero 162 72
Capriz 120 66
Romano–Barretta 45 27
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