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Abstract Especially in the automotive industries, elastomers take an important role. They are used in dif-
ferent types of bearings, where they inhibit vibration propagation and thereby significantly enhance driving
performance and comfort. That is why several models have already been developed to simulate the material’s
mechanical response to stresses and strains. In many cases, these models are developed under isothermal
conditions. Others include the temperature-dependent mechanical behaviour to represent lower stiffness’s for
higher temperatures. In this contribution it is shown by some exemplary experiments that viscoelastic mate-
rial heats up under dynamic deformations. Hence, the material’s properties change due to the influence of
the temperature without changing the surrounding conditions. With some of these experiments, it is shown
that a fully coupled material model is necessary to predict the behaviour of bearings under dynamic loads.
The focus of this contribution lies on the modelling of the thermoviscoelastic behaviour of elastomers. In a
first step, a twofold multiplicative split of the deformation gradient is performed to be able to describe both
mechanical and thermal deformations. This concept introduces different configurations. The stress tensors
existing on these configurations are used to formulate the stress power in the first law of thermodynamics
which allows to simulate the material’s self-heating. To formulate the temperature dependency of the mechan-
ical behaviour, the non-equilibrium part of the Helmholtz free energy function is formulated as a function of
the temperature and the deformation history. With the introduced model, some FE calculations are carried out
to show the model’s capability to represent the thermoviscoelastic behaviour including the coupling in both
directions.

Keywords Viscoelasticity · Dissipative heating · Thermomechanics · Nonlinear continuum mechanics

1 Introduction and motivation

1.1 State of the art

In a large number of applications, filler-reinforced elastomers play fundamental roles. In the automotive
industry, for example, they are used to decouple undesired engine vibrations fromcar bodies, to generate desired

Communicated by Andreas Öchsner.

M. Johlitz (B) · B. Dippel · A. Lion
Institute of Mechanics, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
E-mail: michael.johlitz@unibw.de

B. Dippel
E-mail: benedikt.dippel@unibw.de

A. Lion
E-mail: alexander.lion@unibw.de

http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-015-0469-7&domain=pdf


1112 M. Johlitz et al.

elastokinematic properties of vehicle suspensions or to act as material for sealings. In the last application they
have to withstand long-term thermal and mechanical loadings or the exposure to chemical substances like oil,
benzene or anti-freezing agents. Their relative low costs and low specific weight are additional advantages. In
order to utilise these advantages it is necessary to be able to predict and to simulate the behaviour of elastomeric
parts under environmental influences, mechanical loads and thermal exposures during their lifetime.

In this context, there aremany theoretical and experimental studies from industries, universities and research
institutes. Besides their pronounced deformability, filler-reinforced elastomers exhibit a relative large number
of inelastic phenomena. At first, the Mullins effect which takes place under large quasi-static deformations
and the Payne effect under small dynamic strains should be mentioned (cf. [13,42] or [38] and the citations
therein).

The frequency- and rate-dependent material behaviour (cf. [17,40,41] or [20] among many others) or
the temperature dependence (cf. [20,24,28] or [50]) is of high importance for applications with oscillating
loads. A usual textbook on the elastic and thermoelastic behaviour of elastomers under finite strains has been
provided by Treloar [47]. In this book, micro-mechanically based and phenomenological models as well as
thermomechanical coupling effects like thermoelastic inversion and the Gough Joule effect are discussed.
Based on physical considerations, unfilled elastomers are frequently assumed to behave entropy elastic like an
ideal gas such that the stress is a linear function of the thermodynamic temperature. Alts [1] also considered
energy elastic contributions to the stress.

In continuum mechanics, there are many articles in which the material behaviour of elastomers is
constitutively modelled. To this end, [4,9,21,39] or [35] developed micro-mechanically based models. In
[2,11,15,22,27,32,34,36,40,41,44] or [48], phenomenological models of finite nonlinear viscoelasticity or
thermoviscoelasticity are proposed. These approaches are formulated using internal variables. The related
fundamentals can be found in [8] or [7], and a historical overview over the area of applications is provided by
Horstemeyer and Bammann [18].

Themultiplicative decomposition of the deformation gradient into several parts with special physicalmean-
ings is a frequently applied method. Representative decompositions split the deformation gradient into elastic
and viscous or plastic parts, thermal and mechanical parts, volumetric and isochoric parts or combinations of
them (cf. [30,33] or [44] and the citations therein). Based on this method, the specific Helmholtz free energy is
frequently formulated as the sum of volumetric and isochoric, mechanical and thermal or elastic and inelastic
parts. In [31], a hybrid free energy density has been proposed which depends on the pressure, the isochoric
part of the deformation, the temperature and internal variables. The advantage of this approach comes to light
when the stress strain behaviour of a material in combination with its calorimetric behaviour under isobaric
conditions has to be described.

In order to formulate thermodynamically consistent constitutive models, the Clausius–Duhem inequality
is taken into account in combination with the expression for the specific free energy of the model (cf. [14]). In
many applications, the influence of the temperature on the mechanical material behaviour or of the inelastic
energy dissipation of the material to the temperature is irrelevant.

On the other hand, there are also applications in which temperature and dissipation play important factors.
In [11,28] experimentally observed temperature changes which are caused by energy dissipation are measured.
In suspension bearings or engine mounts of passenger cars, temperature-induced effects have an enormous
influence on the mechanical behaviour, the durability properties and the lifetime of the mount. The typical
temperature range which is relevant for cars is between −20 ◦C in winter up to about 100 ◦C in the direct
vicinity of the engine or during dynamic deformations with large frequencies and amplitudes. Fundamental
aspects with regard to dissipation inequalities are discussed in [25,26]. The temperature-dependent elastic or
inelastic behaviour of polymers is modelled in [3,5,6,11,29,39] or [43]. Nevertheless, there are many open
questions to be answered in the future.

The current article is structured as follows. In the next Sect. 1.2, experimental investigations with regard
to the temperature dependence of the stress relaxation and dissipative heating during cyclic loadings are
shown. They are used in order to motivate the development of an adequate model. Section 2 is addressed
to the derivation of a thermodynamical consistent constitutive model which allows the representation of the
thermoviscoelastic behaviour of filler-reinforced elastomers, i.e. which is able to represent the dissipative self-
heating of elastomers. In Sect. 3, the model is implemented as a coupled thermomechanical problem into an
in-house code. Some exemplary simulations are carried out by solving boundary value problems for a simple
geometry. The results are presented and discussed. The paper closes with an outlook to future work.
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1.2 Experimental motivation

Since this article is addressed to the development of a consistent framework to represent thermoviscoelastic
material properties of filler-reinforced elastomers, only a small number of experiments with regard to tem-
perature dependence and dissipative heating are presented. They are only used to highlight the well-known
effects and to motivate the structure of the model which is developed in this paper. For further studies and
more detailed investigations the reader is referred to the works of [20,23,28] or [11] and the citations therein.

The investigated elastomer is used in the automotive industry for suspension bearings. It is a carbon black-
filled natural rubber compound with a Shore A hardness of 60 and a carbon black content of 50 phr. Its
glass transition temperature θG is approximately 240K. In order to analyse the temperature dependence of the
material behaviour, relaxation tests under a constant and rapidly applied shear deformation of 5◦ are driven.
In order to eliminate the influence of thermal expansion effects, shear tests were made. The experiments were
carried out under isothermal conditions at temperature values of−10, 20, 50 and 80 ◦Cwhich are far above the
glass transition temperature of the elastomer and the holding times were 1200s. The experimentally observed
stress responses which are plotted in Fig. 1 demonstrate that the relaxation is more pronounced when the
temperature increases. In order to interpret this effect in terms of thermoviscoelasticity, it can be assumed that
the equilibrium stress is entropy elastic such that it depends linearly on the absolute temperature. In addition,
it can be assumed that the stress relaxation at the highest temperature of 80 ◦C is nearly finished after about
1200s such that the stress has reached its equilibrium value. These assumptions lead to the consequence that
the equilibrium stress at −10 ◦C is only (273.15− 10K)/(273.15+ 80K) ≈ 0.75 of that at 80 ◦C leading to a
value of about 0.09 MPa. This estimation shows that the temperature dependence of the stress relaxation can
be attributed to the overstress. Ignoring the temperature dependence would lead to an oversimplification.

Another important question is concerned to the source of the specimens temperature. Under equilibrium
conditions, the most significant influence is the temperature of the environment or the surrounding medium,
for example hot air or a cooling fluid. If the external temperature does not change and the mechanical loading
processes are quasi-static, the conditions of the specimen remain isothermal. If the loading processes are
sufficient fast or the boundary conditions are adiabatic and the elastomer is entropy elastic and shows thermal
expansion, the thermoelastic Gough Joule effect can be seen (cf. [47]). In this case, the specimen temperature is
a unique function of the deformation. If the elastomer is filler-reinforced, it exhibits also viscoelastic dissipation
effects which lead to a pronounced self-heating under dynamic excitations with sufficient high amplitudes and
frequencies. In general, all effects are superimposed. In Fig. 2, the changes in the stationary value of the surface
temperature of standard tension specimens with a cross-sectional area of 4mm×2mm are plotted as a function
of the excitation frequency. With an infra-red camera, the surface temperature is measured and evaluated after
constant values were reached. The strain amplitude varies between 5 and 20% and the static pre-deformation
was 30%. It can be seen that the temperature increases are not negligible and become more pronounced when
the amplitude and the frequency increase.

Fig. 1 Simple shear relaxation tests under different temperatures; the higher the temperature, the lower the stress in relaxation
tests under 5◦ of shear
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Fig. 2 Self-heating under dynamic tension deformations with different frequencies and amplitudes of 5, 10 and 20%; measured
surface-temperatures are related to the starting temperature of 23 ◦C

Considering these observations, it is obvious that a bi-directionally coupled thermomechanical formulation
of a material model is required, i.e. that dynamical loads induce a significant self-heating of the material
(increase in the temperature) and the increase in the temperature again influences the mechanical behaviour in
terms of the viscoelasticity (modification of the relaxation behaviour).

2 Modelling

The model is to be used for viscoelastic materials that are subject to large deformations and warm up as a
result of alternating stresses due to the dissipated energy. Accordingly, the model is coupled in this way that
the dissipated energy converts into heat and therefore affects the heat conduction equation which follows from
the first law of thermodynamics.

2.1 Kinematics

From the kinematical point of view, a twofold multiplicative split of the deformation gradient F is performed
in order to describe the thermo-viscoelastic material behaviour. On the one hand, there is a division into a
volumetric part F̄ and an isochoric part F̂. On the other hand, the isochoric deformation gradient F̂ is split into
an isochoric elastic F̂e and an isochoric inelastic component F̂i.

F = F̂ · F̄
F̂ = F̂e · F̂i

F = F̂e · F̂i · F̄
(1)

To this end, the volumetric part of F is defined as

F̄ = J
1
3 I (2)

and the isochoric part as

F̂ = J− 1
3 F. (3)

εv = J − 1 = det F− 1 describes the volumetric strain, wherein det F̂ = 1 is valid for the isochoric part. The
kinematics are sketched in Fig. 3. The strain measures of the reference configuration RC are introduced by the
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Fig. 3 Multiplicative split and introduction of intermediate configurations

right Cauchy–Green deformation tensor C and the Green–Lagrange strain tensor E.

C = FT · F
E = 1

2
(C − I)

(4)

On the current configuration CC, the related quantities are the left Cauchy–Green deformation tensor B and
the Euler–Almansi strain tensor A.

B = F · FT

A = 1

2

(
I − B−1) (5)

Between the two configurations, the tensors E andA can be converted into each other by the push forward and
pull back operations, cf. [14].

A = F−T · E · F−1

E = FT · A · F (6)

The multiplicative split of the deformation gradient implies the introduction of so-called fictitious intermediate
configurations. The volumetric–isochoric split motivates the isochoric–volumetric intermediate configuration
IVIC, the elastic–inelastic split of the isochoric deformation gradient a further, elastic–inelastic intermediate
configuration EIIC. In order to illustrate this concept, Fig. 3 can be used.

On the isochoric–volumetric intermediate configuration IVIC, a strain tensor �IV is established by the
volumetric push forward of the Green–Lagrange strain tensor E

�IV = F̄−T · E · F̄−1 = F̄−T · 1
2

(
FT · F − I

)
F̄−1

= 1

2
J− 2

3 (C − I) = 1

2

(
Ĉ − I

)
+ 1

2

(
I − B̄−1)

= �̂IV + �̄IV. (7)

Thus, the resulting strain tensor on the IVIC can be additively decomposed into the sum of an isochoric part
�̂IV and a volumetric part �̄IV. In comparison with other theories (cf. [14,19]), no thermal–mechanical split of
the deformation gradient is introduced. Rather, in this approach the properties of the thermal volume expansion
are integrated in the volumetric part of the deformation gradient. The big advantage of this approach can be
seen while deriving the stress power and the free energy function. It allows for a separately identification of
caloric and mechanical material properties. Furthermore, the evolution equations which will be introduced
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in order to model the viscoelastic behaviour, have a deviatoric form, cf. [44]. The following mathematical
relationships are still valid:

C̄ = F̄T · F̄ = J
2
3 I

Ĉ = F̂T · F̂ = J− 2
3 C

B̄ = F̄ · F̄T = J
2
3 I

(8)

as well as

det Ĉ = 1 ⇒
(
det Ĉ

)̇
= ∂ det Ĉ

∂Ĉ
: ˙̂C = Ĉ−1 : ˙̂C = 0. (9)

Consequently, the two tensors Ĉ−1 and ˙̂C are orthogonal to each other. Based on this fictitious isochoric–
volumetric intermediate configuration, one additional configuration is now introduced. The so-called isochoric
elastic–inelastic intermediate configuration EIIC is also depicted in Fig. 3. We start with the multiplicative
split of the isochoric deformation gradient F̂ into an isochoric elastic component F̂e and an isochoric inelastic
one F̂i,

F̂ = F̂e · F̂i. (10)

The motivation for this purpose provides a connection of a spring and a damper in series. This so-called
Maxwell element is able to describe viscoelastic material behaviour in the form of a non-equilibrium stress
which is also denoted as overstress. The operating strain tensor �̂EI on the EIIC is obtained by the push forward
of the isochoric strain tensor �̂IV by use of the arithmetic operation

�̂EI = F̂−T
i · �̂IV · F̂−1

i = F̂−T
i · 1

2

(
F̂T · F̂ − I

)
· F̂−1

i

= 1

2

(
F̂T
e · F̂e − F̂−T

i · F̂−1
i

)
= 1

2

(
Ĉe − I

)
+ 1

2

(
I − B̂−1

i

)

= �̂e + �̂i (11)

with the right isochoric elastic deformation tensor Ĉe = F̂T
e · F̂e and the left isochoric inelastic deformation

tensor B̂i = F̂i · F̂T
i . This approach ensures again the additive split of the associated deformation measures

on this configuration. Physically, the first component describes the deformation of the spring and the second
component represents the deformation of the damper of the Maxwell element.

Here, from considerations of the volume conservation of isochoric deformation tensors, another mathe-
matical condition can be derived, too. Starting from the isochoric inelastic deformation gradient F̂i yields

det F̂i = 1 ⇒
(
det F̂i

)̇
= F̂−T

i : ˙̂Fi = tr
( ˙̂Fi : F̂−T

i

)
= tr

(
L̂i

)
= 0 (12)

with the spatial isochoric inelastic velocity gradient L̂i. The consequence that the trace of L̂i is equal to zero
ensures later for a deviatoric shape of the corresponding evolution equation. With this definition, the spatial
isochoric inelastic deformation velocity tensor follows to

D̂i = 1

2

(
L̂i + L̂T

i

)
⇒ tr D̂i = 0. (13)

2.2 Stress tensors

This subsection will now represent the required stress tensors and their interrelationships. The second Piola–
Kirchhoff stress tensor S operates on the RC. It can be calculated by the pull back of the Cauchy stress tensor
T by using the relation

S = J F−1 · T · F−T . (14)
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The Cauchy stress tensor in volumetric–deviatoric representation reads

T = −p I + TD. (15)

From modelling hyperelastic materials, it is known that p acts as an undetermined Lagrange multiplier which
corresponds to the constitutively undetermined hydrostatic pressure in the case of incompressibility. In this
contribution the parameter p is a function of the volumetric expansion J and the temperature θ . Hence, a
constitutive equation will be derived while evaluating the second law of thermodynamics. In order to map
nearly mechanically incompressible material behaviour, the mechanical part of p together with the bulk
modulus K can be numerically used as a penalty factor. The relationship between the Cauchy stresses and the
second Piola–Kirchhoff stresses can be obtained by using the concept of dual variables, see [16]. In analogy
to this concept, also the stress tensor TIV can be introduced. This stress tensor is operating on the IVIC and
can be described via

TIV = Ĵ F̂−1 · T · F̂−T (16)

with Ĵ = det F̂ = 1. Based on these considerations, a new stress tensor is now defined on the IVIC, which
results from the pull back of the deviator of the Cauchy stress tensor,

T̂ = Ĵ F̂−1 · TD · F̂−T . (17)

Taking into account the isochoric–volumetric decomposition of the deformation gradient F, the second Piola–
Kirchhoff stress tensor can be formulated as follows:

S = −p J
1
3 Ĉ−1 + J

1
3 T̂. (18)

Thus, the stress power S : Ė in terms of quantities operating on the reference configuration is calculated. After
a few steps of calculation and rearranging the terms, the following intermediate result appears:

S : Ė = − p J̇

3
Ĉ−1 :

(
I + 2 �̂IV

)
− p J Ĉ−1 : ˙̂

�IV

+ J T̂ : ˙̂
�IV + J̇

3
T̂ :

(
I + 2 �̂IV

)
. (19)

By utilising the relationships

Ĉ−1 :
(
I + 2 �̂IV

)
= Ĉ−1 : Ĉ = tr

(
Ĉ−1 : Ĉ

)
= 3

Ĉ−1 : ˙̂
�IV = 1

2
Ĉ−1 : ˙̂C = 0

T̂ :
(
I + 2 �̂IV

)
= Ĵ F̂−1 · TD · F̂−T : Ĉ = trTD = 0,

(20)

the stress power can be simplified to

S : Ė = −p J̇ + J T̂ : ˙̂
�IV. (21)

This expression plays an important role in the next section when formulating the material model and was the
first time used in the work of [31].

2.3 Material model

The material model, which is developed in this subsection, is designed to represent the thermo-viscoelastic
behaviour of elastomers. The starting point is the Clausius–Duhem inequality in terms of the reference con-
figuration
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− ρ0 ψ̇ + S : Ė − ρ0 s θ̇ − Q
θ

· Grad θ ≥ 0 (22)

with the specific Helmholtz free energy ψ , the specific entropy s, the absolute temperature θ , the heat flux
vectorQ and the density ρ0. Concerning thermo-viscoelasticmaterial behaviour, the approach of theHelmholtz
free energy function ψ is formulated by using the process variables J, θ, Ĉ, Ĉe. In this case, there is made use
of a constitutive assumption which allows for an additive split of the free energy function.

ψ = ψvol
eq (J, θ) + ψ iso

eq (Ĉ) + ψneq(Ĉe) (23)

This assumption implies that the equilibrium behaviour of the material under isochoric processes is tempera-
ture independent. Thus, entropy elasticity is not taken into account in this approach. Consequently, the time
derivative results to

ψ̇ = ∂ψvol
eq (J, θ)

∂ J
J̇ + ∂ψvol

eq (J, θ)

∂θ
θ̇

+∂ψ iso
eq (Ĉ)

∂Ĉ
: ˙̂C + ∂ψneq(Ĉe)

∂Ĉe
: ˙̂Ce. (24)

Taking into account the split of the stress power from Sect. 2.2, Eq. (21) in combination with the following
relationships

˙̂
�IV = 1

2
˙̂C

˙̂Ce = F̂−T
i · ˙̂C · F̂−1

i − L̂T
i · Ĉe − Ĉe · L̂i (25)

∂ψneq

∂Ĉe
: ˙̂Ce = ∂ψneq

∂Ĉe
:
(
F̂−T
i · ˙̂C · F̂−1

i

)
− ∂ψneq

∂Ĉe
:
(
Ĉe · L̂i + L̂T

i · Ĉe

)

the second law of thermodynamics can be rewritten as follows:

−
(

p + ρ0
∂ψvol

eq

∂ J

)

J̇ −
(

ρ0 s + ρ0
∂ψvol

eq

∂θ

)

θ̇ − Q
θ

· Grad θ

+
(
1

2
J T̂ − ρ0

∂ψ iso
eq

∂Ĉ
− ρ0 F̂

−1
i · ∂ψneq

∂Ĉe
· F̂−T

i

)

: ˙̂C

+ ρ0
∂ψneq

∂Ĉe
:
(
Ĉe · L̂i + L̂i · Ĉe

)
≥ 0 (26)

The evaluation of this inequality is based on the argumentation of [8] and additionally by taking into account

the isochoric structure of ˙̂C. It results in the following constitutive relationships

p = −ρ0
∂ψvol

eq

∂ J

ρ0 s = −ρ0
∂ψvol

eq

∂θ

Q = −λθ Grad θ

J T̂ = 2 ρ0
∂ψ iso

eq

∂Ĉ
+ 2 ρ0 F̂

−1
i · ∂ψneq

∂Ĉe
· F̂−T

i + � Ĉ−1

(27)

with the coefficient of thermal conductivity λθ in Fourier’s law of heat conduction. Since only five components

of the tensor ˙̂C can be selected freely, its sixth component follows from the incompressibility constraint.
Therefore, by evaluating Eq. (27)4 and taking into account Eq. (9), the term� Ĉ−1 is introduced. The function
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φ must be determined in this way that the stress tensor T̂ has a deviatoric form after transportation to the CC.
By calculation of

TD = F̂ · T̂ · F̂T (28)

and calculating the expression tr TD = I : TD = 0 the function � can be determined to

� = −2

3

(
∂ψ iso

eq

∂Ĉ
: Ĉ + ∂ψneq

∂Ĉe
: Ĉe

)

(29)

It now still remains to evaluate the dissipation inequality. Assuming that ψneq is an isotropic tensor function
and the tensor Ĉe is symmetric, the rule

Ĉe · ∂ψneq

∂Ĉe
= ∂ψneq

∂Ĉe
· Ĉe (30)

applies and therefore, the inequality yields

ρ0
∂ψneq

∂Ĉe
:
(
Ĉe · L̂i + L̂i · Ĉe

)
= 2 ρ0 Ĉe · ∂ψneq

∂Ĉe
: D̂i ≥ 0 (31)

with

D̂i = 1

2

(
L̂i + L̂T

i

)
. (32)

Thus, an evolution equation for the tensor D̂i is derived by introducing a proportionality function η(θ). η(θ) ≥ 0
has the physical meaning of a temperature-dependent viscosity function. It follows

D̂i = 1

η(θ)
2 ρ0 Ĉe · ∂ψneq

∂Ĉe
+ β I. (33)

Again, the function β has to be determined such that the constraint tr D̂i = 0 is satisfied, i.e. D̂i must have a
deviatoric form. Through the calculation of tr D̂i = 0 the expression

β = − 2 ρ0

3 η(θ)

∂ψneq

∂Ĉe
: Ĉe (34)

is obtained and finally leads to

D̂i = 2 ρ0

η(θ)

(
Ĉe · ∂ψneq

∂Ĉe
− 1

3

(
∂ψneq

∂Ĉe
: Ĉe

)
I
)

. (35)

Hence, a set of general constitutive equations and evolution equations for the description of thermo-viscoelastic
elastomers is available.

2.4 Derivation of the equations for the Neo-Hookean model

The next point is the specification of the material functions. To this end, the well-known Neo-Hookean model
is applied, cf. [37]. The corresponding approach for the Helmholtz free energy function ψ is chosen to

ρ0 ψvol
eq (J, θ) = 1

2
K

[
(J − 1)2 + (ln J )2

] − K α (J − 1) (θ − θ0) − ρ0 c(θ)

ρ0 ψ iso
eq (Ĉ) = c10

(
IĈ − 3

)

ρ0 ψneq(Ĉe) = ce10

(
IĈe

− 3
)

.

(36)
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Equation (36)1 includes a volumetric, mechanical term with the compression modulus K based on the work
of [46], a thermal–mechanical coupling term with the coefficient of thermal expansion α and a function
c(θ), which can be determined from calorimetric experiments and which is linked to the heat capacity of the
material. The two further equations represent the classical approach of a Neo-Hookean material model and
describe geometrically nonlinear material behaviour for the equilibrium elasticity and viscoelasticity with the
corresponding material parameters c10 and ce10. Taking Eq. (27) into account and evaluating the second law of
thermo-mechanics the results read

p = −K

[
(J − 1) + ln J

J

]
+ K α (θ − θ0) ,

s = 1

ρ0

(
K α (J − 1) + ρ0

∂c(θ)

∂θ

)
,

T̂ = 2 J−1 c10 I + 2 J−1 ce10 Ĉ
−1
i − 2

3
J−1

(
c10 tr Ĉ + ce10 tr Ĉe

)
Ĉ−1.

(37)

The last equation of (37) is now used to compute the second Piola–Kirchhoff stress tensor S on the reference
configuration. Taking into account the transport regulations and relationships

S = J F−1 · (−p I + TD) · F−T = −p J C−1 + J F−1 · TD · F−T

TD = F̂ · T̂ · F̂T

F̄−T = F̄−1 = J− 1
3 I

Ĉ−1 = J
2
3 C−1

tr Ĉe = tr
(
Ĉ−1
i · Ĉ

)

(38)

the second Piola–Kirchhoff stress tensor can be calculated to the following expression

S = −p J C−1 + 2 c10 J
− 2

3

(
I − 1

3

(
tr Ĉ

)
Ĉ−1

)

+ 2 ce10 J
− 2

3

(
Ĉ−1
i − 1

3
tr

(
Ĉ−1
i · Ĉ

)
Ĉ−1

)
. (39)

Considering the above introduced approach, the evolution equation on the EIIC finally reads as

D̂i =
�
�̂i= 2 ce10

η(θ)

(
Ĉe − 1

3
tr

(
Ĉ · Ĉ−1

i

)
I
)

. (40)

Using the definition of the relaxation time r(θ) = η(θ)
ce10

and the arithmetic operation

˙̂Ci = 2 F̂T
i · D̂i · F̂i (41)

a representation of the evolution equation is calculated in terms of the material time derivative of the inelastic,
isochoric right Cauchy–Green deformation tensor to

˙̂Ci = 4

r(θ)

(
Ĉ − 1

3
tr

(
Ĉ · Ĉ−1

i

)
Ĉi

)
. (42)

This evolution equation is solved in the context of a finite element calculation by the method of [45]. For
the inclusion of the temperature-dependent mechanical behaviour, the standard WLF-equation is introduced
with the standard parameter C1 = 17.5, C2 = 52K, cf. Williams et al. [49]. The glass transition temperature
θG = 240K was chosen with respect to the investigated elastomer, which was used in Sect. 1 to motivate our
modelling approach.

η(θ) = η0 exp

(
− C1(θ − θG)

C2 + θ − θG

)
(43)
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The thermo-mechanical coupling of thematerialmodel takes place via the additional consideration and solution
of the heat balance in the form of the first law of thermo-mechanics. Based on the balance of internal energy
ε and by introducing the Legendre transformation ε = ψ + θ s, the heat conduction equation is derived to

ρ0 ψ̇ + ρ0 θ̇ s + ρ0 θ ṡ = S : Ė − DivQ. (44)

After calculating the stress power and use of the temporal derivative of the free energy function ψ , this
expression can be reformulated and simplified. The result has the following form

ρ0 θ ṡ + DivQ − ce10 Ĉ
−1
i · Ĉ · Ĉ−1

i : ˙̂Ci = 0. (45)

The first term contains the temporal change of the entropy, the second term is the divergence of the heat flow,
and the third term provides the dissipative heating of the material. Calculating the time derivative

ṡ = 1

ρ0

(
K α J̇ + ρ0

∂2 c(θ)

∂ θ2
θ̇

)
, (46)

taking Fourier’s law into account and using an approach for c(θ) so that

∂2 c(θ)

∂ θ2
= A

θ
+ B, (47)

holds, the heat conduction equation reads:

K α θ J̇ + ρ0 (A + B θ) θ̇ − λθ DivGrad θ − ce10 Ĉ
−1
i · Ĉ · Ĉ−1

i : ˙̂Ci = 0. (48)

The first term describes the so-called Gough–Joule effect of elastomers, A and B are introduced material para-
meters which can be determined via calorimetric experiments and λθ is the parameter of the heat conductivity.
Equation (47) is motivated via experimental investigations on the caloric behaviour on an elastomer done by
Dippel [10].

3 Results and discussion

In order to show the capability of the developed model, some simulations are carried out. Therefore, the
presented material model is implemented in the open-source FE-code PANDAS [12]. Therefore, the local
balance equations of internal energy (45) andof themomentumare transferred to theirweak formbymultiplying
them with a testing function and integrating them over the calculated body’s volume.

The numerical values of the model parameters are given in Table 1. The density ρ0, the linear coefficient
of the thermal expansion α, the caloric parameters A and B and the heat conductivity λθ were chosen with
respect to the experimental observations of Dippel [10]. It is the same material which was used in Sect. 1.2
to motivate the presented theoretical approach. The other model parameters are selected on the basis of many
years of experience regarding the viscoelastic behaviour of elastomers. Moreover, they are tuned in that way
that the numerical results show the significant effects of dissipative heating.

As a simplification, the elastic parameter c10 describing the equilibrium part of the mechanical behaviour is
chosen as temperature independent. The influence of the temperature on themechanical behaviour is considered
with the formulation of the viscosity η(θ). This leads to a lower viscosity with higher temperatures. In order to
guarantee mechanically incompressible behaviour, the bulk modulus K is considered as approximately three
decades larger than the shear modulus.

With the presented set of parameters, the material model can be validated qualitatively by performing FE
calculations of some standard experiments. Therefore, a simple plain strain geometry with 30x50 elements is

Table 1 Set of parameters

ρ0 K α A + B θ λθ c10 ce10 η0
kg/m3 MPa 1/K J/kg·K W/m·K MPa MPa MPa s

1130 1000 2.155 · 10−4 540 + 3.6 θ 0.225 0.686 0.4 5 · 104
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Fig. 4 FE calculations of relaxation tests with a shear angle of 5◦ and different temperatures of 20 and 80 ◦C

loaded with different boundary conditions. The ansatz functions for the elements are formulated linearly for
the displacement and the temperature.

The first boundary conditions which are applied, are those for a relaxation test under isothermal conditions.
Therefore, a constant shear strain tan α = γ = u/h = 0.000875 is applied. This corresponds to a shear angle
of α = 5◦. Due to the viscoelastic material behaviour the induced shear stress should decrease over time,
after the deformation is applied. The results are presented in Fig. 4. With increasing temperature, the stress
relaxation runs faster.

As it is the main focus of this contribution, in further investigations the self-heating under cyclic deforma-
tions is calculated. As it can be seen experimentally (see Sect. 1.2), this self-heating is dependent on both the
frequency and the amplitude of the deformation. Equation (45) contains both of these influences. The reason
for the self-heating is the non-equilibrium stress, the inelastic deformation and its rate. Under a constant fre-
quency, a higher shear amplitude induces higher inelastic deformation rates, as well as it is the case for higher
frequencies under constant amplitudes.

The first case is simulated in Fig. 6. There, the development of the temperature over the loading cycles
is plotted for sinusoidal shear loading conditions u(t) = u0 sin(2π f t) with a frequency of f = 2Hz and
amplitudes of u0 = γ h = h tan α. The associated shear angles α are 20◦, 30◦ and 40◦, and the specimen
height is assumed to be h = 0.01m. In each simulation, the boundary conditions on the left- and right-hand
sides of the specimen are adiabatic. The boundary conditions on the upper and lower side are modelled as
isothermal. This temperature also correspondents to the starting temperature of the specimen. Thus, the heat
flux occurs in one direction and the temperature profile of the investigated specimen is inhomogeneous, cf.
Fig. 5. With respect to the data in Fig. 6, the middle point of the simulated elastomer specimen is recorded. As
it is predicted by the model, the higher the amplitude, the higher the amount of self-heating. It can be seen that
the temperature development over the loading cycles is nonlinear. The reason is the heat flux over the upper
and lower boundaries of the specimen. After a certain amount of cycles, the interaction between self-heating
and heat transfer to the environment becomes a stationary process.

The next simulations concern the frequency dependence of the elastomer with regard to the self-heating,
cf. Fig. 7. Using a constant shear angle of 40◦ and three different frequencies of 2, 4 and 20Hz, it can be shown
that higher frequencies have a comparable influence on the temperature as higher amplitudes do.

4 Conclusion and outlook

Based on experimental observations, it has been shown that the temperature plays an important role in elas-
tomers’ properties. As relaxation tests have proven, the mechanical properties are significantly influenced by
the material’s temperature. With cyclic testings under harmonic strains, the self-heating of a NR-mixture has
been investigated. By IR-measurements, it can be seen that dynamic deformations lead to a rise of temperature
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Fig. 5 FE calculation of the inhomogeneous temperature distribution in cyclic shear tests

Fig. 6 FE calculations of dynamic shear tests under a constant frequency of 2Hz and amplitudes of 20◦, 30◦ and 40◦

which is not negligible. The measured self-heating is dependent on the applied frequency and deformation
amplitude.

Based on these observations, a phenomenological material model is motivated from a macroscopical point
of view. It is formulated with respect to large deformations, as it is common for elastomers. The characteristic
viscoelastic behaviour is included as well as both the temperature-dependent mechanical properties and the
self-heating.

The model was used to carry out exemplaric FE calculations, which show the capability of the model to
represent all of the measured effects in a qualitative manner. In a further step, the model’s parameters have
to be identified using adequate experimental results, such as stepwise tension tests and relaxation tests to
identify both the equilibrium part of the mechanical behaviour and the time-dependent influences. As it is
the main focus of the presented model, the parameters have to fit the self-heating behaviour measured under
dynamic loads. Therefore, it is necessary to formulate the thermal boundary conditions in dependence of the
heat transfer with the surrounding media.
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Fig. 7 FE calculations of dynamic shear tests with a constant shear angle of 40◦ and frequencies of 2, 4 and 20Hz

Another point on which is to work is the calculation time needed for dynamic simulations. In the current
state of a prototypical implementation, calculations of dynamic processes are highly time-consuming. Each
result presented in the Figs. 6 and 7 takes about 3h of calculation, which is unacceptable for commercial use.
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