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Abstract An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-
dependent behavior of passive skeletalmuscle. Thedevelopment of themodel is stimulatedby experimental data
that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest
is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned
state and stress relaxation at constant stretch during loading and unloading. Themodel considers thematerial to
be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The
strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative
parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using
an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite
elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the
dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to
model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to
simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent
passive response of skeletal muscle.

Keywords Passive muscle · Finite deformation · Rate-dependent response · Stress relaxation

1 Introduction

Mathematical and numerical modeling of bioactive materials requires the use of constitutive equations, which
in their simplest form must account for the passive, active and transitioning states [1–3]. The challenge is
to select or develop an appropriate constitutive law and to experimentally determine the values of associated
model parameters. In this paper, the biological model,Manduca sexta, is used to examine the time-dependent
mechanical properties of the ventral interior lateral muscle (VIL) of the third abdominal segment (A3) under
passive conditions. Attention is focused on the A3 VIL skeletal muscle since it is one of the largest larval
muscles comprising 14 muscle fibers [4]. Time-independent data of the passive and active states are given in
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Dorfmann et al. [4], and the transitioning state is discussed in Paetsch et al. [1]. A general representation of
the theory of time-dependent materials is given by, for example, Wineman and Rajagopal [5] and Christensen
[6].

Unlike either amorphous or crystalline materials, muscles are complex composites. Each muscle fiber
contains aligned actin and myosin filaments within an amorphous matrix material composed of proteins, lipids
and polysaccharides. Many studies focus on the active state; however, there is a growing appreciation of the
importance of the passive properties of these materials for their roles as brakes and dampers.

An outstanding issue in muscle properties is the mechanism by which passive force changes with the
deformation rate and how they recover after unloading [7,8]. Different molecular mechanisms are responsi-
ble for these time-dependent processes. Both actin/myosin cross-bridge breakage and reformation, and the
unfolding of gap-filament proteins (e.g., titin) have been proposed as likely mechanisms [9–13]. Intramuscular
collagenous structural elements [14] and muscle junctions [15] may also contribute to properties observed
in experimental muscle preparations. At the molecular level, active force production is generated through
conformational changes in proteins (specifically myosin heads) and the making and breaking of chemical
bonds between aligned proteins. Thus, active shortening is produced by enzymatic processes that consume
the chemical energy of phosphate bonds in ATP, a process that even occurs at low levels in inactive muscle
and contributes to energy loses. Muscles cannot reverse this metabolic process directly, so the muscle must
be re-lengthened by external forces. Re-lengthening involves another structural rearrangement of the protein
complexes that contribute to the dissipation of mechanical energy during strain cycling. Both the shortening
and lengthening appear to have rate-dependent and rate-independent components as a result of the hierarchical
cascade of molecular and mechanical interactions [16]. The distribution of mechanical stresses by each of
the components is complex and poorly understood [17,18], but the goal of this paper is to develop a model
that better accounts for the overall time-dependent properties of passive muscle. These different molecular
mechanisms are important because they influence the assumptions and validity of most mechanical models
used to describe muscle behavior.

A seminal contribution to characterize viscoelasticity of skeletalmuscle is due toHill [19].His experimental
data showed that the amount of damping depends on the speed of shortening, conversely on the speed of
lengthening. They are used by Hill [19] to define a phenomenological approach to describe the muscle force
and force velocity relationships. Hill’s two-component model consists of an undamped, purely elastic element
in series with an energy dissipating element. The classic two-component model is arranged parallel to a purely
elastic spring element, which provides the time-independent response and is known as the three-element Hill’s
model. Hill’s model has been extended to formulate three-dimensional stress–strain formulations, see, for
example, Martins et al. [20], Parente et al. [21], Tang et al. [22].

Limited amount of data is available that characterize the viscoelastic properties of skeletal muscles [23,24].
Meyer et al. [25] characterize stress relaxation of single passive muscle fibers and propose a three-element
Hill’s model to simulate the observed response. The viscoelastic properties of passive skeletal muscle are
investigated in Rehorn et al. [26]. Specifically, the change of the passive properties of single muscle fibers as
a function of the lengthening velocity is evaluated. The data are then used to develop a uniaxial, quasi-linear
viscoelastic model with the relaxation function expressed as a three-term Prony series. The authors attribute
the viscoelastic behavior during tensile loading to the passive properties of the protein titan.

Experimental data and finite element modeling of passive rat tibias anterior muscle during compressive
loading are given in Bosboom et al. [27]. A one-term Ogden model combined with a Prony series expansion
is used to account for the viscoelastic behavior. More recently, the nonlinear anisotropic properties of pas-
sive skeletal muscle have been addressed in Van Loocke et al. [28]. Attention is placed on the unconfined
compressive behavior of porcine, bovine and ovine muscle samples. A strain-dependent Young’s modulus is
included in the model to account for the nonlinear behavior. Experimental characterization and a quasi-linear
viscoelastic model of muscle tissue in compression is given in Van Loocke et al. [24]. Specifically, the model
by Van Loocke et al. [28] is extended by introducing a relaxation function with the viscoelastic properties being
transversely isotropic. The behavior of passive skeletal porcine muscle during cyclic compressive loading at
different loading rates is characterized in Van Loocke et al. [29], and a nonlinear viscoelastic model to simulate
this behavior is given.

Three-dimensional constitutive formulations of skeletal muscles using nonlinear solid mechanics have
recently been developed. A hyperelastic, incompressible and transversely isotropic formulation to model
the passive and active responses of the left and right masseter muscles is proposed by Röhrle and Pullan
[30]. The model given by Ito et al. [31] accounts for viscoelasticity, material anisotropy, damage and failure
due to excessive stretch. It is validated in uniaxial tension and compression by comparing numerical results
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Fig. 1 Schematic representation of the model

to experimental data. An energy function comprised of an isochoric neo-Hookean part combined with an
additional fiber contribution is used in [32] to characterize the behavior under tensile load. The fiber response
is described using Hill’s three-element formulation. A finite-strain anisotropic constitutive law to describe
the viscoelastic response of abdominal rat muscles in the passive state is proposed by Calvo et al. [33]. A
decoupled volumetric-isochoric representation of the energy function, augmented by an inelastic contribution
expressed in terms of internal variables, is used to account for the nonlinear viscoelastic response of muscles
in the anterior abdominal wall.

In previous work [4,34], stress–strain relations for loading and unloading of transversely isotropic passive
and activemuscles were developed using the theory of hyperelasticity. The theory has beenmodified to account
for the hysteretic response of a preconditioned muscle during loading–unloading. Phenomenological relations
were included in the model to account for the molecular mechanisms responsible for energy dissipation and
rate-dependent material behavior. The pseudo-elastic model in Dorfmann et al. [4,34] did not account for the
viscoelastic stress relaxation during loading and the time-dependent recovery at constant elongation from the
preconditioned to the unconditioned state.

The objective of this paper is to develop a three-dimensional constitutive model that accounts for the time-
dependent behavior of skeletal muscle in the passive state. Hunter et al. [35] model the passive response of
cardiac muscle using a hyperelastic orthotropic strain energy function and the incompressibility constraint. In
particular, the response to uniaxial stress in the principal directions of orthotropy is consistent with that of an
incompressible isotropic material, but with different responses for each direction. In this paper, attention is
limited to uniaxial stress in the muscle fiber direction, so it is sufficient to use an isotropic model. Experimental
data are used to justify the formulation and to validate the implementation of the numerical integration algo-
rithm. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel
with a nonlinear dissipative component (see Fig. 1). Standardmodels of viscoelasticity are typically formulated
in terms of hereditary integrals of the history of deformation and rate of deformation. In contrast, here the
dissipative component is based on the model by Hollenstein et al. [36], which exhibits smooth behavior and
can be considered as a generalization of a viscoplastic overstress model [37], a generalized plasticity model
[38,39] and a generalized hyperplastic model [40]. Specifically, the dissipative component used here models
combined rate-independent and rate-dependent inelastic responses with no finite elastic range.

An outline of the paper is as follows. Section 2 presents experimental data of unstimulated Manduca
muscle subject to simple uniaxial tension. The data quantify the rate-dependent response, the recovery of
muscle properties from the preconditioned state toward the unconditioned state and stress relaxation at constant
stretch during loading and unloading. Section 3 summarizes the kinematics of finite deformation, the theories
of hyperelasticity and rate-dependent and rate-independent inelasticity. Section 4 describes a robust, strongly
objective numerical integration algorithm. Then, in Sect. 5, the general framework is specialized to soft tissue
that experience large distortional deformations and exhibit exponential stiffening when loaded in tension. In
Sect. 6, the model developed is formulated to simulate experimental data in simple uniaxial tension and the
corresponding numerical results are included in Sect. 7.
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2 Experimental results

Experimental data of the rate-dependent response of an unstimulated muscle of Manduca sexta for stretch
rates of λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1 are summarized in Dorfmann et al. [34]. The data were used to
formulate a pseudo-elastic constitutive model for the mechanical response of the Manduca muscle at finite
strains. The model accounts for the energy dissipated with each loading–unloading cycle but does not address
the effect of recovery time during which a preconditioned muscle returns to the reference configuration upon
unloading [34]. In this paper, the rate-dependent response of thismaterial is revisited and a systematic evaluation
of time-dependent processes is presented.

During each of the tests, the unstimulated muscle was subjected to five cycles of preconditioning with
constant strain rate λ̇ up to a preselected extension with stretch λ = 1.24. The experiments started at the
prestressed resting length (denoted by point A in Fig. 2), and cycles of loading to point B and unloading to point
Cwere performed at different rates of stretch. The resting length of themuscle, equal to the initial distance of the
pinned connections at each end of the muscle, was found to be 5.5mm and used to determine the corresponding
prestressed resting stretch λr = 1.05. Changes in the distance between these connections were measured with
an accuracy of 1μm. The tensile force was measured using an Aurora 300B-LR lever-arm ergometer with an
accuracy of less than 0.3mN. Finally, following the methods summarized in Dorfmann et al. [34], the reference
cross-sectional area was found to be 0.4 mm2. This information was used to determine the nominal stress as
the ratio of the axial force to the reference cross-sectional area. Preconditioning was performed in order to
monitor the progression of stress softening and to determine the ultimate stress–deformation response for
stretches up to λ = 1.24. Figure 2 shows the nominal stress versus stretch λ for the muscle in an unstimulated
state with stretch rates of λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1. The data show dependence on the loading
rate, large nonlinear elastic deformations, a hysteretic response during loading–unloading and preconditioning
(stress softening) during the first few cycles of repeated loading. Recovery, during which the stress increased
toward the prestressed resting state, was observed when the muscle was left at its resting length for several
minutes. The results in Fig. 2 also show that the reference configuration, corresponding to the resting length
of the animal, is not stress-free.

To quantify the recovery of muscle properties from the preconditioned state toward the prestressed resting
state, simple uniaxial tension tests were performed on two muscles with a resting length of 4.5mm and a
cross-sectional area of 0.265mm2. For each test, a total of three loading–unloading cycles were performed
from the prestressed resting stretch λr = 1.05 to a maximum stretch λ = 1.24 at a constant strain rate of
λ̇ = 0.18 s−1. At the end of each loading–unloading cycle, the muscles were held at the resting length for
3 minutes to allow recovery toward the prestressed resting state. The data in Fig. 3 show that the muscles at
resting length are not stress-free and that almost complete recovery occurs during the three-minute intervals.
Preconditioning occurs, which is noted when the first and second loading paths are compared.

To evaluate stress relaxation, simple uniaxial tension tests were performed on twomuscle specimens having
a resting length of 4.5mm and a cross-sectional area of 0.265mm2. For each muscle, stress-deformation data
of a single loading–unloading cycle with constant strain rate λ̇ = 0.2 s−1 and with maximum elongation
λ = 1.26 were collected. During both the loading and unloading portions of the cycle, interrupted relaxation
tests were performed by holding the stretch constant (λ̇ = 0) for 30 seconds at the stretches λ = 1.12 and
λ = 1.19. The data in Fig. 4 show that the stress decreases during the relaxation tests from the loading portion
of the cycle and that recovery with increasing stress occurs during the relaxation tests from the unloading
portion of the cycle. Notice that the values of stress after relaxation from the loading portion of the cycle do
not equal the values of stress after recovery from the unloading portion of the cycle for the same value of λ. It
is not known whether these values of stress would coincide for the same values of λ if more time were allowed
for the relaxation tests (as suggested by the model discussed in the next section).

The data reported in this section will be used to formulate a constitutive model for the time-dependent
response of theManducamuscle at finite strain. The theory of hyperelasticity is used to characterize the elastic
response and a dissipative component to account for the inelastic response of the material. For simplicity, it
is assumed that stress relaxation at constant stretch during loading and during unloading approaches the same
equilibrium state.
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Fig. 2 The nominal stress versus stretch of a passiveManducamuscle in simple uniaxial tension with prestressed resting stretch
λr = 1.05, maximum extension λ = 1.24 and stretch rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1, λ̇ = 0.36 s−1 and λ̇ = 1.8 s−1.
Reproduced from [34]

3 Constitutive modeling

The data in Figs. 2, 3 and 4 suggest that the mechanical behavior of the material can be characterized by
a composite model of an elastic component in parallel with a dissipative component. This model is shown
schematically in Fig. 1 where the single elastic spring represents the time-independent nonlinear hyperelastic
component and the spring element in series with a dashpot represents a nonlinear inelastic response similar to
a Maxwell element. In the model discussed below, the dashpot is generalized to include both rate-dependent
and rate-independent inelastic responses. Since soft biological tissues undergo finite deformations, the model
is formulated for arbitrarily large deformations.

By way of background, it is recalled that a material point in a fixed reference configuration is located by
the vector X relative to a fixed origin. The same material point is located by the vector x (relative to the same
origin) in the present configuration at time t . The velocity v, velocity gradient L and the rate of deformation
tensor D are defined by

v = ẋ, L = ∂v
∂x

, D = 1

2

(
L + LT)

, (1)

where a superposed (˙) denotes material time differentiation holding X fixed. Since the proposed model
includes hysteretic dissipation, it is also recalled that the rate of material dissipationD can be expressed in the
form

D = σ · D − ρ�̇ � 0, (2)

where σ is the Cauchy stress, A · B = tr
(
ABT

)
denotes the inner product between two second-order tensors

{A,B}, ρ is the current mass density, and � is the strain energy per unit mass.
Specifically, for the composite model the strain energy is separated additively into a hyperelastic part �e

and a dissipative part �d

� = �e + �d, (3)
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Fig. 3 The stress-deformation responses of two unstimulated muscles in simple uniaxial tension during three loading–unloading
cycles. At the end of each unloading, the muscles are held at the resting length for 3min during which recovery occurs from the
preconditioned state to the prestressed resting state (point A). The left graphs show the nominal stress as a function of the stretch
λ. The graphs on the right show the nominal stress as a function of time

where the latter characterizes the elastic strain energy in the dissipative element. Similarly, the Cauchy stress
σ separates additively into a hyperelastic part σ e and a dissipative part σ d

σ = σ e + σ d, (4)

with the hyperelastic component being nondissipative such that

σ e · D = ρ�̇e. (5)

It then follows that the rate of material dissipation is due solely to the dissipative component which must
satisfy the restriction

D = σ d · D − ρ�̇d � 0. (6)

3.1 Hyperelastic component

In general, hyperelastic materials experience both volumetric and distortional deformations. The volumetric
deformation is characterized by the total dilatation J , which is determined by integrating the evolution equation

J̇ = JD · I, (7)

where I is the second-order unit tensor. Using the theories in Flory [41] and Ogden [42] it is possible to define
a symmetric second-order unimodular tensor B′ which is a pure measure of total distortional deformation by
integrating the evolution equation

Ḃ′ = LB′ + B′LT − 2

3
(D · I)B′. (8)
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Fig. 4 Experimental data showing the mechanical responses of two unstimulated muscles in simple uniaxial tension during
loading and unloading. The graphs on the left show the nominal stress versus stretch λ. The graphs on the right depict the nominal
stress versus time

It can easily be shown that B′ is the unimodular part of the standard left Cauchy-Green deformation tensor.
Since B′ is unimodular [det (B′) = 1], it has only two independent invariants. These can be specified by the
scalars β1 and β2 defined by

β1 = B′ · I, β2 = B′2 · I, (9)

which satisfy the equations

β̇1 = 2 dev
(
B′) · D, β̇2 = 4 dev

(
B′2) · D, (10)

where the deviatoric operator dev ( ) of a second-order tensor A is defined by

dev (A) = A − 1

3
(A · I) I. (11)

For elastically isotropic materials the strain energy �e is a function of the invariants {J, β1, β2} expressed
as

�e = �e (J, β1, β2) . (12)

The hyperelastic part σ e of the Cauchy stress is then given by

σ e = −peI + dev (σ e) , pe = −ρ0
∂�e

∂ J
, (13)

dev (σ e) = 2ρ
∂�e

∂β1
dev

(
B′) + 4ρ

∂�e

∂β2
dev

(
B′2) , (14)

where use has been made of the conservation of mass which connects the mass density ρ in the present
configuration to its value ρ0 in the reference configuration

ρ J = ρ0. (15)
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3.2 Dissipative component

Thework inRubin andAttia [43] proposes that the elastic distortional deformation of the dissipative component,
which is insensitive to volume changes, can be characterized by the symmetric unimodular tensor B′

d, which
is determined by integrating the evolution equation

Ḃ′
d = LB′

d + B′
dL

T − 2

3
(D · I)B′

d − �Ad, (16)

where the function � controls the rate of inelastic distortional deformation and is specified by a constitutive
equation. Its direction is controlled by Ad, which is given by

Ad = B′
d −

(
3

B′
d
−1 · I

)

I, Ad · B′
d
−1 = 0. (17)

This functional form for Ad causes inelastic relaxation of B′
d toward the unit tensor I, with the restriction

(17)2, ensuring that B′
d remains unimodular. Moreover, comparison of (16) with (8) shows that when the rate

of inelasticity �Ad vanishes, B′
d satisfies the same evolution equation as that for the total elastic distortional

deformation B′. However, B′
d can still differ from B′ if the material experienced any inelastic deformation

during its history of loading, since B′
d does not retain permanent memory of a specific reference configuration.

Two independent invariants of B′
d can be specified by the scalars {α1, α2} as

α1 = B′
d · I, α2 = B′ 2

d · I, (18)

which satisfy the equations

α̇1 = 2 dev
(
B′
d

) · D − �Ad · I,
α̇2 = 4 dev

(
B′
d
2
)

· D − 2�Ad · B′
d. (19)

The strain energy �d, for elastically isotropic materials, is specified to be a function of {α1, α2}
�d = �d (α1, α2) , (20)

and the dissipative part σ d of the Cauchy stress is taken in the form

σ d = dev (σ d) = 2ρ
∂�d

∂α1
dev

(
B′
d

) + 4ρ
∂�d

∂α2
dev

(
B′ 2
d

)
. (21)

Moreover, the rate of material dissipation (6) requires

D = �ρ

[
∂�d

∂α1
Ad · I + 2

∂�d

∂α2
Ad · B′

d

]
� 0. (22)

A model with a smooth elastic–inelastic transition which can be either rate-independent or rate-dependent,
with and without a yield function is given by Hollenstein et al. [36]. For the model here considered, the value
of � depends on the effective rate of total distortional deformation ε̇ defined by

ε̇ =
√
2

3
dev (D) · dev (D). (23)

The experimental data of the Manduca muscle suggest that the functional form of � depends on the state
of the dissipative component. In particular, a model is proposed for which the parameters {a, b} have different
values when the material is being loaded {al, bl} with the dissipative component being in a state of triaxial
extension and when the material is being unloaded {au, bu} with the dissipative component being in a state
of triaxial compression. Since data are only available for uniaxial stress, it is not possible to quantify a three-
dimensional formulation that models all states of the dissipative component. Nevertheless, since the present
model is developed for three-dimensional deformations, it is desirable to suggest a theoretical structure that
can be used. To this end, it is recalled from Rubin [44] that simple isotropic functions can be developed using
a Lode angle to distinguish between different states of the material. Motivated by this work, it is convenient to
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introduce a Lode angle γ based on the deviatoric part of the elastic distortional deformation of the dissipative
component by

sin(3γ ) = − 27 det
[
dev

(
B′
d

)]

2
[ 3
2dev

(
B′
d

) · dev (
B′
d

)]3/2 , −π

6
� γ � π

6
. (24)

Different functional forms of � were considered in [44], but here attention is limited to a Mohr–Coulomb-type
model with � being specified by

� = a (al, au, γ ) + b (bl, bu, γ ) ε̇, (25)

where

a (al, au, γ ) =
√
3 al au

(al + au) cos γ + √
3 (al − au) sin γ

> 0, (26)

and

b (bl, bu, γ ) =
√
3 bl bu

(bl + bu) cos γ + √
3 (bl − bu) sin γ

> 0, (27)

and with {al, au, bl, bu} being positive constants. This functional dependence of � on the Lode angle γ can be
modified once multi-axial data become available.

For the simple case of uniaxial stress in the fixed unit s direction, starting from zero stress in the dissipative
component, the distortional deformation tensor B′

d can be written as a function of the stretch λd > 0 in the
form

B′
d = λ2d s ⊗ s + 1

λd
(I − s ⊗ s) , s · s = 1. (28)

It can be shown that

γ = −π

6
, a

(
al, au, −π

6

)
= al, b

(
bl, bu, −π

6

)
= bl for λd > 1, (29)

γ = π

6
, a

(
al, au,

π

6

)
= au, b

(
bl, bu,

π

6

)
= bu for λd < 1. (30)

Thus, the values {al, bl} characterize loadingwith the dissipative component being in triaxial extension {λd > 1}
and the values {au, bu} characterize unloadingwith the dissipative component in triaxial compression {λd < 1}.

4 Robust, strongly objective numerical integration algorithm

A robust, strongly objective numerical integration algorithm was developed in Hollenstein et al. [36], which
can be applied to the evolution Eqs. (7), (8) and (16). This algorithm is briefly summarized in this section with
reference to the proposed model. Specifically, it is assumed that at time t = t1 the values {J (t1),B′(t1),B′

d(t1)}
of {J,B′,B′

d} are known and the objective is to find the values {J (t2),B′(t2),B′
d(t2)} of these quantities at the

end of the time step at t = t2 with �t = t2 − t1.
Following the work in [45–47], it is convenient to define the relative deformation gradient Fr, the relative

dilatation Jr and the unimodular part F′
r of Fr by the evolution equations

Ḟr = LFr, J̇r = JrD · I, Ḟ′
r = LF′

r − 1

3
(D · I)F′

r, (31)

with the initial conditions

Fr (t1) = I, Jr (t1) = 1, F′
r (t1) = I, (32)

where

Jr = det (Fr) , F′
r = J−1/3

r Fr. (33)
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For finite element programs, the value Fr (t2) can be determined directly in terms of the nodal displacements
during the time step so that the evolution Eqs. (31) and (32) do not need to be integrated explicitly.

Now, the exact solutions of (7) and (8) can be written in the forms

J (t2) = Jr (t2) J (t1) , B′ (t2) = F′
r (t2)B

′ (t1)F′
r
T

(t2) . (34)

Also, the elastic trial value of B′
d, denoted by B′

d
, determined by the solution of (16) with vanishing rate of

inelastic deformation � = 0, can be expressed in the form

B′
d
 = F′

r (t2)B
′
d (t1)F′

r
T

(t2) . (35)

Using an implicit backward Euler integrated approximation, the auxiliary tensor B̄′
d ≈ B′

d (t2) associated
with the evolution Eq. (16) is given by

B̄′
d = B′

d
 − �t� (t2)

[

B̄′
d −

(
3

B̄′−1
d · I

)

I

]

, (36)

where � (t2) is the value of � at the end of the time step. Next, taking the deviatoric part of (36) and requiring
that dev

[
B′
d (t2)

] = dev
(
B̄′
d

)
it follows that

dev
[
B′
d (t2)

] = 1

1 + �t� (t2)
dev

(
B′
d
)

. (37)

In order to determine the value of � (t2) in (37), it is recalled from Papes [48] that the value D̄ of D (t2) at
the end of the time step can be approximated by

D (t2) ≈ D̄ = 1

2�t

[
Fr (t2)FT

r (t2) − I
]
, (38)

so that the average increment of the effective total rate of deformation, defined in (23), can be approximated
by

�ε = �t ε̇ (t2) ≈ �t

√
2

3
dev

(
D̄

) · dev (
D̄

)
(39)

and the Lode angle γ in (24) is given by

sin(3γ ) = − 27 det
[
dev

(
D̄

)]

2
[ 3
2dev

(
D̄

) · dev (
D̄

)]3/2 , −π

6
� γ � π

6
. (40)

Thus, �t� (t2) becomes

�t� (t2) = �t a (al, au, γ ) + b (bl, bu, γ ) �ε. (41)

Finally, using (41) in (37), the value of B′
d at the end of the time step can be expressed in the form

B′
d (t2) = dev

[
B′
d (t2)

] + 1

3
α (t2) I, (42)

where the scalar α (t2) is determined by solving the cubic equation

det
[
B′
d (t2)

] = 1. (43)

For details, see Eq. (49a) in Rubin and Attia [43].
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5 Specific constitutive equations

Since many soft tissues experience large distortional deformations relative to volumetric deformations, it is
convenient to consider them to be incompressible by introducing the volumetric constraint

J = 1. (44)

The constraint response that enforces the incompressibility condition (44) effectively replaces the pressure pe
in (13) by an arbitrary function that is determined by the balance of linear momentum and boundary conditions.
It follows that only the distortional response of the strain energy function�e needs to be specified. Specifically,
here �e is taken in the form

ρ0�e = μe

2βe
{exp [βe(β1 − 3)] − 1} , (45)

where μe is a nonnegative, constant shear modulus and βe is a positive material constant that controls the
nonlinearity of the elastic response. Then, using (14) the elastic part σ e of the stress is given by

σ e = −peI + μe exp [βe (β1 − 3)] dev
(
B′) . (46)

The constitutive equation for the elastic strain energy of the dissipative component is taken in a similar
form to (45) with

ρ0�d = μd

2αd
{exp [αd(α1 − 3)] − 1} , (47)

where μd is a nonnegative, constant shear modulus and αd is a positive material constant that controls nonlin-
earity of the elastic response of the dissipative component. It then follows from (21) that the dissipative part
σ d of the stress is given by

σ d = dev (σ d) = μd exp [αd (α1 − 3)] dev
(
B′
d

)
. (48)

Also, the rate of material dissipation (22) requires

D = 1

2
�μd exp [αd (α1 − 3)] (Ad · I) � 0. (49)

It can be shown that by expressing B′
d in its spectral form that the expression Ad · I is nonnegative so that (49)

is satisfied by the functional form (25) for �.

6 Simulation

Themodel developed in the previous sections is used here to simulate the experimental data for simple uniaxial
tension of the Manduca muscle. To this end, λ is taken to be the axial stretch in the fixed s direction with the
material being stress-free in its initial state with

λ(0) = 1, B′(0) = I, B′
d(0) = I. (50)

Moreover, the velocity gradient L is specified by (28) so that the solutions of the evolution equations (8) and
(16) give

B′ = λ2s ⊗ s + 1

λ
(I − s ⊗ s) , β1 = λ3 + 2

λ
, (51)

B′
d = λ2ds ⊗ s + 1

λd
(I − s ⊗ s) , α1 = λ3d + 2

λd
, (52)

where λd is the stretch associated with the dissipative component. Thus, for uniaxial stress in the s direction,
the pressure pe is determined by the condition that the lateral stress vanishes. The total stress is represented in
the form

σ = σ s ⊗ s, (53)
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where the explicit expression for σ , using (4), (46) and (48), is given by

σ = μe exp [βe (β1 − 3)]

(
λ2 − 1

λ

)
+ μd exp [αd (α1 − 3)]

(
λ2d − 1

λd

)
. (54)

Furthermore, for incompressible material subject to simple uniaxial tension, the nominal axial stress � (stress
per unit reference area) is given by

� = σ

λ
. (55)

Now, using the numerical procedure described in Sect. 4, it follows that the value of the unimodular part
of the relative deformation gradient at the end of a typical time step, F′

r (t2), is given by

F′
r (t2) = λ (t2)

λ (t1)
s ⊗ s +

√
λ (t1)

λ (t2)
(I − s ⊗ s) , (56)

and the elastic trial value λ
d of λd can be expressed by

λ
d =

[
λ (t2)

λ (t1)

]
λd (t1) . (57)

Then, Eq. (37) yields a cubic equation for λd (t2) in the form

λ2d (t2) − 1

λd (t2)
=

[
1

1 + �t� (t2)

](
λ
d
2 − 1

λ
d

)
. (58)

Moreover, in determining the value of � (t2) in (41) use has been made of the expression (38), which yields

dev
(
D̄

) = 1

2�t

[
λ2 (t2)

λ2 (t1)
− λ (t1)

λ (t2)

] (
s ⊗ s − 1

3
I
)

. (59)

Then, using the values {λ (t2) , λd (t2)} together with (51)–(55) gives the value of the nominal stress � (t2) at
the end of the time step.

7 Model predictions

The rate-dependent response of an unstimulated muscle, the recovery of muscle properties from the precondi-
tioned state and stress relaxation for constant stretches are now evaluated using the formulation presented in
Sect. 5. Recordings of experimental data were initiated when the stretch λ = λr corresponding to the resting
length of the muscle. For completeness, the numerical computation includes the stress-free initial state and a
quasi-static extension from λ(0) = 1 to λr = 1.05, which ensures zero stress in the dissipative component. At
λ = λr, the stretch rate changes and assumes values equivalent to those used in the experimental characteri-
zation. The data shown in Figs. 2, 3 and 4 are obtained from different muscles so that due to the variability of
biological tissue, a change in the material parameters should be expected. This is shown by comparing values
of corresponding parameters in Tables 1, 2 and 3. Trial and error estimates are used to determine the parameters
μe and βe of the elastic energy function (45). The remaining parameters, {μd, αd} used to define the energy
�d in (47) and {al, bl, au, bu} to define � in (25), are determined by a least square optimization routine using
the data shown in Sect. 2.
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Table 1 Model parameters used to simulate the rate-dependent response of an unstimulated muscle

μe βe μd αd al bl au bu

0.06 5 0.16 6 0.16 8 0.6 60
The values of al and au are in s−1 and μe and μd are given in MPa

Table 2 Magnitudes of the material model parameters used to simulate the recovery of passive muscle properties from a precon-
ditioned state

μe βe μd αd al bl au bu

0.17 3.9 0.31 2.3 0.25 12 0.3 40
The values of al and au are in s−1 and the μe and μd are given in MPa

Table 3 Summary of material model parameters describing stress relaxation of an unstimulated muscle during loading and
unloading in simple tension

μe βe μd αd al bl au bu

0.06 5.5 0.22 11 0.04 6.5 1 80
The values of al and au are in s−1 and the μe and μd are given in MPa

7.1 Rate-dependent response

Figure 2 summarizes experimental data of the rate-dependent response of an unstimulated Manduca muscle
for stretch rates λ̇ = 0.0144, 0.072, 0.36 and 1.8 s−1. These data are used to determine the corresponding
material model parameters, which are summarized in Table 1 and used to obtain the numerical results depicted
in Fig. 5. Specifically, the numerical results show the nominal stress � as a function of the stretch λ for two
loading–unloading cycles in simple tension with maximum extension λ = 1.24 for λ̇ = 0.0144, 0.072, 0.36
and 1.8 s−1. The results also show a change in material response when transitioning from quasi-static loading
to the specified stretch rate at λ = λr. The inelastic behavior is characterized by the permanent set of the
material at completion of the first loading–unloading cycle. Reloading differs from the primary loading path
indicating preconditioning of thematerial similar to theMullins effect observed in rubberlikematerials [49–51].
For convenience of comparison, experimental behavior for loading–unloading cycles of the preconditioned
material are included as dashed curves in Fig. 5. Comparing the numerical results with the experimental
data validates the formulation of the proposed model to simulate the rate-dependent response of Manduca
muscle.

7.2 Recovery from preconditioned state

The material model is now used to describe the time-dependent recovery of a Manduca muscle from the
preconditioned state. The experimental data in Fig. 3 show three loading–unloading cycles at constant strain
rate andmaximum extension λ = 1.24. At the end of each unloading, themuscle is held at the resting length for
three minutes during which the material nearly recovers its prestressed resting state. These data are now used
to determine material parameters, which are summarized in Table 2 with the corresponding numerical results
given in Fig. 6. The graph on the left starts from the stress-free configuration λ(0) = 1 and shows the nominal
stress � as a function of λ for three loading–unloading cycles. The transition from quasi-static loading to the
stretch rate λ̇ = 0.18 s−1 is again visible during primary loading when λ = λr. During unloading, the material
does not return to the initial stress-free state clearly showing the inelastic component of the deformation. During
the recovery time, at constant stretch λ = λr, the stress increases but does not reach the primary loading state.
Therefore, the reloading again differs from primarily loading. The nominal stress � as a function of time is
shown in the graph on the right in Fig. 6. Experimental behavior, depicted by dashed curves, is included to
assess the accuracy of the model prediction.

7.3 Stress relaxation

The data in Fig. 4 are used to determine a set of material parameters that represent the time-dependent response
of theManducamuscle used in this study. These are listed in Table 3 and are used to simulate stress relaxation
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Fig. 5 Numerical results showing two loading–unloading cycles of an unstimulated Manduca muscle in simple tension with
maximum extension λ = 1.24 and stretch rates of λ̇ = 0.0144 s−1, λ̇ = 0.072 s−1, λ̇ = 0.36 s−1 and λ̇ = 1.8 s−1. The dashed
curves represent the experimental behavior of the preconditioned material. All graphs depict the nominal stress as a function of
the stretch λ
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Fig. 6 Numerical results representing three loading–unloading cycles of an unstimulated muscle in simple tension. At the end of
each cycle, at the resting length λr = 1.05, a 180s recovery period is included to allow recovery of muscle properties from the
preconditioned state. The graph on the left shows the loading–unloading response, and the graph on the right depicts the change
in nominal stress as a function of time. The dashed curves represent the experimental behavior of the preconditioned material.
Experimental data in Fig. 3 show that the stress-stretch response of the preconditioned muscle coincides during the second and
third loading cycles. Therefore, for clarity of representation, only one loading–unloading cycle is included in the graph on the left

at constant stretch during loading and unloading portions of a cycle of simple uniaxial tension. Figure 7 shows
the numerical results of an unstimulated muscle in simple tension from the stress-free configuration λ(0) = 1
to a maximum stretch λ ≈ 1.25. The loading rate changes from quasi-static to λ̇ = 0.2 s−1 at λr = 1.05.
During loading and unloading, portions of the cycle the stretch are held constant for 30 seconds at λ = 1.12
and λ = 1.19 and the change in stress as a function of time is evaluated numerically. The change of the
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Fig. 7 Numerical results showing the response of the unstimulated Manduca muscle in simple tension. The graph on the left
shows the nominal stress versus stretch during loading and unloading. The graph on the right depicts stress relaxation as a function
of time for constant values of λ. Experimental behavior, depicted by the dashed curves, is included to assess the accuracy of the
model prediction

nominal stress � with time, depicted in the graph on the right in Fig. 7, differs from that during loading and
unloading portions of the cycle. Specifically, during loading the stress decays with relaxation not completed
after 30 seconds and during unloading the stress increases reaching a constant value in less than 30 seconds.
This requires different values of the material parameters {a, b} to define � during loading and unloading, see
Eq. (25). The graph on the right shows a change in slope at t = 5 s indicating the change in loading rate at
λ = λr. The dashed curves in Fig. 7 represent the observed behavior and are used to quantify the accuracy of
the numerical prediction.

8 Discussion and concluding remarks

Motivated by the need to characterize the time-dependent response of skeletal muscle, this paper presents
new experimental data and a phenomenological constitutive model that captures the observed behavior with
reasonable accuracy. The data, from the unstimulated ventral interior lateral muscle of the third abdominal
segment of Manduca sexta, are limited to simple uniaxial tensile loading–unloading in the fiber direction.
The experimental characterization quantifies the inelastic rate-dependent behavior, the recovery of muscle
properties from the preconditioned response toward the prestressed resting state and stress relaxation at constant
stretch during loading and unloading.

The proposedmodel considers thematerial as a composite of a nonlinear hyperelastic component in parallel
with a dissipative component. In contrast to standard nonlinear inelasticmodels, here the dissipative component
is modeled using an evolution equation that combines rate-independent and rate-dependent behavior, which
exhibits smooth responsewith no finite elastic range. The three-dimensional constitutivemodel is specialized to
simple uniaxial tension in the preferred direction; hence, an isotropic formulation provides sufficient flexibility
to capture the mechanical response. As such, the structure of the proposed formulation is not muscle specific,
i.e., a change in the material parameters fully accounts for the variability of biological tissue. The restriction
imposed by the current isotropic formulation is that the principal direction of the uniaxial stress component
and the preferred direction of the material coincide.
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