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Abstract In a phase-field approach to fracture crack propagation is modeled by means of an additional con-
tinuous field. In this paper, two problems of linear elastic fracture mechanics are studied experimentally and
numerically in order to evaluate the practicability of the phase-field approach and to validate the measured
parameters. At first, a three-point bending experiment of silicon dies is simulated assuming static plate bend-
ing. Then, wave propagation and spallation in a Hopkinson bar test are analyzed in a dynamic regime. The
simulations show that phase-field fracture reproduces the experimental results with high accuracy. The results
are comparable to other fracture simulations, e.g., the cohesive element technique. In total, the phase-field
approach to fracture is capable of tracking crack evolution in a very convenient and quantitatively correct way.

Keywords Phase-field method · Crack evolution · Finite element method · Dynamic fracture · Plate bending ·
Spalling test

1 Introduction

Phase-field methods gained raising attention for the simulation of fracture and crack propagation, see, e.g.,
[4,9,14,16,26]. The main idea of a phase-field approach is to replace the sharp boundary of a crack by a
“smeared” crack zone. An additional order parameter—the phase field s(x, t)—marks the virgin state (s = 1)
and the broken state (s = 0) of the material, where the evolution of the phase field follows an additional
partial differential equation. Similar to level set methods, this approach allows for an efficient computation of
moving boundaries and arbitrary crack pattern [18,23]. Obviously, the exact form of the evolution equation
has to reflect the physics of fracture mechanics and needs to depend on the specific properties of the material.

The ability of the phase-field method to simulate crack propagation and sophisticated fracture pattern in the
static and in the dynamic regime has been shown in several recent simulations [3,10,15,17]. In this paper, the
accuracy of such an approach is critically evaluated. To this end, we study two problems of linear elastic fracture
mechanics in the sense of an inverse analysis and compare our experimental results with phase-field fracture
simulations. Intentionally, we restrict our comparison to materials which can be modeled as linear elastic and
ideally brittle. The extension of phase-field fracture to the finite deformation range is straightforward, cf. [11],
but it faces the problem of predictability in a similar manner.

The paper is organized as follows: In Sect. 2, the basic equations for the finite element simulations in the
frame of linear elastic fracture mechanics are summarized, and the influence of the model parameter on the
solution is illustrated. In Sect. 3, an analysis of a three-point bending experiment of silicon dies is provided.
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This plate bending problem illustrates the possibilities of phase-field fracture simulations to determine the
fracture energy in a static problem. Section 4 describes the analysis of a Hopkinson bar spalling experiment.
The material studied here is a newly developed ultra-high-performance concrete whose dynamic properties
have been investigated in a previous work [13]. A short summary compares the phase-field method of fracture
with established methods like the cohesive element technique.

2 Phase-field approach to linear elastic fracture

We consider an arbitrary structure of domain Ω ⊂ Rd and dimension d = 2, 3 with external boundary ∂Ω .
The structure’s displacement field at point x and time t is u(x, t); its velocity and acceleration fields are v = u̇
and a = ü. The displacements satisfy the Dirichlet boundary conditions u = ū at Γ0 ⊂ Γ . The structure is
loaded with traction q̄ at boundary Γ1 ⊂ Γ , additional initial conditions may be given. In general, it holds the
balance of linear momentum,

div σ + p̄ = ρ ü , (1)

where σ is the elastic stress tensor and ρ the mass density of the structure and p̄ a prescribed body force. We
assume small deformations with strain tensor ε ∈ Rd×d .

ε = 1

2

(
∇u + ∇uT

)
(2)

The linear elastic material is presumed to follow Hooke’s law with elastic strain energy density, Ψ e =
1
2λ(trε)2 + με : ε, or, more generally formulated with Hooke’s tensor C,

Ψ e (u) = 1

2
ε(u) : C : ε(u). (3)

Now, let the boundaries of the evolving internal cracks be represented by a set Γ (t). According to linear
elastic fracture mechanics of Griffith and Irwin [8,12], a material fails upon attainment of a critical fracture
energy densityGc. The crack growth corresponds to the creation of new surfaces, and hence, the total potential
energy of the structure is composed of

W (u, t) =
∫

Ω

Ψ e(u) dΩ +
∫

Γ (t)
Gc dΓ. (4)

An optimum of (4) describes crack growth. However, for an unknown crack set Γ (t), this variational
problem cannot be solved in general.

In order to represent the evolving cracks in the phase-field approach to fracture, an additional continuous
field s is introduced,

s(x, t) ∈ [0, 1] ∀x ∈ Ω, t ∈ R , (5)

which has a value of s = 1 in the intact material and indicates the ’cracked zones’ with a value of s = 0.
Continuity of (5) requires a transition zone between both phases. Such a transition zone cannot reflect the
sharp boundary of a crack but models a diffuse interface of width 2lc instead. Thus, in a phase-field approach,
the crack set Γ (t) is replaced by a regularizing crack density functional γ (t).

∫

Γ (t)
Gc dΓ ≈

∫

Ω

γ (t) dΩ (6)

Now following the ansatz of [1,7], the corresponding total potential energy reads

W (u, s) =
∫

Ω

Ψ e(u) dΩ +
∫

Ω

γ (s(t)) dΩ

=
∫

Ω

(
1

2
ε : C∗ : ε + Gc

(
1

4lc
(1 − s)2 + lc|∇s|2

))

︸ ︷︷ ︸
Ψ

dΩ. (7)



Phase-field approach as a tool for experimental validations 949

The tensorC∗ in the elastic part of the strain energy density is constituted by means of a substitute material
approach,

C
∗ = (s2 + η)C, η � 1,

which also accounts for the ‘empty’ crack. The small parameter η is only introduced to avoid numerical
problems in damaged material. At this point, an evolution equation for the phase-field parameter s can be
stated in the sense of an Allen–Cahn equation,

ṡ = −M
δΨ

δs
= −M

[
ε : C : εs − Gc

(
2lcΔs + 1 − s

2lc

)]
, (8)

where M is a positive mobility constant. However, the quadratic form of the elastic strain energy density does
not distinguish between tensile and pressure states in the material. A direct use of the formulations (7) or
(8) would allow a crack to grow also in the compressive regime which clearly contradicts the physics of the
underlying problem. For that reason, a split of the elastic strains has been performed, ε = [ε+] + [ε−], where
[ε+] denotes the positive and tensile components of the principal strains, and [ε−] the remaining compressive
parts. This leads to an elastic energy density function which only accounts for tension.

Ψ e+ = 1

2
[ε+] : C∗ : [ε+] (9)

In that way, a physical consistent fracture criterion has been defined. Note, that this approach differs from
the decomposition of strains in volumetric and deviatoric tensional parts as suggested in [16] and for finite
deformations also in [11].

2.1 Discretization

By multiplication of the Eqs. (1) and (8) with arbitrary but suitable test functions w, v ∈ V , integration over
the domain Ω , and an application of Gauss’ theorem, the weak form of the coupled problem is obtained.

∫

Ω

gradw : div σ dΩ −
∫

Ω

w · p̄ dΩ +
∫

Ω

w · ρ ü dΩ −
∫

Γ1

w · q̄ dΓ1 = 0 (10)

1

M

∫

Ω

ṡv dΩ +
∫

Ω

(ε : C : ε) sv dΩ + 2Gclc

∫

Ω

∇s∇v dΩ − Gc

2lc

∫

Ω

(1 − s)v dΩ = 0 (11)

The geometric discretization is performed employing finite elements where the displacements u and the
phase-field parameter s as well as the corresponding test functions are approximated with piecewise linear
shape functions summarized in the vector N = [Ni ]:

u =
n∑

i=1

Niui , s =
n∑

i=1

Nisi ,

The discretization of Eq. (10) results in the system

M̃ü + K̃u = f̃

with

M̃ =
∫

Ω

ρNNT dΩ, K̃ =
∫

Ω

∇NC∗∇NT dΩ, f̃ =
∫

Ω

N p̄ dΩ +
∫

Γ1

Nq̄ dΓ1.

For Eq. (11) the approximation leads to the system

Mṡ + (D + K + C) s = f
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Fig. 1 Evolution of the phase field in mode I tension. The model is a unit square (x, y) ∈ [0, 1] × [0, 1] with an initial crack
length of 0.5 and loaded with a total prescribed displacement of u = 1.2 · 10−3 by means of a linear increasing loading factor

with s = [si ] and
M = 1

M

∫

Ω

NNT dΩ, D =
∫

Ω

(
εTCε

)
NNT dΩ, K = 2Gclc

∫

Ω

∇N∇NT dΩ,

C = Gc

2lc

∫

Ω

NNT dΩ, f = Gc

2lc

∫

Ω

NNT 1 dΩ.

After the discretization in time by means of the implicit Euler scheme, the following system of equations
is obtained: [

M
Δt

+ D + K + C
]

︸ ︷︷ ︸
A

sn+1 = f + M
Δt

sn

︸ ︷︷ ︸
b

2.2 Parameter of the fracture model

Whereas the critical fracture energy density—or critical energy release rate—Gc has a clear physical meaning,
the parameter lc and M are part of the specific phase-field approach to fracture. In order to illustrate their effect
on the numerical solution, we consider a simple mode-I crack in a unit square as displayed in Fig. 1a. In this
example, all values are given in a dimensionless way.

Clearly, the initial crack will grow straight till complete failure. During computation, the mobility constant
M determines the velocity of the decrease in the phase-field parameter s. An increase in M leads to an
accelerated crack evolution—more precisely in an equal number of timesteps s will proceed to a lower value.
In the quasi-static regime with M → ∞, the local dissipation is prevented whereas low values of M facilitate
high amounts of dissipation. Furthermore one can consider the mobility as the inverse of a viscosity η. Thus,
a low value of M is equivalent to a pronounced viscous material behavior. Therefore, small mobility values
are not permitted in our phase-field approach to linear elastic fracture.

In order to indicate a crack, the phase-field needs to change from 1 to 0. This requires parameter lc to be
significantly larger than the finite element mesh size h. Parametric studies recommend a value of lc ≈ 6h to
give smooth and mesh-independent results for piecewise linear shape functions of the finite elements [24]. The
minimum size of lc ≥ 3h corresponds to other studies, see [15,16]. If lc is smaller, the phase-field solution
tends to oscillate, and eventually, no crack will evolve.

For the example of the simple mode-I crack, the phase field s around the crack is plotted for different
values of lc in Fig. 2. We clearly see the effect of lc on the diffusity of the interface, i.e., on the crack width
a—corresponding to the results presented in [25] and [20] where the influence of a small scale parameter is
examined in an eigenfracture approach.
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(a) (b)

Fig. 2 Effect of the length parameter lc on the width of the crack in the converged state of the mode-I crack model of Fig. 1. In a
the half crack width a as a function of lc for a linear regression with coefficient of determination R2 = 0, 9986 is displayed, and
b diffuse interface marked by the phase field function s perpendicular to the crack

ū

.

(a) (b)

1

0.5

0

(c)

Fig. 3 Crack propagation in sliced block. The model of size x, y ∈ [−1, 1] × [0, 1] has an initial crack of length 1 and is sheared
with a total prescribed displacement of ū = ±2 ·10−3 by means of a constant loading factor. aModel. bDeformed mesh. c Phase
field

In Fig. 3, a sliced block is sheared in a way that the upper part is pulled to the right, whereas the lower
part is moved in the opposite direction. In consequence, the original crack will propagate. Because the block is
free of additional constraints, the initial mode-II fracture is not expected to remain shear-dominated. Instead,
the crack kinks and grows in a mode-I dominated state. The example illustrates that the direction of crack
propagation strongly depends on the model, specifically its boundary conditions. Additional influence has the
finite element mesh in correspondence with parameter lc. As we illustrated before, lc ≥ 3h is recommended.
If lc is set small, only in an accordingly fine mesh the phase-field model can compute a crack. This implies
that the crack will not be able to propagate into a coarse finite element mesh. In this sense, an predefined mesh
refinement—as shown in Fig. 3—manipulates the direction of crack propagation.

3 Critical energy release rate of silicon dies

The integrated circuit unit of every microelectronic compound is commonly built on single-crystal silicon
wafers that possess a high level of purity and perfection. The raw silicon to be used for this purpose is
produced from silicon ingots which are sliced into thin wafers. As a consequence of fabrication, silicon dies
show different populations of flaws which, in turn, cause a broad distribution of strengths and failure loads.

Failure experiments on such silicon dies are typically performed using simple geometries, e.g., three-
point bending tests, where the applied load is increased progressively until fracture occurs. Statistical strength
parameters are then determined from the experimental data. Here we refer to three-point bending experiments
conducted at TU Berlin, see [2,21], with the setup illustrated in Fig. 4.

A set of 38 specimens has been tested. The die of thickness lt = 0.29mm was supported by two 2-mm-
diameter beams with 4 mm distance, and the load has been applied through a third beam in the middle of
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Fig. 4 Experimental setup of the three-point-bending experiments, 3d finite element simulation without fracture, cf. [22], and
Weibull distribution of the failure load Fc

the 4.8 × 4.1mm specimen. As a result, several specimens failed at very low loads, denoting a flawed (or
otherwise weakened) population. Most of the specimens showed an intermediate strength with a failure load
of F = 24.2 ± 4.6N.

Here, we want to use these results to determine the critical fracture energy density Gc of the dies. The
(flawless) silicon material is characterized by an elastic modulus of E = 163 GPa. The die bends up to a
maximum displacement of 0.023 mm which corresponds to a load of 25 N. This is about the failure load
measured in the experiments. Similar results are obtained if we account for the anisotropy of single-crystal
silicon in C with material parameters C1111 = C2222 = C3333 = 165.8GPa, C1122 = C1133 = C2233 =
63.9GPa and C1212 = C1313 = C2323 = 79.6GPa. Please note that the strength values used in the calculation,
and retrieved from the literature, are characterized by a large scatter, even as high as 70% of the average value.

The die is a thin but stiff structure and in the dimensional reduction of a continuum to a quasi two-
dimensional structure, the out-of-plane stress components are typically neglected. In this case, it is customary
to assume a linearized model which is justified when the problem is characterized by small displacements and
strains. It leads directly to the classical plate theories. In a Reissner–Mindlin plate model, the elastic strain
tensor (2) is a function of the rotations of the plate normal ϑ = (ϑx , ϑy), i.e., ε(ϑ) = (∇ϑ + ∇ϑT )/2. Then,
the weak form (10) is recast to:

∫

Ω

ε(ϑ) : C : ε(ϕ) l3t dΩ +
∫

Ω

μ∗(∇w − ϑ)T (∇v − ϕ) lt dΩ =
∫

Ω

p̄w dV (12)

where

C :ε = λ

12
(∇ · ϑ)I + μ

6
ε

with unit tensor I; μ∗ = 5/6μ is a corrected shear modulus, and the load is p̄ = F/(lt Aload). The weak
form requires (w,ϑ) ∈ H1(Ω) × H1(Ω)2 and (v, ϕ) ∈ H1

0 (Ω) × H1
0 (Ω)2, where H1 denotes the Sobolev

functional space of square integrable functions with square integrable weak derivatives and index 0 refers to
homogenous boundary conditions. Equation (12) is solved together with the phase-field Eq. (11) in a staggered
scheme.

Such a mixed problem generally requires a deeper mathematical analysis as an arbitrary choice of ansatz,
and test spaces yield instabilities in the numerical solution. Here we employ a stable and locking-free finite
element method outlined in [5,6] which allows an effective numerical treatment of the thin plate model. The
results presented here refer to a uniform triangulation with 100 × 100 × 2 elements, other (fine) meshes give
very similar results. The critical length is set lc = 0.09mm.

We now assume a fracture energy density ofGc = 0.01N/mm and apply a displacement ofw = 0.023mm
within 10 loading steps by means of a linear increasing loading factor. After full loading in the middle of the
specimen, a zone with s = 0.5 has shown, whereby the phase field reduces within 10 additional relaxation
steps at fixed deflection. At next, we considered a slightly weakened specimen with a fracture energy density
of Gc = 0.007N/mm and we now observe a crack as displayed in Fig. 5. Within 10 steps of loading, the phase
field reduces to zero in the loaded zone. Further reduction in Gc gives an early s = 0 zone, the structure is
disintegrated, and further computation only refers to the artificial residual stiffness ηC. As a consequence, the
s = 0 zone broadens in the course of computation. For example, a value of Gc = 0.001N/mm shows a wide
‘cracked’ zone—indicating something like a totally damaged specimen. This does not correspond to brittle
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Fig. 5 Fracture of the silicon die; the displayed specimen failed at a final load of 22.1 N which is slightly below the average
failure load. The phase field simulations shows the crack computed with M = 25mm2/Ns, lc = 0.031mm and a critical energy
release rate of Gc = 0.007N/mm

fracture and, thus, with a too small value of Gc, the computed fracture pattern is not realistic. On the other
hand, too large values of Gc do not lead to a significant lowering of the phase field within the 10 steps of
loading. However, the phase field may reduce and a continued computation may lead to s = 0. This is a typical
problem of static fracture simulations, its visibility depends on the choice of mobility M . The softening of the
structure for s < 1, induced by a locally high elastic straining or even by numerical noise like boundary layer
effects, leads the computation to converge to a crack ultimately. Therefore, it is necessary to keep a critical
view on both, the final state of the quasi-static simulation and the evaluation of the 0 < s < 1 values.

Alternatively, we directly apply a force F = 25 N on a zone of 0.3 mm width in 10 steps. With a fracture
energy density ofGc = 0.007 N/mm, we again observe the crack in the middle of the specimen, but because of
the wider loading area, the phase field is less localized here. Although the problem of crack definition remains
the same, we found that a higher value of Gc stops crack growth. Additionally, a reduced load, e.g., F = 10
N does not induce any crack growth -independent of the value of Gc.

As a result, we may state that an inverse analysis of plate cracking with a phase-field approach to fracture
is possible and leads to surprisingly exact predictions of the critical energy release rate Gc. Here, we deter-
mine a value of Gc = 0.005–0.007N/mm which corresponds very well to the literature, cf. [21]. In all our
computations, the crack grows along the loading axis but no cracks are observed for Gc > 0.01 N/mm. In
order to see crack branching and fragmentation, however, we would have to leave the static regime of our
simulation. Additionally, to account for variability of the strength, the deterministic approach used here should
be abandoned and replaced by probabilistic methods, see [19].

It remains to say that the brittle fracture in silicon dies is usually preceded by a certain amount of defor-
mation, in some cases small but often falling in the range of moderate deflections. Consequently, plate models
based on a linearized kinematic do not necessarily cover all possible experimental setups and may need to be
replaced by moderate plate bending theories such as the models of von Karman or Wolmir [27].

4 Dynamic fracture of UHPC in a Hopkinson bar test

The experimental setup of a Hopkinson bar test consists of a cylindrical steel projectile which is accelerated
by an air gun, a steel incident bar, and an apposed UHPC specimen. The impact of the striker generates a
compressive stress pulse traveling through the incident bar and the specimen. At the free end of the specimen,
the stress is reflected back as a tensile pulse. If the superposition of both pulses is beyond the dynamic tensile
strength of the material, a fracture occurs, see Fig. 6. Such an experimental setup has been used in order to
determine the fracture properties of an ultra-high-performance concrete (UHPC) material, see [13].

For the finite element analysis of the Hopkinson bar test, one can assume an axisymmetric state. The
balance of momentum (1) with the specific Neumann boundary condition of the bar experiment reads:

ρ ü − div σ = 0 in Ω = [0, rs] × [0, l]
nσ = q̄(t) at Γ1 = {(r, z) ∈ Ω : z = l} ⊂ ∂Ω
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Fig. 6 Hopkinson-Bar spallation experiment of UHPC, the incident bar is left of the specimen. Only the first crack in the middle
of the specimen is considered in the simulations, the right crack happens later

Fig. 7 Influence of lc on the crack evolution: Phase-field parameter s(x, t = 120μs) for lc = 3hmin, 6hmin, 12hmin, M =
30m2/(Ns),Gc = 90N/m, σmax = 17.3MPa

Here rs and l denote radius and length of the specimen. The incoming stress pulse q(t) is modeled with a
trapezoidal approximation where σmax = max{q̄(t)} denotes the maximum stress. We use material parameters
of UHPC, E = 59GPa, ν = 0.2, ρ = 2370 kg/m3 and realistic (measured) values for the specific fracture
energy Gc of UHPC which are in the range of 75–200N/m.

The mobility parameter M in Eq. (11) needs to be chosen in such a way that the phase-field is able to
decrease locally to zero within a time range of few microseconds, once the energy release rate exceeds the
specific fracture energy. Here we set M = 30m2/Ns. Significant lower values of M lead to a retarded decrease
of s which is in contradiction to the results of the performed experiments.

Figure 7 illustrates the influence of length lc on the width of the transition zone between intact and broken
material as well as on the width of the damaged zone (the area with s = 0). As mentioned before, the minimum
size of lc depends on the finite elementmesh size. Therefore, a finemesh leads to improved results regarding the
transition zone and the width of the crack. Simulations with fine meshes emphasize the influence of the choice
of lc on the fact whether a crack emerges during the simulation or not: For example, the evolution of a crack has
been established for the parameters Gc = 90N/m, M = 10m2/(Ns), σmax = 17.3MPa, hmin ≈ 6.3 · 10−4 m
and lc = 4hmin, whereas for lc = 3hmin the phase-field parameter just decreased to a minimum of ≈0.92. A
very low value of lc enables the suppression of the crack evolution due to the term (1−s)/2lc in the evolution
Eq. (8) which counteracts the energy density function term ∂Ψ e/∂s.

The specific fracture energy density Gc has a crucial effect on the crack evolution, see Fig, 8. If Gc is set to
a high value, Griffith’s criterion possibly cannot be fulfilled anymore, and the phase-field parameter s remains
at the constant value 1 during the whole simulation. Furthermore Gc influences the crack position and also
the width of the damaged zone: A reduction in Gc leads to a movement of the crack position closer to the free
end of the specimen. This is based on the fact that ∂Ψ e/∂s exceeds the term on the right side in the evolution
equation at an earlier point of time. Moreover, an increase in the width of the damaged zone is observed.

Another parameter that has an essential effect on the crack development is the maximum stress σmax of the
incoming stress pulse (see Fig. 9): A low value of σmax leads to small strains and thus to slight values for Ψ e -
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Fig. 8 Influence of critical energy release rate Gc on the crack evolution: phase-field parameter s(x, t = 120μs) for Gc =
40N/m, 90N/m, 360N/m, lc = 3hmin, M = 30m2/(Ns), σmax = 17.3MPa

Fig. 9 Influence of initial stress maximum σmax on the crack evolution: Phase-field parameter s(x, t = 120μs) for σmax =
10MPa, 17MPa, 50MPa,Gc = 90N/m, lc = 3hmin, M = 30m2/(Ns)

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

1

2

3

4

5

6

7

8

v
m s

t [s]
0 1 2 3 4

0

1

2

3

4

5

6

tc

Fragment 1
Fragment 2
center of mass

t [ms]

v
m s

Fig. 10 Computed velocity of the specimen before crack initiation (blue) and the 2 fragments after crack initiation assuming
Gc = 90N/m, lc = 3hmin, M = 30m2/(Ns), σmax = 17.3MPa. The result is compared to the velocities calculated by means
of a cohesive element approach (red). For comparison on the right the experimental velocity-time diagram of the spallation
experiment. The red dots represent the velocity of fragment 1 (average of 31 control points), the blue squares represent the
velocity of fragment 2 (average of 8 control points) and the green diamonds represent the extrapolated initial center of mass
velocity (color figure online)

the decrease of s and the crack evolution is suppressed. However, an increase of σmax supplies results similar
to those based on low specific fracture energies: The crack position is located closer to the free end, and the
width of the damaged zone increases.
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Figure 10 illustrates the velocity of the specimen and of the two fragments after failure. We assume an
initial velocity of v0 = 5m/sec for the specimen due to the acceleration of the incident bar and specific fracture
energy of Gc = 90N/m. Here a permanent crack is defined if the phase-field parameter s is below a value of
0.3 over the whole width of the specimen. These calculated velocities are compared to the velocities computed
with a cohesive element approach assuming the same energy density Gc and a linearly decreasing cohesive
law. It becomes obvious that both approaches provide similar results especially before the crack initiation but
also after fragmentation. Another observation is that the phase-field approach also provides according results
concerning the difference of the fragments velocity measured in the experiments which is approximately
1m/sec immediately after crack occurrence.

Acknowledgments The authors wish to thank Maximilian Scheid for his help with several of the computations summarized
here.
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