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Abstract Diffuse and sharp interface models represent two alternatives to describe phase transitions with an
interface between two coexisting phases. The two model classes can be independently formulated. Thus there
arises the problem whether the sharp limit of the diffuse model fits into the setting of a corresponding sharp
interface model. We call a diffuse model admissible if its sharp limit produces interfacial jump conditions that
are consistent with the balance equations and the second law of thermodynamics for sharp interfaces. We use
special cases of the viscous Cahn–Hilliard equation to show that there are admissible as well as non-admissible
diffuse interface models.

Keywords Cahn–Hilliard equation · Thermodynamics · Phase transitions · Asymptotic expansions

1 Introduction

We consider two coexisting phases in a body that are represented by two regions with high and low density.
The two regions are separated by a moving phase boundary. In order to describe the evolution of that body,
two alternative models are available, which are called diffuse interface model and sharp interface model.

A diffuse interface model describes the phase boundary as an interfacial layer. Within the layer, a so-called
phase field smoothly changes from a high to a low value but with a steep gradient [1,2]. On the other hand,
the sharp interface model describes the interfacial layer by the evolution of a hypersurface [3–5].

Both alternatives can be established independently of each other. However, the physical basis of a sharp
interface model consists of simpler assumptions, which are more directly related to experiments than the
corresponding assumptions that are needed to establish a diffuse interface model. For this reason we consider
the sharp model as a reference for a diffuse model in the same physical context.

In this context it is important that the diffuse model embodies the same physics as the sharp model. For this
reason we study the properties of the diffuse model for small values of the interfacial thickness and then carry
out the sharp limit of the diffuse model. To this end we use the method of formal matched asymptotic analysis,
which is a well established tool for the understanding of diffuse models [1,2,6,7]. If a sharp limit exists, we
will obtain sharp interface equations as a limiting case of the diffuse model. In a second step we compare the
limiting equations of the diffuse model with the corresponding equations of the sharp interface model. If we
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find coincidence, we call the diffuse model admissible. If there is no coincidence, the diffuse model is called
non-admissible and has to be rejected.

In this paper the viscous Cahn–Hilliard model serves as an example [1,8,9]. For the same variables that
appear in the viscous Cahn–Hilliard model, we establish a corresponding sharp interface model.

Comparing the limiting equations of the diffuse model with the equations of the sharp model leads to an
interesting observation. Both models are equipped with local non-negative entropy productions. This property
is preserved in the sharp limit of the diffuse model, i.e. the sharp limit of the entropy production is non-negative
as well. In a next step we use that limit function to calculate the interfacial entropy production. We observe
that we do not necessarily obtain a local non-negative interfacial entropy production. In more detail, the two
main propositions of this paper are:
1. The sharp limit of the classical Cahn–Hilliard equation without viscosity leads to a negative interfacial
entropy production.
2. The sharp limit of the viscous Cahn–Hilliard equation contains a parameter that can be adjusted so that a
non-negative interfacial dissipation function results.

This unexpected behavior is a consequence of the fact that the Cahn–Hilliard model without viscosity has
a local entropy production that is much smaller in the transition layer than in the bulk regions.

Thus the designer of phase field models has to consider this: Even for the simplest diffuse interface model,
it is necessary to check whether the phase field model is admissible in the sense from above and represents a
correct physical behavior.

The paper is organized as follows:
In Sect. 2 we derive the two kinds of models in the context of thermodynamics. In Sect. 3 we present and

discuss ourmain results. Finally Sects. 4 and 5 contain a detailed description of the appliedmatched asymptotic
analysis.

2 Description of diffuse and sharp interface models

In this sections we derive the viscous Cahn–Hilliard model and a corresponding sharp interface model in the
context of thermodynamics in a one-dimensional setting.

2.1 Thermodynamics of the diffuse interface setting

The derivation of the viscous Cahn–Hilliard model starts from a more general model where variations of
temperature are allowed.

Basic variables We consider a body Ω ⊂ R whose thermodynamic state at time t ≥ 0 is described in every
point x ∈ Ω by two variables. These are the concentration u: [0, ∞)×Ω → R and the internal energy density
e: [0,∞) × Ω → R.

Conservation laws The description of the phenomena relies on the conservation laws for mass and energy

∂t u + ∂x f = 0 and ∂t e + ∂xq = 0. (1)

The functions f : [0,∞) × Ω → R and q: [0,∞) × Ω → R are the diffusion flux and the heat flux,
respectively. These quantities are related to e and u by constitutive functions that are compatible with second
law of thermodynamics.

The second law of thermodynamics The following four axioms embody a simplified version of the second law
of thermodynamics. The Axioms I and II contain universal statements, whereas Axioms III and IV describe
the properties for the material at hand.

I It exists an entropy density/entropy flux pair (η, ϕ) that satisfies an equation of balance

∂tη + ∂xϕ = ξ. (2)

II The entropy flux has to be determined so that the entropy production ξ is equipped with the following
properties:
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(i) ξ is non-negative for every solution of the system of balance equations (1),
(ii) ξ is represented by a sum of binary products flux × driving force:

ξ =
N∑

A=1

FADA ≥ 0. (3)

(iii) ξ is zero in equilibrium.
III Our constitutive model relies on an entropy density that is given by a concave constitutive function of the

general form

η = h(e, u, ux ) with ux = ∂xu. (4)

IV (Absolute) temperature and the chemical potential are defined by

1

T
= ∂h

∂e
and

μ

T
= −

(
∂h

∂u
− ∂x

∂h

∂ux

)
. (5)

Exploitation of the second law of thermodynamics Next we present a possible constitutive model that is
compatible with the four axioms. At first we calculate the entropy production. To this end we insert the
entropy function (4) into (2), carry out the time derivative and substitute the time derivatives of e and u by the
corresponding equations of balance. After rearranging of terms we obtain

ξ = ∂x

(
ϕ − q

T
+ μ f

T
+ ∂h

∂ux
∂t u

)
+ q∂x

(
1

T

)
− f ∂x

(μ

T

)
. (6)

If we were to proceed in the usual way, we would end up with the classical Cahn–Hilliard model without
viscosity. In order to introduce viscosity, we consider the identity

1

T
(∂t u)2 + ∂x

( f ∂t u

T

)
− f ∂x

(∂t u

T

)
= 0, (7)

which follows by multiplying the concentration balance (1)1 with ∂t u/T . Next we multiply the identity by a
constant γ and add the expression to the entropy production,

ξ = ∂x

(
ϕ − q

T
+ (μ + γ ∂t u) f

T
+ ∂h

∂ux
∂t u

)
+ q∂x

(
1

T

)
− f ∂x

(
μ + γ ∂t u

T

)
+ γ

T
(∂t u)2. (8)

Now we choose the entropy flux as

ϕ = q

T
− (μ + γ ∂t u) f

T
− ∂h

∂ux
∂t u. (9)

This choice implies the entropy production

ξ = q∂x

(
1

T

)
− f ∂x

(
μ + γ ∂t u

T

)
+ γ

T
(∂t u)2. (10)

Thus there is entropy production due to (i) heat conduction, (ii) diffusion and (iii) viscosity. The non-negativity
of ξ is guaranteed by γ ≥ 0 and the simple constitutive laws

q = a∂x

(
1

T

)
and f = −M∂x

(
μ + γ ∂t u

T

)
with a > 0, M > 0. (11)
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Balance equation of the free energy For applications the energy density e is usually replaced by the temperature
T as a variable. That substitution is accompanied by a Legendre transform of the entropy density. We introduce
the free energy density ψ = e − Th as a function of (T, u, ux ). In terms of ψ , the chemical potential and the
entropy flux can be written as

μ = ∂ψ

∂u
− T ∂x

(
1

T

∂ψ

∂ux

)
and ϕ = q

T
− (μ + γ ∂t u) f

T
+ 1

T

∂ψ

∂ux
∂t u. (12)

In the isothermal case, i.e. T = const., the entropy balance can easily be written as a balance for the free
energy. It results from a combination of the balance equations for energy and entropy and of the relations (12).
The balance equation for the free energy comes out as

∂tψ + ∂x

(
f (μ + γ ∂t u) − ∂ψ

∂ux
∂t u

)
= −T ξ with ξ = 1

M
f 2 + γ

T
(∂t u)2 ≥ 0 . (13)

The viscous Cahn–Hilliard equation We proceed with the isothermal case where our problem is reduced to
solve a single PDE for the concentration. The PDE follows from the diffusion flux (11)2 and the balance law
(1)1. We obtain

∂t u = M
T ∂xx (μ + γ ∂t u) with μ = ∂ψ

∂u
− ∂x

(
∂ψ

∂ux

)
. (14)

The free energy density is chosen to be of van der Waals type, viz.

ψ = F(u) + β

2
|∂xu|2 , (15)

with the positive constantβ and a doublewell function F : [0, 1] → R. In this case (14) becomes thewell-known
viscous Cahn–Hilliard equation, [1,8,9],

∂t u = −∂x f with f = −M
T ∂x (μ + γ ∂t u) and μ = F ′(u) − β∂xxu. (16)

We study the viscous Cahn–Hilliard equation on the domain Ω = [0, 1] with the initial and boundary values

u(0, x) = u0(x), ∂xu(t, 0) = ∂xu(t, 1) = 0, f (t, 0) = f (t, 1) = 0. (17)

It is known that the parameters β and γ control the width of the diffuse interface [1,8,9]. In order to handle
only with one small parameter, we introduce the parameter ε > 0. The parameters β and γ are related to ε by
the following substitutions

β → ε2β and γ → ε2γ. (18)

2.2 Thermodynamics of the sharp interface setting

A further approach to describe the evolution of two coexisting phases is a sharp interface setting. Note, this
approach is independent of a diffuse interface model. In the next paragraphs we derive a sharp interface model
in the context of thermodynamics.

Basic variables We decompose the body Ω = [0, 1] into two bulk regions Ω+(t) and Ω−(t), which are
separated by the interface, i.e. by the point xI in the 1D case. The time-dependent function x̂I: [0,∞) → Ω
determines the motion of xI.

In the two bulk regionsΩ± the thermodynamic state is described by the concentration u: [0, ∞)×Ω± → R

and the (internal) energy density e: [0,∞) × Ω± → R. Furthermore the interface is equipped with interfacial
concentration uI: [0,∞) → R and the interfacial internal energy density eI: [0,∞) → R.

The objective of the sharp interface setting is the determination of the densities u and e in the two bulk
regions, the surface densities uI, eI of the interface and the interface position x̂I.

For a generic function χ existing in Ω+ and Ω−, respectively, we introduce the notation
χ± = lim

x∈Ω±→xI
χ(x) and [[χ ]] = χ+ − χ−. (19)

χ± are the limiting bulk values of the functionχ at the interface. The double bracket [[χ ]] denotes the difference
of χ across the interface.
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Conservation laws In the bulk regions Ω± we have the conservation laws for concentration and energy as in
the diffuse setting, viz.

∂t u + ∂x f = 0 and ∂t e + ∂xq = 0 . (20)

Across the interface the corresponding conservation laws read

∂t uI + [[ṁ1]] = 0 and ∂t eI + [[eṁ + q]] = 0 . (21)

The mass fluxes at the interface are defined as

ṁ±
1 = f ± − u± ẋ I , ṁ±

2 = − f ± − (1 − u±)ẋ I and ṁ± = ṁ±
1 + ṁ±

2 = −ẋ I . (22)

In the sharp interface setting we need constitutive laws for the fluxes f and q in the bulk regions and for the
mass fluxes ṁ±

1 and ṁ±
2 at the interface. Next we derive explicit constitutive functions that are compatible

with the second law of thermodynamics.

Remarks The described sharp interface model is a simplified version of a model for a two-constituent body
with two partial mass densities ρ1 and ρ2 and two velocities v1 and v2. The flux f is related to the velocity
v1 by f = ρ1v1. The simplification concerns the total mass density ρ = ρ1 + ρ2 and the barycentric velocity
v = (ρ1v1 + ρ2v2)/ρ. We assume ρ = 1 and v = 0. Thus the concentration u = ρ1/ρ is the only mass
variable. The two assumptions imply special representations (22) of the mass fluxes ṁ1 = ρ1(v1 − ẋI) and
ṁ2 = ρ2(v2 − ẋI) across the interface.

The second law of thermodynamics for the bulk In the sharp interface setting, the universal part of the second
law of thermodynamics is the same as in the diffuse setting. Exclusively, the constitutive axiom III is changed:

III The entropy density is given by a concave constitutive function of the general form

η = h(e, u). (23)

Note that the space derivative of u does not appear in the sharp interface setting.

Exploitation of the second law of thermodynamics for the bulk The resulting constitutive equations can be
read off from the corresponding equations of the diffuse setting. The entropy flux is now chosen by

ϕ = q − μ f

T
, (24)

and the entropy production is represented by two dissipative mechanisms:

ξ = q∂x

(
1

T

)
− f ∂x

(μ

T

)
. (25)

Consequently, the thermodynamically consistent constitutive laws for the fluxes of heat and diffusion are

q = a∂x

(
1

T

)
and f = −M∂x

(μ

T

)
with a > 0, M > 0. (26)

Balance equation of the free energy In analogous way as in the diffuse interface setting we introduce the free
energy density ψ = e− Th as a function of (T, u). In terms of ψ , the chemical potential and the entropy flux
can be written as

μ = ∂ψ

∂u
and ϕ = q

T
− μ f

T
. (27)

In the isothermal case, i.e. T = const., the entropy balance can easily be written as a balance for the free
energy. The balance equation for the free energy in the sharp interface setting comes out as

∂tψ + ∂x ( f μ) = −T ξ. (28)
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The second law of thermodynamics for the interface The constitutive laws for the mass fluxes ṁ±
1,2 must

satisfy the second law of thermodynamics for the interface. In an analogous manner to the bulk we give the
corresponding axioms that constitute the second law of thermodynamics for the interface.

I It exists an entropy density ηI satisfying an equation of balance

∂tηI + [[ηṁ + ϕ]] = ξI. (29)

II The interfacial entropy production ξI is equipped with the following properties:
(i) ξI is non-negative for every solution of the system of balance equations (21)1,2,
(ii) ξI is represented by a sum of binary products flux × driving force:

ξI =
[[

N∑

A=1

FADA

]]
≥ 0. (30)

(iii) ξI is zero in equilibrium.
III Our constitutive model relies on an entropy density that is given by a concave constitutive function of the

general form

ηI = hI(eI, uI). (31)

IV Interfacial temperature and interfacial chemical potential are defined by

1

TI
= ∂hI

∂eI
and

μI

TI
= −∂hI

∂uI
. (32)

Axioms I and II are universal statements about the properties of entropy density and entropy production. The
Axiom III assumes that the entropy is a constitutive quantity that must be given by a material-dependent
function. For the case at hand that constitutive function is used in Axiom IV to give definitions of temperature
and the chemical potential at the interface.

Remarks Recall that the described sharp interface model is a simplified version of a binary mixture. Thus there
are two chemical potentials, whereas only a single chemical potential has appeared up to now. This fact is a
consequence of the simplifying assumption that we only consider a single mass variable, namely u in the bulk
and uI on the interface. However, even in this case, two chemical potentials play a role in the theory. These
are introduced here according to the definitions

μ1 = ψ + (1 − u)μ, μ2 = ψ − uμ in the bulk, (33)

and

μI,1 = ψI + (1 − uI)μI, μI,2 = ψI − uIμI on the interface. (34)

The quantity ψI is the interfacial free energy and is defined as ψI = eI − TIηI .

Exploitation of the interfacial second law of thermodynamics for the interface Next we calculate the interfacial
entropy production ξI. To this end we start with the entropy balance (29) and insert here the function (31) and
the entropy flux (24) for the bulk. The time derivatives are eliminated by the balance laws (21), and after some
rearrangements we obtain the structure of the interfacial entropy as it is stated by Axiom II:

ξI =
[[

(eṁ + q)

(
1

T
− 1

TI

)]]
−

[[
ṁ1

(
μ1

T
− μI,1

TI

)]]
−

[[
ṁ2

(
μ2

T
− μI,2

TI

)]]
. (35)

The representations (22) of the mass fluxes imply the continuity of the flux ṁ, i.e. ṁ+ = ṁ−. Therefore the
entropy production can also be written as

ξI =
[[

(eṁ + q)

(
1

T
− 1

TI

)]]
−

[[
ṁ1

(
μ

T
− μI

TI

)]]
− ṁ

[[μ2

T

]]
≥ 0 . (36)

Thermodynamically consistent relations can be read off from this expression for the five independent fluxes
q±, ṁ±

1 and ṁ.



Sharp limit of the viscous Cahn–Hilliard equation 919

In this study we are only interested in the special case of a continuous mass flux ṁ1, i.e.

[[ṁ1]] = 0. (37)

Thus only one constitutive relation for the mass flux ṁ1 has to be chosen. The continuity of the mass flux
simplifies both the interfacial mass balance (21)1 and the representation of the interfacial entropy production.
Thus we have a time-independent interfacial mass density uI, i.e. ∂t uI = 0, and an entropy production (35) of
the form

ξI =
[[

(eṁ + q)

(
1

T
− 1

TI

)]]
− ṁ1

[[μ1

T

]]
− ṁ2

[[μ2

T

]]
≥ 0. (38)

A simple possibility to satisfy (38) is given by the heat fluxes

q± = e±ṁ + a±
(

1

T± − 1

TI

)
with a± > 0 (39)

and by the kinetic relations
([[μ1

T ]]
[[μ2

T ]]

)
= −

(
L11 L12
L21 L22

)(
ṁ1
ṁ2

)
, (40)

with a positive definite matrix L of kinetic coefficients.
For a more detailed description of sharp interface models, we refer the interested reader to [3–5].

Balance equation of the interfacial free energy We introduce the free energy density ψI = eI − TIhI as a
function of (TI, uI). The chemical potential can be written as

μI = ∂ψI

∂uI
. (41)

Now we consider again the isothermal case, i.e. T+ = T− = TI, and substitute in (29) the interfacial entropy
by ψI. The time derivative of eI will be eliminated by (21)2. After some rearrangement of terms we obtain the
balance equation of the interfacial free energy,

∂tψI + [[ψṁ + μ f ]] = −T ξI with T ξI = − [[
ṁ1

(
μ1 − μI,1

)]] − [[
ṁ2

(
μ2 − μI,2

)]] ≥ 0 . (42)

A usefull alternative to represent the jump bracket in (42)1 is

[[ψṁ + μ f ]] = [[ṁ1μ1 + ṁ2μ2]]. (43)

The identity (43) relies on (22) and (33).
Under a continuousmass flux ṁ1, the balance equation (42)1 and the identity (43) imply a time-independent

free energy and simplified entropy production,

∂tψI = 0 and T ξI = −ṁ1
[[
μ1

]] − ṁ2
[[
μ2

]] ≥ 0 (44)

The sharp interface model In an analogous manner to the diffuse setting we proceed with the isothermal case.
The diffusion in the bulk is described by both the balance law (20) and the diffusion flux (26)2,

∂t u = −∂x f with f = −M
T ∂xμ and μ = ∂ψ

∂u
for x ∈ Ω±, (45)

with a positive constant M > 0. It is understood that we may have different free energy functions ψ in Ω+
and Ω−. However, for simplicity this fact is not indicated here. Moreover, we use the free energy function

ψ = F(u) (46)

with the same function F that appears in the diffuse setting.
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The initial boundary value problem in the sharp interface setting considers an initial density and boundary
values for the fluxes at the external boundaries

u(0, x) = u0(x) and f (t, 0) = f (t, 1) = 0 . (47)

The boundary values at the interface I rely on jump conditions. For an isothermal interface with a continuous
mass flux ṁ1 the jump conditions are

([[μ1]]
[[μ2]]

)
= −

(
L11 L12
L21 L22

)(
ṁ1
ṁ2

)
. (48)

The coefficient matrix L is positive definite.

Remarks Here we have restricted the sharp interface model to the special case of a continuous mass flux ṁ1,

[[ṁ1]] = 0. (49)

In that case the definition (22) of the mass fluxes yields that the mass flux ṁ2 is also continuous at the interface,

[[ṁ2]] = 0. (50)

Further we obtain from the continuity of the mass fluxes and the interfacial mass balance law (21)1 we obtain
the constancy of the interfacial concentration uI, i.e.

∂t uI = 0. (51)

The kinetic relations (48) are the boundary conditions for the diffusion equations (45) at the interface. The
evolution of the interface follows from the continuity of the mass flux ṁ1. There results

0 = [[ṁ1]] = [[ f ]] − ẋ I [[u]]. (52)

This equation is known as Stefan condition and it serves to determine the interface speed.

3 The sharp limit of the viscous Cahn–Hilliard model

In order to describe a phase transition between two coexisting phases we have introduced two model variants.
A diffuse interface model represented by the viscous Cahn–Hilliard equation and a sharp interface model with
equations in the bulk phases and jump conditions at the interface. Our main objective is a comparison of the
two settings.

The comparison of the models is based on the following idea: The diffuse model depends on the small
parameter ε that controls the width of the diffuse interface. Therefore the concentration in the diffuse setting
depends on the parameter ε. We indicate that dependency by writing uε. The method of formal asymptotic
analysis relies on different expansions of uε in formal series. The outer expansion approximates the function
uε in the bulk phases, while the inner expansion approximates uε in the transition layer. The expansions imply
sharp interface equations that we can compare with the corresponding equations of the sharp interface setting.

In this section we present the main results of the asymptotic analysis followed by a detailed discussion.
The details of the cumbersome calculations are found in the Sects. 4 and 5.

3.1 Formal asymptotic expansions

In the diffuse setting the interface between two bulk phases is defined by a hypersurface where the solution of
the diffuse model assumes a given value u∗:

I ε(t) = {x ∈ (0, 1) : uε(t, x) = u∗}. (53)

The position of the interface is denoted by xε
I (t). We have

uε(t, xε
I (t)) = u∗. (54)
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The sharp limit of the diffuse interface model relies on formal series in the small parameter ε. In the bulk
phases we write

χε(t, x) = χ(0)(t, x) + εχ(1)(t, x) + ε2χ(2)(t, x) + O(ε3), (55)

and call this the outer expansion of a generic function χε. In the ε-neighborhood of the interface we introduce
an inner coordinate z according to

x = xε
I (t) + εz , (56)

and define χ̃ ε(t, z) = χε(t, xε
I (t) + εz). The formal series

χ̃ ε(t, z) = χ̃ (0)(t, z) + εχ̃ (1)(t, z) + ε2χ̃ (2)(t, z) + O(ε3) (57)

is called the inner expansion. The resulting jump conditions at the interface are derived by means of the inner
expansion.

3.2 Admissible approximation of a sharp interface model

We define requirements so that a diffuse model represents an admissible approximation of a sharp model.
The diffuse model (16)–(18) is an admissible approximation of the sharp model (45)–(48) up to order

O(εk) if it has for every initial density u0 a solution uε with the following properties:
1. The expansions (55) and (57) exist.
2. The outer expansions (55) satisfy the bulk equations (45) of the sharp model up to the order O(εk).
3. The expansions (55) and (57) imply representations of the interfacial density uI, the interfacial dissipation

function ξI and the kinetic coefficient matrix L . These quantities satisfy the jump conditions (48) of the
sharp model up to O(εk).

3.3 The leading order equations

In the bulk phases the sharp limit of the viscous Cahn–Hilliard model yields in the leading order O(1)

∂t u
(0) = −∂x f

(0) with f (0) = −M
T ∂xμ

(0) for x ∈ Ω± , (58)

where μ(0) = F ′(u(0)) is the corresponding chemical potential. The resulting free energy balance for the free
energy ψ(0) = F(u(0)) in the bulk phases is given by

∂tψ
(0) + ∂x ( f

(0)μ(0)) = −T ξ (0) with ξ (0) = 1

M
( f (0))2 ≥ 0 for x ∈ Ω±. (59)

In the same order we obtain the following conditions at the interface:

∂t u
(0)
I = 0, [[ṁ(0)

1,2]] = 0, [[μ(0)
1,2]] = 0 . (60)

We can even show that the interfacial concentration is zero, i.e. u(0)
I = 0.Moreover we obtain for the interfacial

free energy balance in the leading order

∂tψ
(0)
I = 0 and T ξ

(0)
I = −[[ṁ(0)

1 μ
(0)
1 + ṁ(0)

2 μ
(0)
2 ]] = 0. (61)

Additionally the interfacial free energy in the leading order is zero, i.e. ψ(0)
I = 0.

Thus, in the leading order, the sharp limit of the diffuse model agrees with the sharp interface model. The
order O(1) approximation of the diffuse model is admissible. However, there is no interfacial dissipation and
we find a sharp interface that is in local equilibrium.

Remarks 1. The representations of the chemical potentials μ
(0),±
1,2 and of the mass fluxes ṁ(0),±

1,2 in terms of
the solutions of the viscous Cahn–Hilliard model are

μ
(0),±
1 = F(u(0),±) + (1 − u(0),±)F ′(u(0),±) , μ

(0),±
2 = F(u(0),±) − u(0),±F ′(u(0),±) , (62)

ṁ(0),±
1 = f (0),± − ẋ (0)

I u(0),± , ṁ(0),±
2 = − f (0),± − ẋ (0)

I (1 − u(0),±). (63)

The derivation of these terms is given in Sect. 4.
2. The equations (60)3 represent two algebraic equations for the interface values u(0),±. Its graphic solution

is called Maxwell construction.
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3.4 The higher-order equations

In the bulk phases the sharp limit of the viscous Cahn–Hilliard model yields in the order O(ε)

∂t u
(1) = −∂x f

(1) with f (1) = −M
T ∂xμ

(1) for x ∈ Ω±, (64)

whereμ(1) = F ′′(u(0))u(1) is theO(ε) contribution to the chemical potential. The resulting free energy balance
for the free energy ψ(1) = F ′(u(0))u(1) in the bulk phases in order O(ε) reads

∂tψ
(1) + ∂x ( f μ)(1) = −T ξ (1) with ξ (1) = 1

M
( f 2)(1) for x ∈ Ω±. (65)

At the interface we obtain in the order O(ε) a constant interfacial density and continuous mass fluxes:

∂t u
(1)
I = 0 and [[ṁ(1)

1,2]] = 0 . (66)

However, in the orderO(ε), the chemical potentials are not continuous anymore. Now they are given by kinetic
relations:

(
[[μ(1)

1 ]]
[[μ(1)

2 ]]

)
= −

(
K11 K12
K21 K22

)(
ṁ(0)

1
ṁ(0)

2

)
. (67)

The matrix K of kinetic coefficients in (67) is symmetric and has the representation

K =
(−2A + B + γC −A + B + γC

−A + B + γC B + γC

)
, (68)

where the definitions of A, B andC are introduced in the following Remark. The interfacial free energy balance
and the entropy production in the order O(ε) are

∂tψ
(1)
I = 0 and − T ξ

(1)
I = ṁ(0)

1 [[μ(1)
1 ]] + ṁ(0)

2 [[μ(1)
2 ]]. (69)

The balance laws and the constitutive functions of the order O(ε) satisfy the sharp interface setting. But up to
now there is one property missing so that the diffuse model is also an admissible approximation in the order
O(ε) of the sharp model. Recall that there is no dissipation in the leading order, i.e. ξ

(0)
I = 0. Hence the

non-negativity of the interfacial entropy production must be guaranteed by ξ
(1)
I .

The non-negativity of the dissipation function ξ
(0)
I is related to the properties of the matrix K . We insert

the kinetic relations (67) in the dissipation function (69)2 and obtain

T ξ
(1)
I = K11(ṁ

(0)
1 )2 + (K12 + K21)ṁ

(0)
1 ṁ(0)

2 + K22(ṁ
(0)
2 )2 . (70)

Obviously, ξ (1)
I is non-negative for every mass flux ṁ(0)

1,2 iff the matrix K is positive semi-definite.

The non-negativity of the interfacial dissipation ξ
(1)
I and the properties of the matrix K will be discussed

in the next sections.

Remarks 1. Above we have used some abbreviations to keeps the equations readable. Here, we express all
quantities in terms of the inner and expansion of the concentration u. The derivation of the equation from
above is given in Sect. 4, where we will see that the quantities A, B and C in the definition of the matrix
K are represented by

A = T

M

∫ 0

−∞
(ũ(0) − u(0),−) dz + T

M

∫ +∞

0
(ũ(0) − u(0),+) dz, (71)

C =
∫ +∞

−∞
(∂z ũ

(0))2 dz (72)

B = T

M

∫ 0

−∞
(ũ(0))2 − (u(0),−)2 dz + T

M

∫ +∞

0
(ũ(0))2 − (u(0),+)2 dz. (73)
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The chemical potentials μ
(1),±
1,2 and mass fluxes ṁ(1),±

1 are defined as

μ
(1),±
1 = (1 − u(0),±)F ′′(u(0),±)u(1),± + (

∂x (F(u(0)) + (1 − u(0))F ′(u(0)))
)±

x (1)
I , (74)

μ
(1),±
2 = −u(0),±F ′′(u(0),±)u(1),± + (

∂x (F(u(0)) − u(0)F ′(u(0)))
)±

x (1)
I , (75)

ṁ(1),±
1 = f (1),± − ẋ (0)

I u(1),± − ẋ (1)
I u(0),± + (∂x f

(0) − ẋ (0)
I ∂xu

(0))±x (1)
I , (76)

ṁ(1),±
2 = − f (1),± + ẋ (0)

I u(1),± + ẋ (1)
I u(0),± − ẋ (1)

I − (∂x f
(0) − ẋ (0)

I ∂xu
(0))±x (1)

I . (77)

2. The quantities A, B and C of the matrix K depend on the concentration ũ(0), which has to be derived from
the inner equation

∂z(μ̃
(0) − β∂zz ũ

(0)) = 0 with z ∈ (−∞,+∞) and μ̃(0) = F ′(ũ(0)). (78)

The necessary boundary conditions are

ũ(0)(t, z)
z→±∞→ u(0),±(t, x (0)

I ) , ∂z ũ
(0)(t, z)

z→±∞→ 0 , ∂zz ũ
(0)(t, z)

z→±∞→ 0 . (79)

The derivation of the inner equation and boundary conditions is described in detail in Sect. 4.
3. The interfacial densities u(1)

I and ψ
(1)
I are given by their inner and outer leading parts,

u(1)
I =

∫ 0

−∞
(ũ(0) − u(0),−) dz +

∫ +∞

0
(ũ(0) − u(0),+) dz , (80)

ψ
(1)
I =

∫ 0

−∞
(F(ũ(0)) − F(u(0),−) + β

2 (∂z ũ
(0))2) dz +

∫ +∞

0
(F(ũ(0)) − F(u(0),+) + β

2 (∂z ũ
(0))2) dz.

(81)

4. Note the remarkable symmetry of thematrix K . It reflects the often postulated Onsager symmetry of kinetic
coefficients. Apparently that symmetry is embodied in the viscous Cahn–Hilliard model.

3.5 Entropy production in the sharp limit of the viscous Cahn–Hilliard equation.

The question whether the sharp limit of the viscous Cahn–Hilliard equation is an admissible approximation up
to the order O(ε) of the sharp model is immediately related to the sign of the interfacial entropy production.

The relation (70) yields that the entropy production ξ
(1)
I is non-negative for every value of the mass fluxes

ṁ(0)
1,2 iff the matrix K is positive semi-definite. Thus it is only necessary to discuss the properties of the matrix

K in the following.
To simplify the discussion on the definiteness of the matrix K we consider the double well function

F(u) = 1

2
u2(u − 1)2 (82)

and set the Cahn–Hilliard coefficient β = 1, the temperature T = 1 and the mobility M = 1.
The exploitation of the jump conditions (60) with (62) leads to

u(0),− = 0 and u(0),+ = 1 . (83)

According to the inner equation (78), the concentration ũ(0) is given by a simple traveling wave with shift
parameter α:

ũ(0) = 1

2
+ 1

2
tanh

(
1

2

(
z + α

))
. (84)

By means of (83) and (84) we exploit (80) and obtain the interfacial concentration u(1)
I = α.
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Then we use (54) to relate the shift parameter α to the interface position xε
I . To this end recall that in

the inner coordinate the interface is located at z = 0. Moreover in the leading order of the inner solution the
condition (54) reads

ũ(0)(t, z = 0) = u∗ . (85)

Using (84) it follows that the shift parameter α is determined by the level set value u∗. However, from the
definition (54) of the interface position it is clear that the choice of the value u∗ is arbitrary. Thus α is arbitrary
as well. Vice versa for each parameter α ∈ R there is a level set value u∗.

Next we use the definitions (71)–(73) to calculate the quantities A, B and C in the definition (68) of the
matrix K . We obtain

A = α , B = α − 1 and C = 1

6
. (86)

The matrix K then assumes the explicit form

K =
(−α − 1 + γ /6 −1 + γ /6

−1 + γ /6 α − 1 + γ /6

)
. (87)

Now it is easy to test whether the matrix K is positive semi-definite. At first we consider the classical Cahn–
Hilliard model, i.e. we set γ = 0. In this case the eigenvalues λ1,2 of K are

λ1,2 = −1 ±
√
1 + α2. (88)

We observe that one eigenvalue is negative and we conclude that the Cahn–Hilliard model without viscosity
is not an admissible approximation of a sharp model in the order O(ε).

The case with viscosity, i.e. γ 	= 0, yields

λ1,2 = −
(
1 − γ

6

)
±

√(
1 − γ

6

)2 + α2. (89)

For α 	= 0 even here there is a negative eigenvalue. However, for α = 0 and γ ≥ 6 the eigenvalues are
{0, γ /3 − 2}. Thus for γ ≥ 6 there are no negative eigenvalues. The condition (85) uniquely determines the
level set value u∗. For α = 0 we obtain u∗ = 1

2 and a vanishing interfacial concentration, i.e. u(1)
I = 0.

We conclude that the sharp limit of the viscous Cahn–Hilliard model generates a non-negative interfacial
entropy production and is thus an admissible approximation of order O(ε) of a sharp interface model.

3.6 Relation between the inner entropy production of the diffuse model and the interfacial entropy
production of the sharp model

We proceed with a discussion of the peculiar result of Sect. 3.5 but from a different point of view. Here we
start from the inner entropy production ξ̃ ε and study its relation to the interfacial entropy production ξε

I that
was calculated in Sect. 3.4.

The inner version of the entropy production (13)2 reads

ξ̃ ε = 1

M

(
f̃ ε

)2 + γ

T

(
ε∂t ũ

ε − ẋε
I ∂z ũ

ε
)2 ≥ 0. (90)

Obviously, the limit ε → 0 will not change the sign of the leading term. We obtain

ξ̃ (0) = 1

M

(
f̃ (0))2 + γ

T

(
ẋ (0)
I ∂z ũ

(0))2 ≥ 0. (91)

Next we relate the non-negative entropy production ξ̃ (0) to the interfacial entropy production ξ
(1)
I . In Sect. 5.4

we show that this relation is given by

ξ
(1)
I =

∫ 0

−∞
ξ̃ (0) − ξ (0),− dz +

∫ +∞

0
ξ̃ (0) − ξ (0),+ dz. (92)

We observe that the sign of ξ̃ (0) does not determine the sign of ξ
(1)
I .
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Next we use a graphic interpretation of the relation (92) to derive its sign. To this end we use a further
result of the asymptotics of Sect. 4

− ẋ (0)
I ũ(0)(z) + f̃ (0)(z) = c0, (93)

which is the basis for the Stefan condition (60)2. The constant c0 is given by c0 = ṁ(0),±
1 .

Then (93) is used to eliminate the flux in (91) yielding

ξ̃ (0) = 1

M

(
ẋ (0)
I ũ(0) + c0

)2 + γ

T

(
ẋ (0)
I ∂z ũ

(0))2 ≥ 0. (94)

We exploit this representation by means of the explicit density ũ(0) from the last section, (84). In this case it
is also easy to determine the interface values of the bulk dissipation ξ (0),± = limz→±∞ ξ̃ (0). There results an
explicit representation of ξ̃ (0) depending on the parameter c0/ẋ

(0)
I .

As before we consider at first the classical Cahn–Hilliard case with γ = 0. A short calculation shows that
there are two different regimes depending on the value of c0/ẋ

(0)
I . In the first regime ξ̃ (0) is non-monotone

and its global minimum is smaller than the entropy production ξ (0),± of the bulk phases at the interface. In the
second regime ξ̃ (0) is monotone. The two cases are depicted in Fig. 1.

Obviously the interfacial entropy production must be non-negative for any choice of the parameter c0/ẋ
(0)
I .

This is violated in the non-monotone case that is represented in the left part of Fig. 1. At first glance one might
try to shift the parameter α to generate a positive value of ξ

(1)
I . However, this shift will lead to a conflict in the

monotone case shown in Fig. 1 right.
The viscous Cahn–Hilliard equation, i.e. γ 	= 0, is more complicated, because ξ

(1)
I additionally depends

on the gradient of ũ(0). The Fig. 2 again shows two possible variants. Also here it is possible to choose c0/ẋ
(0)
I
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ξ(0),−

ξ(0),+
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~

Fig. 1 Blue ξ̃ (0), shaded areas indicate ξ
(1)
I , left γ = 0 and c0/ẋ

(0)
I = −0.4, right γ = 0 and c0/ẋ

(0)
I = −1 (color figure online)

−10 −5 0 5 10
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ξ(0),−
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0
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ξ(
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Fig. 2 Blue ξ̃ (0), shaded areas indicate ξ
(1)
I , left γ = 10 and c0/ẋ

(0)
I = −0.4, right γ = 10 and c0/ẋ

(0)
I = −1 (color figure

online)
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so that the entropy production becomes negative. However, the proof in the last section shows that for α = 0
and γ > 6 every choice of c0/ẋ

(0)
I leads to a non-negative entropy production.

4 Formal asymptotic analysis of the viscous Cahn–Hilliard model

The viscous Cahn–Hilliard model (16) contains two constitutive constants β and γ . We are interested here in
the case where these constants are small. This is indicated by the substitutions β → ε2β and γ → ε2γ with
β and γ now of order O(1). Thus we consider

∂t u = −∂x f with f = −M
T ∂x

(
μ + γ ε2∂t u

)
and μ = F ′(u) − βε2∂xxu. (95)

This equation is equipped with a free energy inequality, viz.

∂t

(
F(u) + βε2

2
|∂xu|2

)
+ ∂x

(
f (μ + γ ε2∂t u) − βε2∂xu ∂t u

) = −T ξ, (96)

where the entropy production is given by

ξ = 1

M
f 2 + γ ε2

T
(∂t u)2 ≥ 0. (97)

The objective of this section is a study of the sharp limit ε → 0 of the viscous Cahn–Hilliard equation.
Moreover, we prove the representations of the sharp limit equations of the Cahn–Hilliard model, which are
summarized and discussed in the previous section.

4.1 The rules of formal asymptotic analysis

We assume that an initial and boundary value problem for the viscous Cahn–Hilliard model (95) has a solution
uε(t, x) with the following properties:

1. uε develops a transition layer with smooth but steep gradient between two adjacent bulk phases.
2. We choose a value u∗ lying in the transition layer and assume the existence of an interface that is defined

by

I ε(t) = {x ∈ (0, 1): uε(t, x) = u∗}. (98)

3. The interface I ε at the position xε
I ∈ C1([0, ∞),R) generates two regions Ω± with Ω− = [0, xε

I ] and
Ω+ = [xε

I , 1].
4. Away from I ε, i.e. in the bulk phases, we assume the existence of an outer expansion

uε(t, x) = u(0)(t, x) + εu(1)(t, x) + O(ε2). (99)

5. In the ε-neighborhood of I ε we introduce an inner coordinate z according to

x = xε
I + εz, (100)

and we define the inner variable by

ũε(t, z) = uε(t, xε
I (t) + εz). (101)

6. The definition (101) implies the following transformation of derivatives:

∂xu
ε = 1

ε
∂z ũ

ε and ∂t u
ε = ∂t ũ

ε − 1

ε
ẋε
I ∂z ũ

ε. (102)

7. Near to I ε we assume the existence of an inner expansion

ũε(t, z) = ũ(0)(t, z) + εũ(1)(t, z) + ε2ũ(2)(t, z) + O(ε3). (103)
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8. Correspondingly, we assume the existence of an expansion of the interface position

xε
I (t) = x (0)

I (t) + εx (1)
I (t) + O(ε2). (104)

9. Matching conditions between inner and outer quantities are based on (101). We insert here the expansions
(99), (103) and (104) and consider the limit ε → 0, z → ∞ with εzn → 0 (n ∈ N0) to obtain the
asymptotic correspondences

ũ(0)(t, z)
z→±∞→ u(0),±(t, x (0)

I ), (105)

∂z ũ(0)(t, z)
z→±∞→ 0, (106)

∂zz ũ(0)(t, z)
z→±∞→ 0, (107)

ũ(1)(t, z) − ∂xu(0),±(t, x (0)
I )(z + x (1)

I )
z→±∞→ u(1),±(t, x (0)

I ), (108)

∂z ũ(1)(t, z)
z→±∞→ ∂xu(0),±(t, x (0)

I ), (109)

∂zz ũ(1)(t, z)
z→±∞→ 0, (110)

∂z ũ(2)(t, z) − ∂xxu(0),±(t, x (0)
I )(z + x (1)

I )
z→±∞→ ∂xu(1),±(t, x (0)

I ), (111)

∂zz ũ(2)(t, z)
z→±∞→ ∂xxu(0),±(t, x (0)

I ), (112)

∂zzz ũ(2)(t, z)
z→±∞→ 0, (113)

∂t ũ(0)(t, z) − ∂xu(0),±(t, x (0)
I )ẋ (0)

I
z→±∞→ ∂t u(0),±(t, x (0)

I ). (114)

In order to obtain these matching conditions we follow the scheme that is described in [1,2]. It starts by
inserting the inner and outer expansions into (101) and (102)2, respectively.

ũ(0)(t, z) + εũ(1)(t, z) + ε2ũ(2)(t, z) + O(ε3)

= u(0)(t, x (0)
I ) + ε

(
u(1)(t, x (0)

I ) + ∂xu
(0)(t, x (0)

I )(x (1)
I + z)

)

+ ε2
(
u(2)(t, x (0)

I ) + ∂xu
(1)(t, x (0)

I )(x (1)
I + z)

)

+ ε2

2

(
∂xxu

(0)(t, x (0)
I )(x (1)

I + z)2 + 2∂xu
(0)(t, x (0)

I )x (2)
I

)
+ O(ε3) (115)

The matching conditions (105)–(114) follow by comparing terms of power εn .

4.2 The bulk equations according to the outer setting

We insert the outer expansion (99) into the viscous Cahn–Hilliard equation (95) and obtain in the leading order
O(1)

∂t u
(0) = −∂x f

(0) with f (0) = −M
T ∂xμ

(0) and μ(0) = F ′(u(0)) for x ∈ Ω±. (116)

In the next order O(ε) we obtain

∂t u
(1) = −∂x f

(1) with f (1) = −M
T ∂xμ

(1) and μ(1) = F ′′(u(0))u(1) for x ∈ Ω±. (117)

The initial boundary value problem for (116) needs equations that describe the jumps of the variables across
the interface between Ω+ and Ω−. Furthermore we need equations describing the motion of the interface.
These equations will be derived next.
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4.3 Equations of the inner setting

The jump conditions and the interface motion are encoded by the viscous Cahn–Hilliard equation (95) in the
inner setting. It results from a transformation of the derivatives in (95) by means of the rules (102):

∂t ũ
ε − ẋε

I

ε
∂z ũ

ε + 1

ε
∂z f̃

ε = 0. (118)

Here we introduce the inner expansion (103) and obtain in the leading order ε−2

∂z(μ̃
(0) − β∂zz ũ

(0)) = 0 with μ̃(0) = F ′(ũ(0)). (119)

In the next order, viz. ε−1, we have

− ẋ (0)
I ∂z ũ

(0) + ∂z f̃
(0) = 0 (120)

with the zeroth order flux

f̃ (0) = −M
T ∂z

(
μ̃(1) − β∂zz ũ

(1) − γ ẋ (0)
I ∂z ũ

(0)
)

and μ̃(1) = F ′′(ũ(0))ũ(1). (121)

Finally we identify the equations of order O(1),

∂t ũ
(0) − (ẋ I ∂z ũ)(1) + ∂z f̃

(1) = 0 (122)

with the first-order flux

f̃ (1) = −M
T ∂z

(
μ̃(2) − β∂zz ũ

(2) + γ ∂t ũ
(0) − γ

(
ẋ (1)
I ∂z ũ

(0) + ẋ (0)
I ∂z ũ

(1))) (123)

and the second-order chemical potential

μ̃(2) = 1

2
F ′′′(ũ(0))(ũ(1))2 + F ′′(ũ(0))ũ(2). (124)

4.4 The interface conditions of the leading order problem

Next we derive the interface conditions of the leading order problem (116) from the equations of the inner
setting (118)–(121). At first we integrate equation (119) and obtain

μ̃(0) − β∂zz ũ
(0) = c with c = μ(0),±. (125)

The equality (125)2 is a consequence of the matching conditions (105) and (107). Thus μ(0) is continuous at
the interface,

[[μ(0)]] = 0 with μ(0),± = F ′(u(0),±). (126)

Next we multiply (119) by ũ(0) to generate a further integral, which follows from the identity ∂x (F(uε) −
uεF ′(uε)) = −uε∂x F ′(uε). The integral reads

− μ̃
(0)
2 − β

(
ũ(0)∂zz ũ

(0)) + β

2

(
∂z ũ

(0))2 = d with d = μ
(0),±
2 . (127)

The integration constant (127)2 follows from the matching conditions (105)–(107). Thus, the continuity of
μ

(0)
2 has been established,

[[μ(0)
2 ]] = 0 with μ

(0),±
2 = F(u(0),±) − u(0),±F ′(u(0),±). (128)

The Eqs. (126) and (128) imply the continuity of μ
(0)
1 = F(u(0)) + (1 − u(0))F ′(u(0)),

[[μ(0)
1 ]] = 0 with μ

(0),±
1 = F(u(0),±) + (1 − u(0),±)F ′(u(0),±). (129)



Sharp limit of the viscous Cahn–Hilliard equation 929

Finally the last missing interface condition in the leading order follows from (120). The integration of
(120) leads to

− ẋ (0)
I ũ(0) + f̃ (0) = m with m = −ẋ (0)

I u(0),± + f (0),±. (130)

As before we have determined the integration constant m by the matching conditions (105)–(107).
A comparison of −ẋ (0)

I u(0),± + f (0),± with the sharp interface definition (22) of the mass flux identifies
the corresponding mass flux of the sharp limit procedure:

ṁ(0),±
1 = f (0),± − ẋ (0)

I u(0),±. (131)

We conclude that the diffuse model implies a continuous mass flux ṁ(0)
1 in the sharp limit. Thus we write

[[ṁ(0)
1 ]] = 0. (132)

The continuity of the second mass flux ṁ(0)
2 = − f (0) − ẋ (0)

I (1 − u(0)) at x (0)
I follows directly

[[ṁ(0)
2 ]] = 0 with ṁ(0),±

2 = − f (0),± − ẋ (0)
I (1 − u(0),±). (133)

4.5 The interface concentration in the leading order

Up to now there is no sharp limit expression for the interfacial concentration uI. We may establish consistency
of the twomodels by the statement: u(0)

I is constant in time. Next wewill show that the interfacial concentration

u(0)
I even assumes the value zero.
To this end we consider the total mass in the sharp interface model. Here the total mass consists of the two

masses of the bulk phases and of the interfacial mass. We have

M =
∫ xI

0
u dx +

∫ 1

xI
u dx + uI. (134)

In the diffuse interface settingwe decompose the total massM = ∫ 1
0 uε dx into the corresponding contributions

and hereafter we expand:

M =
∫ xε

I −ε

0
uε dx + ε

∫ +1

−1
ũε dz +

∫ 1

xε
I +ε

uε dx

=
∫ x (0)

I

0
u(0) dx +

∫ 1

x (0)
I

u(0) dx + ε

∫ +1

−1
ũ(0) dz

+ ε

(
u(0),−(x (1)

I − 1) +
∫ x (0)

I

0
u(1) dx − u(0),+(x (1)

I + 1) +
∫ 1

x (0)
I

u(1) dx

)
+ O(ε2). (135)

In the leading order we obtain

M =
∫ x (0)

I

0
u(0) dx +

∫ 1

x (0)
I

u(0) dx . (136)

As before we compare the sharp interface result (134) with the diffuse interface result (136). We conclude that
the total mass is already used up in the bulk phases. Thus it follows

u(0)
I = 0. (137)
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4.6 The interface conditions of the first-order problem, Part 1: Interfacial mass balance

Here we derive the interface condition for the higher-order problem (117). In preparation we rewrite the bulk
equation (116)1 at the ± sides of the interface. To this end we use the two identities

∂t u
(0),±(t, x (0)

I ) = u̇(0),±(t, x (0)
I (t)) − ẋ (0)

I (∂xu
(0))±(t, x (0)

I ) (138)

and obtain (116)1 in the form

u̇(0),± − ẋ (0)
I (∂xu

(0))± + (∂x f
(0))± = 0. (139)

This equation is now subtracted from the orderO(1) equation (122) of the inner setting. After some rearrange-
ments we have

∂t (ũ
(0) − u(0),±) + ∂z

(
−(ẋ I ∂z ũ)(1) + f̃ (1) − (−ẋ (0)

I ∂xu
(0) + ∂x f

(0))±(z + x (1)
I )

)
= 0. (140)

Next we integrate (140) along the z coordinate, namely from −∞ to 0 on the − side and from 0 to +∞
on the + side of the interface. Then we add the resulting equations. Here we apply the matching conditions
(105)–(113) to the term under the z derivative of (140). By this procedure we deduce from (140) the interfacial
mass balance

∂t u
(1)
I + [[ṁ(1)

1 ]] = 0. (141)

The interface concentration u(1)
I and the mass fluxes ṁ(1),±

1 of the order O(ε) are defined as

u(1)
I =

∫ 0

−∞
(ũ(0) − u(0),−) dz +

∫ +∞

0
(ũ(0) − u(0),+) dz , (142)

ṁ(1),±
1 = f (1),± − ẋ (0)

I u(1),± − ẋ (1)
I u(0),± + (∂x f

(0) − ẋ (0)
I ∂xu

(0))±x (1)
I . (143)

Furthermore the representation (142) shows that u(1)
I does not depend on time because u(0),± is determined

by the time-independent equations (126) and (128). Thus the integration constant c in (125) is independent of
time. Then also ũ(0) is time independent. We conclude from (141)

∂t u
(1)
I = 0 and [[ṁ(1)

1 ]] = 0. (144)

We directly obtain from the continuity of the mass flux ṁ(1)
1 :

[[ṁ(1)
2 ]] = 0 with ṁ(1),±

2 = − f (1),± + ẋ (0)
I u(1),± + ẋ (1)

I u(0),± − ẋ (1)
I − (∂x f

(0) − ẋ (0)
I ∂xu

(0))±x (1)
I .

(145)

4.7 The interface conditions of the first-order problem, Part 2: Kinetic relations.

The first-order problem (117) needs two further interface conditions. These are the kinetic relations. We write
equation (130) as

− ẋ (0)
I (ũ(0) − u(0),±) + f̃ (0) − f (0),± = 0. (146)

Here we insert the flux f̃ (0) according to (121) and f (0) = −M
T ∂xμ

(0) from (116) to obtain

− ẋ (0)
I (ũ(0) − u(0),±) − M

T ∂z

(
μ̃(1) − ∂xμ

(0),±(z + x (1)
I ) − β∂zz ũ

(1) − γ ẋ (0)
I ∂z ũ

(0)
)

= 0. (147)

As beforewe integrate this equation along the z coordinate and apply again thematching conditions (105)–(113)
to the various terms under the z derivative. The result is

[[μ(1)]] = Aṁ(0) with A = T
M u(1)

I . (148)



Sharp limit of the viscous Cahn–Hilliard equation 931

The derivation of the second missing interface condition starts with (120). Multiplication of equation (120) by
ũ(0) yields

− ( − ẋ (0)
I ũ(0) + f̃ (0))∂z ũ(0) + ∂z

(
− ẋ I

(
ũ(0))2 + ũ(0) f̃ (0)

)
= 0. (149)

By (130) and (131) we have ṁ(0)
1 = −ẋ (0)

I ũ(0) + f̃ (0) and furthermore ṁ(0) = −ẋ (0)
I . Recall that ṁ(0)

1 and

ṁ(0) are independent of z. We insert the fluxes ṁ(0)
1 and ṁ(0) in (149). Afterward we can easily integrate (149)

and obtain with an appropriately chosen integration constant

− ṁ(0)
1 (ũ(0) − u(0),±) + ṁ(0)((ũ(0))2 − (u(0),±)2

) + (ũ(0) f̃ (0) − u(0),± f (0),±) = 0. (150)

Herein the flux f̃ (0) is inserted according to (121). The flux f (0) = −M
T ∂xμ

(0) results from (116). In both
fluxes, we replace the space derivatives of F ′(u) by derivatives of F(u) − uF ′(u). This substitution relies on
the identity ∂x (F(uε) − uεF ′(uε)) = −uε∂x F ′(uε) implying

u(0)∂xμ
(0) = ∂xμ

(0)
2 and ũ(1)∂zμ̃

(0) + ũ(0)∂zμ̃
(1) = ∂zμ̃

(1)
2 . (151)

Thus (150) becomes

− ṁ(0)
1

(
ũ(0) − u(0),±) + ṁ(0)((ũ(0))2 − (u(0),±)2

) + M
T

(
∂zμ̃

(1)
2 − ∂xμ

(0),±
2

)

+ M
T βũ(0)∂zzz ũ

(1) + M
T ũ(1)∂zμ̃

(0) + γ M
T ẋ (0)

I ũ(0)∂zz ũ
(0) = 0. (152)

Finally we use (119)1, viz. ∂z(μ̃(0) − ∂zz ũ(0)) = 0, to obtain

− ṁ(0)
1

(
ũ(0) − u(0),±) + ṁ(0)((ũ(0))2 − (u(0),±)2

) + M
T

(
∂zμ̃

(1)
2 − ∂xμ

(0),±
2

)

+ β M
T ∂z

(
ũ(0)∂zz ũ

(1) + ũ(1)∂zz ũ
(0) − ∂z ũ

(0)∂z ũ
(1))

+ γ M
T ẋ (0)

I ∂z
(
ũ(0)∂z ũ

(0)) − γ M
T ẋ (0)

I

(
∂z ũ

(0))2 = 0. (153)

Integration of this equation along the z coordinate yields

[[μ(1)
2 ]] = Aṁ(0)

1 − (B + γC)ṁ(0) (154)

with the abbreviations

C =
∫ +∞

−∞
(∂z ũ

(0))2 dz, (155)

B = T

M

∫ 0

−∞
(ũ(0))2 − (u(0),−)2 dz + T

M

∫ +∞

0
(ũ(0))2 − (u(0),+)2 dz. (156)

A simple rearrangement shows that the kinetic relations (148) and (154) can be rewritten in the symmetric
form:

[[μ(1)
1 ]] = −K11ṁ

(0)
1 − K12ṁ

(0)
2 , (157)

[[μ(1)
2 ]] = −K21ṁ

(0)
1 − K22ṁ

(0)
2 , (158)

with the symmetric coefficient matrix

K =
(−2A + B + γC −A + B + γC

−A + B + γC B + γC

)
. (159)

5 Formal asymptotic analysis of the interfacial free energy inequality

In this section we derive the interfacial free energy inequality in an analogous manner as we have derived the
jump conditions for the concentration. We start from the free energy inequality (96) of the diffuse model and
insert the outer and the inner expansions of the concentration u. After this we compare the resulting equations
with the corresponding equations of the sharpmodel. That comparison allows to identify the interfacial entropy
production of the diffuse model.
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5.1 The free energy inequality in the outer setting

We insert the outer expansion (99) into the free energy inequality (96) of the viscous Cahn–Hilliard equation
and the dissipation function (97). In the leading order we obtain the balance law

∂tψ
(0) + ∂x ( f

(0)μ(0)) = −T ξ (0) (160)

where the free energy and the entropy production are given by

ψ(0) = F(u(0)) and ξ (0) = 1

M
( f (0))2 ≥ 0. (161)

In the next order the free energy balance reads

∂tψ
(1) + ∂x ( f μ)(1) = −T ξ (1), (162)

where the free energy and the entropy production are given by

ψ(1) = F ′(u(0))u(1) and ξ (1) = 1

M
( f 2)(1). (163)

5.2 The free energy inequality in the inner setting

At first we transform the free energy balance (96) by means of the rules (102) to obtain

∂

∂t

(
F̃ε + β

2
(∂z ũ

ε)2
)

− ẋε
I

ε

∂

∂z

(
F̃ε + β

2
(∂z ũ

ε)2
)

+ 1

ε

∂

∂z

(
f̃ ε

(
μ̃ε + εγ (ε∂t ũ

ε − ẋε
I ∂z ũ

ε)
) − β∂z ũ

ε
(
ε∂t ũ

ε − ẋε
I ∂z ũ

ε
)) = −T ξ̃ ε. (164)

The transformed dissipation function (97) reads in inner variables:

ξ̃ ε = 1

M

(
f̃ ε

)2 + γ

T

(
ε∂t ũ

ε − ẋε
I ∂z ũ

ε
)2 ≥ 0. (165)

In (164) we introduce the inner expansion (103). Due to (119) and (120) we conclude that the terms of the
orders ε−2 and ε−1 of (164) are identically satisfied. The next order O(1) yields

∂t

(
F̃ (0) + β

2
(∂z ũ

(0))2
)

− ∂z

[
ẋε
I F̃

ε
](1) + ∂z

[
f̃ εμ̃ε

](1)

+ β

2
∂z

[
ẋε
I (∂z ũ

ε)2
](1) − β∂z

(
∂t ũ

(0)∂z ũ
(0)) − γ ∂z

(
ẋ (0)
I f̃ (0)∂z ũ

(0)) = −T ξ̃ (0), (166)

where the dissipation function is given by

ξ̃ (0) = 1

M

(
f̃ (0))2 + γ

T
(ẋ (0)

I ∂z ũ
(0))2 ≥ 0. (167)

In (166) we have used the abbreviations

[
ẋε
I F̃

ε
](1) = ẋ (0)

I F̃ (1) + ẋ (1)
I F̃ (0) (168)

[
f̃ εμ̃ε

](1) = f̃ (1)(μ̃(0) − β∂zz ũ
(0)) + f̃ (0)(μ̃(1) − β∂zz ũ

(1)) (169)
[
ẋε
I (∂z ũ

ε)2
](1) = ẋ (1)

I (∂z ũ
(0))2 + 2ẋ (0)

I ∂z ũ
(0)∂z ũ

(1). (170)
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5.3 The interfacial free energy inequality of the leading order

The leading orders, i.e. ε−2 and ε−1, of the diffuse free energy inequality in inner variables do not give any
new information because the leading orders of the inequality are identically satisfied. This is a consequence
of previous results. In fact, the continuity of both the mass fluxes (132) and (133) and the chemical potentials
(128) and (129) yields in the leading order

ṁ(0)
1 [[μ(0)

1 ]] + ṁ(0)
2 [[μ(0)

2 ]] = 0. (171)

A comparison of (171) with the free energy inequality (44) of the sharp interfacemodel leads to the conclusion:
There is no dissipation in the leading order, i.e.

ξ
(0)
I = 0. (172)

Finally we show that the free energy ψ
(0)
I in the sharp limit is zero. This follows in an analogous manner to

the reasoning of u(0)
I = 0. The total free energy Ψ of the system is an additive quantity. Therefore it can be

represented in the sharp interface setting by

Ψ =
∫ xI

0
ψ dx +

∫ 1

xI
ψ dx + ψI. (173)

In the diffuse interface setting we decompose the total free energy Ψ = ∫ 1
0 ψε dx into the corresponding

contributions and hereafter we expand:

Ψ =
∫ x (0)

I

0
ψ(0) dx +

∫ 1

x (0)
I

ψ(0) dx + ε

∫ +1

−1
ψ̃(0) dz

+ε

(
ψ(0),−(x (1)

I − 1) +
∫ x (0)

I

0
ψ(1) dx − ψu(0),+(x (1)

I + 1) +
∫ 1

x (0)
I

ψ(1) dx

)
+ O(ε2). (174)

In the leading order we obtain

Ψ =
∫ x (0)

I

0
ψ(0) dx +

∫ 1

x (0)
I

ψ(0) dx . (175)

As before we compare the sharp interface result (173) with the diffuse interface result (175). We conclude that
the total free energy Ψ has only bulk contributions. Thus it follows

ψ
(0)
I = 0. (176)

5.4 The higher-order interfacial free energy balance inequality

From the inner equation (166) we subtract the corresponding bulk equations (160) at the interface. The result
can be written as

∂t

(
F̃ (0) − F (0),± + β

2
(∂z ũ

(0))2
)

− ∂z

[
ẋε
I F̃

ε
](1) + ∂x (ẋ

(0)
I F (0),±) + ∂z

[
f̃ εμ̃ε

](1) − ∂r
(
f (0),±μ(0),±)

+ β

2
∂z

[
ẋε
I (∂z c̃

ε)2
](1) − β∂z(∂t c̃

(0)∂z c̃
(0)) − γ ∂z(ẋ

(0)
I f̃ (0)∂z c̃

(0)) = −T (ξ̃ (0) − ξ (0),±). (177)

As before we integrate this equation along the z coordinate and apply the matching conditions (105)–(113) to
the various terms under the z derivative and obtain

∂tψ
(1)
I + [[(ψṁ)(1)]] + [[( f μ)(1)]] = −T ξ

(1)
I . (178)
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Herein the free energy ψ
(1)
I is defined as

ψ
(1)
I =

∫ 0

−∞

(
F̃ (0) − F (0),− + β

2
(∂z ũ

(0))2
)
dz +

∫ +∞

0

(
F̃ (0) − F (0),+ + β

2
(∂z ũ

(0))2
)
dz (179)

and the dissipation function ξ
(1)
I has the representation

ξ
(1)
I =

∫ 0

−∞
ξ̃ (0) − ξ (0),− dz +

∫ +∞

0
ξ̃ (0) − ξ (0),+ dz. (180)

Next we show that the interfacial dissipation function is given by

T ξ
(1)
I = −[[μ(1)

1 ṁ(0)
1 + μ

(1)
2 ṁ(0)

2 ]]. (181)

We start from (167) and use the relations (120), (151)2 and (119) to obtain after a straightforward calculation
the identity

T ξ̃ (0) = −ṁ(0)
1 ∂zμ̃

(1)
1 − ṁ(0)

2 ∂zμ̃
(1)
2

+β ẋ (0)
I ∂z

(
ũ(0)∂zz ũ

(1) + ũ(1)∂zz ũ
(0) − ∂z ũ

(0)∂z ũ
(1)

)
+ βṁ(0)

1 ∂zzz ũ
(1)

+ γ ẋ (0)
I ṁ(0)

1 ∂zz ũ
(0) + γ (ẋ (0)

I )2∂z(ũ
(0)∂z ũ

(0)) (182)

In an analogous manner we obtain for the bulk dissipation function (161) the identity

T ξ (0) = −ṁ(0)
1 ∂xμ

(0)
1 − ṁ(0)

2 ∂xμ
(0)
2 . (183)

Now we subtract from (182) the equation (183). After this we integrate along the inner coordinate z and apply
again the matching conditions (105)–(113). Finally we end up with the proposition (181).
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