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Abstract Granular materials are typically characterized by complex structure and composition. Continuum
modeling, therefore, remains the mainstay for describing properties of these material systems. In this paper, we
extend the granular micromechanics approach by considering enhanced kinematic analysis. In this analysis, a
decomposition of the relative movements of interacting grain pairs into parts arising from macro-scale strain
as well as micro-scale strain measures is introduced. The decomposition is then used to formulate grain-
scale deformation energy functions and derive inter-granular constitutive laws. The macro-scale deformation
energy density is defined as a summation of micro-scale deformation energy defined for each interacting grain
pair. As a result, a micromorphic continuum model for elasticity of granular media is derived and applied to
investigate the wave propagation behavior. Dispersion graphs for different cases and different ratios between
the microscopic stiffness parameters have been presented. It is seen that the model has the capability to present
band gaps over a large range of wave numbers.

Keywords Granular materials · Micromechanics · Micromorphic continuum · Dispersion · Wave
propagation

1 Introduction

Continuum modeling of granular media continues to be attractive and, arguably, the most feasible approach
for describing their mechanical response at the macroscale. However, the imperatives of including the grain-
scale information in macro-scale models have been widely recognized. The necessity of modeling micro-scale
mechanisms in broader sense, within the rubric of continuum mechanics, is clear in the pioneering works
of Cosserat [1], Mindlin [2], Toupin [3], Eringen [4], Green and Rivlin [5] and Germain [6]. Indeed, the
early developments of continuum mechanics are known to proceed from some micromechanical conception
of deformable materials (see Navier [7], Cauchy [8], and Piola [9,10]). For granular material systems, the
grain-pair interactions and granular structures have a strong effect upon the collective behavior of grains.
Consequently, approaches are needed that are different from themanymicromechanical ormulti-scalemethods
that have been conceived with the framework of continuum mechanics (see among others [11]). For example,
the thermodynamics of granular materials can be described in the framework of mixtures [12] for the purpose
of grain-size distribution evolution or of anisotropy evolution [13].

Here we follow the granular micromechanics approach which offers a robust methodology for developing
continuum models of granular material systems by incorporating micro-scale effects [14–16]. This methodol-
ogy considers grains and their interactions as the building block of the material and its macroscopic behavior.
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A continuum material point is therefore modeled as a granular volume element whose response is derived in
terms of the meso-scale behavior of interacting grain pairs, orientation vectors, and average tensorial fabric
measures. The granular micromechanics approach traces its genesis to the continuum models of grain packing
developed in the second-half of the last century (see, for example, [17–22]). This approach has been applied
to model a range of issues relevant to granular material behavior, including among others elastoplasticity [23],
rate-dependent damage and plasticity [15,24], instability analysis [25,26] and second gradient andmicro-polar
effects [27–29], to give a small subset of contributions along these lines.

In this paper, the granular micromechanics approach is extended by considering the kinematic analy-
ses of Mindlin–Eringen microstructural elasticity [2] or micromorphic mechanics [4]. The kinematics for
a continuum material point is therefore enhanced by non-classical terms, including terms that model grain
displacement fluctuations and higher gradients of deformations. The decomposition of interacting grain-pair
relative displacement arising from different continuum kinematic variables in the kinematic analysis is then
derived. The macro-scale stress measures conjugate to the introduced strain measures are defined by use of
macro-scale deformation energy density. For granular material systems, the macro-scale deformation energy
density is written as the volume average of grain-pair deformation energy. Themacro-scale stress measures are,
consequently, obtained in terms of the inter-granular force measures and the local geometry parameters. The
micro-scale constitutive equations relating the inter-granular force and kinematic measures are then defined.
As a result, macro-scale constitutive equations relating the stress measures to the strain measures are obtained
in terms of the micro-scale stiffness coefficients and geometric properties. Further, the balance equations and
displacement equations of motion for the derived theory are obtained and applied to investigate wave propa-
gation phenomena. The resultant dispersion equations for different wave types are expressed in terms of the
micro-scale properties to study the relationship between dispersion behavior and micro-scale parameters of
granular media.

2 Kinematics of granular media

For the purpose of continuum modeling, consider a volume element (VE) of a granular media defined in the
global coordinate system, x. The displacement of grain, p, in this media can be expressed as a Taylor series
expansion in terms of the displacement of neighboring grain, n, as follows

φ
p
i = φn

i + φn
i, j l j + 1

2
φn
i, jkl j lk + · · · (1)

where φi is the displacement of grain centroids, l j is an inter-granular branch vector joining the centroids of
grains n and p, and the tensor product l j lk(=J jk) is a geometry moment tensor. Terms of gradient up to second
order have been included in the expansion. Summation convention over repeated indices is implied unless
noted otherwise. In a continuum model, the VE plays the role of a material point P , as depicted in Fig. 1. A
new coordinate system, x’, is now attached to the material point P that can distinguish the different grains
comprising P (see Fig. 1), such that the displacement of grain centroids can be denoted by φi (x,x’). The origin
of x’ is at the barycenter of P and moves with the displacement of P and its axes are parallel to coordinate
system, x.

Along the lines of themethodology ofmicrostructural elasticity described byMindlin [2] andmicromorphic

mechanics of Eringen [4], the displacement gradient, ψi j (xk)
�= φi, j (xk), is decomposed as follows

ψi j
�= φi, j = φ̄i, j − γi j (2)

where φ̄i, j is the macro-scale displacement gradient independent of coordinates xk , and γi j (xk) is the relative
deformation. The second rank tensor γi j (xk) is interpreted as the gradient, with respect to the coordinates,
x ′
k , of the grain displacement fluctuations within the material point. The decomposition in Eq. 2, therefore,

not only models the mean field grain displacements as in previous granular micromechanics theories [18–20],
but also includes fluctuations in grain displacements as discussed in [30,31]. Since the second rank tensor
γi j (xk) is independent of coordinates x ′

k (homogeneous within the material point), the fluctuations modeled
this way are taken as linear within the material point, which leads to a micromorphic theory of degree 1 in the
terminology introduced by Germain [6]. The decomposition of displacement gradient in Eq. 2 is supported by
the experimentally measured kinematic fields of grain assemblies [32–34] that show strong non-affine motions
in a volume element comprising large number of grains. The presence of grain displacement fluctuations has
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Fig. 1 Schematic of continuum material point, P , with its granular microstructure and the coordinate systems x and x ′

also been recognized in previous works related to continuum modeling of grain packing within the rubric of
classical continuummechanics [30,35]. The second and higher gradient of deformations have also been shown
to be necessary for continuum modeling of pantographic trusses due to their unique structural arrangements
and stiffness of the truss elements [36,37] and also for bone mechanics [38]. The relative displacement of
grains n and p can now be obtained by substituting Eq. 2 into Eq. 1 as follows

δ
np
i = φ

p
i − φn

i = (φ̄i. j − γi j
)
l j + 1

2
φi, jkl j lk = φ̄i, j l j − γi j l j + 1

2
φi, jkl j lk = δMi − δmi + δ

g
i (3)

where

δMi = φ̄i, j l j ; δmi = γi j l j ; δ
g
i = 1

2
φi, jkl j lk = φi, jk J jk (4)

As seen from Eq. 3, the inter-granular relative displacements between two interacting (contacting) grains are
decomposed into three terms: (1) δMi due to the average displacement gradient, φ̄i, j , (2) δmi due to the gradients
of the fluctuation in grain displacement, γi j (x), and (3) δ

g
i due to the second gradient term, φi, jk , which is same

as the gradient of the relative deformations, γi j,k . A similar analysis could be done for the contact problem
[39,40].

The rotation of grain p can also bewritten as aTaylor series expansion in terms of the rotation of neighboring
grain, n, as follows

κ
p
i = κn

i + κn
i,pl p (5)

where κi is the grain rotation and terms of second order and higher are ignored. Further, the rotational field
inside the material point P can be derived as the curl of the displacement field as

κi = e jkiφk, j (6)

where e jki is theLeviCevita permutation symbol, and the derivative is takenwith respect to the local coordinates
system (x’). Combining Eqs. 5 and 6, the relative rotation of two interacting grains, n and p, denoted by θi , is
then obtained as

θ
np
i = κ

p
i − κn

i = κn
i,pl p = e jkiφk, j pl p (7)

The inter-granular relative rotations between two interacting grains are, thus, related to the second gradient
term, φi, jk . That grains undergo relative rotations are also known from measurements of kinematic fields in
grain assembles [32,34].
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3 Macro-scale and micro-scale dynamics

The macro-scale deformation energy density of the granular continua can now be defined as a function of the
continuum kinematic measures as: W = W

(
φ̄(i, j), γi j , φi j,k

)
. Consequently, the macro-scale stress compo-

nents conjugate to these kinematic measures are obtained as

τi j = ∂W

∂φ̄(i, j)
= ∂W

∂εi j
; σi j = ∂W

∂γi j
; μi jk = ∂W

∂γi j,k
(8)

where τi j , σi j , and μi jk are Cauchy stress, relative stress, and double stress, respectively. For a granular
material system, the macro-scale deformation energy density, W , can be written in terms of micro-scale
deformation energy caused by the relative motion of interacting grain pairs. The micro-scale deformation
energy, Wα , can be defined as follows for the αth interacting pair as a function of the micro-scale kinematic
measures: Wα

(
δMi , δmi , δ

g
i , θui

)
, where for simplicity of presentation the superscript α has been dropped from

the micro-scale kinematic variables. The overall energy density of the RVE is then given as

W = 1

V

∑

α

Wα
(
δMi , δmi , δ

g
i , θui

)
(9)

Further, the inter-granular force and moment conjugates are introduced as derivatives of micro-scale energy
function, Wα , with respect to each of the inter-particle kinematic measures as:

∂Wα

∂δ
αξ
i

= f αξ
i ; where ξ : M,m, g

∂Wα

∂θαu
i

= mαu
i (10)

Substituting Eq. 9 into Eq. 8, applying chain rule of differentiation and making use of Eqs. 4 and 10 lead to
the following expressions for the macro-scale stress measures:

τi j = ∂W
∂εi j

= 1
V

∑

α

∂Wα

∂δMk

∂δMk
∂εi j

∂δMk
∂εi j

= ∂
(
εkq lαq

)

∂(εi j)
= δikδ jqlαq = δiklαj

⎫
⎪⎬

⎪⎭
⇒ τi j = 1

V

∑

α

∂Wα

∂δMk
δikl

α
j = 1

V

∑

α

f Mi lαj (11)

σi j = ∂W
∂γi j

= 1
V

∑

α

∂Wα

∂δmk

∂δmk
∂γi j

∂δmk
∂γi j

= ∂
(
γkq lαq

)

∂γi j
= δikδ jqlαq = δiklαj

⎫
⎪⎬

⎪⎭
⇒ σi j = 1

V

∑

α

∂Wα

∂δmk
δikl

α
j = 1

V

∑

α

f mi lαj (12)

μi jk = ∂W
∂φi, jk

= 1
V

∑

α

(
∂Wα

∂δ
g
l

∂δ
g
l

∂φi, jk
+ ∂Wα

∂θul

∂θul
∂φi, jk

)

∂δ
g
l

∂γi, jk
= ∂

(
φl,qr Jα

qr

)

∂φi, jk
= δilδ jqδrk Jα

qr = δil Jα
jk

δθul
∂φi, jk

= ∂
(
erqlφq,rplαp

)

∂φi, jk
= δiqδ jrδpkerqllαp = e jil lαk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒ μi jk = 1

V

(
∑

α

∂Wα

∂δ
g
l

δil J
α
jk +

∑

α

∂Wα

∂θul
e jil l

α
k

)

= 1

V

(
∑

α

f gi Jα
jk +

∑

α

mu
l e jil l

α
k

)

(13)

Thus, the macro-scale stress measures have been defined in terms of the inter-granular force measures and the
local geometry represented by the branch vector, l j , and geometrymoment tensor, J jk .Weobserve that the inter-
granular forces f αM

i , f αm
i , and f αg

i are related to the Cauchy, the relative, and the double stresses, respectively.
Further, the inter-granular moment mαu

i is related to the double stress. In Eqs. 11–13, the superscript α has
been dropped from the micro-scale kinematic and force measures.
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4 Micro-scale and macro-scale constitutive equations

For formulating micro-scale constitutive equations that relates the micro-scale kinematic measures to the
conjugate inter-granular force measures, it is beneficial to define a local Cartesian coordinate system for each
interacting grain pair. This coordinate system is composed of a unit normal vector, n, along the direction of
inter-granular branch vector, li , and two orthogonal axes, s and t, lying in the tangential plane between the two
particles, defined as

ni = 〈cos θ, sin θ cosφ, sin θ sin φ〉
si = 〈− sin θ, cos θ cosφ, cos θ sin φ〉
ti = 〈0, − sin φ, cosφ〉 (14)

The inter-granular force andmoment vectors, as well as the displacement and rotation vectors, are decomposed
into components along the axes of the local coordinate system. Thus, the micro-scale deformation energy,Wα ,
is written in the following simple form

Wα =
∑

ξ

f αξ
n δαξ

n + f αξ
s δαξ

s + f αξ
t δ

αξ
t + mαu

n θαu
n + mαu

s θαu
s + mαu

t θαu
t ; ξ : M,m, g (15)

where the subscripts n, s, and t represent the components in the local coordinate system. The terms that cross-
link the normal and tangential directions have been neglected for simplicity and subscripts do not follow the
tensor summation convention. For linear isotropic elasticity, the following quadratic form ofWα , is formulated

Wα = 1

2

⎡

⎣
∑

ξ

K αξ
n

(
δαξ
n

)2 + K αξ
w

(
δαξ
s

)2 + K αξ
w

(
δ
αξ
t

)2

+G αu
n

(
θαu
n

)2 + Gαu
w

(
θαu
s

)2 + Gαu
w

(
θαu
t

)2] ; ξ : M,m, g (16)

where K and G represent the inter-granular stiffness parameters for forces and moments, respectively, and
tensor summation convention is not applicable. Notably, the terms that cross-link the different micro-scale
kinematic measures have been ignored for simplicity. The introduced grain-pair stiffness parameters define
the force conjugates associated with different micro-scale kinematic measures that contribute to inter-granular
relative displacements and rotations. These stiffness parameters do not represent the stiffness of two isolated
interacting grains. In the derived model, we have introduced four types of inter-granular stiffness parameters,
namely the average, the fluctuation, the second gradient, and the rotational, distinguished by their superscripts
M,m, g, and u, respectively. In this case, the generic micro-scale constitutive equations, after dropping the
aforementioned superscripts, can be written in matrix form as

⎧
⎨

⎩

fn
fs
ft

⎫
⎬

⎭
=
⎡

⎣
Kn 0 0
0 Kw 0
0 0 Kw

⎤

⎦

⎧
⎨

⎩

δn
δs
δt

⎫
⎬

⎭
;
⎧
⎨

⎩

mn
ms
mt

⎫
⎬

⎭
=
⎡

⎣
Gn 0 0
0 Gw 0
0 0 Gw

⎤

⎦

⎧
⎨

⎩

θn
θs
θt

⎫
⎬

⎭
(17)

Utilizing the rotation tensor that relates the local nst coordinates with the global coordinates, the micro-scale
constitutive equations and the stiffness matrices can be written as

f αξ
i = K αξ

i j δ
αξ
j ; K αξ

i j = K αξ
n nin j + K αξ

w

(
si s j + ti t j

) ; where ξ : M, m, g

mαu
i = Gαu

i j θαu
j ; Gαu

i j = Gαu
n nin j + Gαu

w

(
si s j + ti t j

)
(18)

By substituting the micro-scale constitutive equations, Eq. 18, into Eqs. 11–13, the macro-scale constitutive
relationships are derived linking themacro-scale kinematicmeasures to their conjugate stress tensors as follows
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τi j = 1

V

∑

α

f Mi lαj = 1

V

∑

α

KM
ik δMk lαj = 1

V

∑

α

KM
ik εkql

α
q l

α
j =

(
1

V

∑

α

KM
ik l

α
l l

α
j

)

εkl = CM
i jklεkl (19)

σi j = 1

V

∑

α

f mi lαj = 1

V

∑

α

Km
ikδ

α
k l

α
j = 1

V

∑

α

Km
ikγkll

α
l l

α
j =

(
1

V

∑

α

Km
ikl

α
l l

α
j

)

γkl = Cm
i jklγkl (20)

μi jk = 1

V

∑

α

(
f gi Jα

jk + mu
l e jil lk

)
= 1

V

∑

α

(
Kg
ilδ

g
l J

α
jk + Gu

lmθume jil lk
)

= 1

V

∑

α

(
Kg
ilφl,mn J

α
mn J

α
jk + Gu

pqemlqφl,mnlne jiplk
)

=
(
1

V

∑

α

Kg
il J

α
mn J

α
jk + 1

V

∑

α

Gu
pqemlqe jiplkln

)

φl,mn =
(
Ag
i jklmn + Au

i jklmn

)
φl,mn (21)

It is notable that the derived constitutive relationships in Eqs. 19–21 are uncoupled as a consequence of the
assumption made to ignore the coupling terms between the different kinematic measures in the micro-scale
deformation energy, Wα , as given in Eq. 16. The inclusion of cross-linking between different microscopic
kinematic and force measures will lead to coupling terms in the macro-scale constitutive equations. These
coupling terms will include two additional fourth rank stiffness tensors that link the Cauchy stress to the
relative deformation tensor and relative stress to the average strain tensor. Additionally, there will be fifth rank
stiffness tensors that cross-link the third rank double stress to second rank strain measures (and second rank
stress tensors to the second gradient of displacements). Since fifth rank isotropic tensors do not exist, the later
will always be zero for isotropic continuum. More complete relationships that include the cross-linking terms
will be pursued in future.

The summations in Eqs. 19–21 are over all grain-pair interactions within a material point. The quantities
within the summation can be evaluated provided we know the grain-pair stiffness and branch vectors. In prin-
ciple, these properties are different for every interacting grain pair. However, the spatial distribution of these
properties within the material point is not known. It is notable though that the quantities within the summation
are functions of the orientations of the branch vector, that can be written in terms of the direction cosines as
given in Eq. 14, and the product of grain-pair stiffness and branch length. For describing the mean behavior
of a random granular material, the micro-scale parameter, represented by the product of grain-pair stiffness
and branch length, can be taken to be averages for a given branch vector. Since the micro-scale parameters
are defined separately for different branch vector orientations, the method is naturally powerful for modeling
anisotropic materials. Thus, the directional distribution of the inter-granular interactions plays an important
role in defining the constitutive tensors. In order to approach the directional dependency in a systematic way,
a directional density distribution function, ξ (θ, φ), is introduced. This distribution function is intended to
represent the directional dependence of number and stiffness of the interacting grain pairs. For isotropic mate-
rials, there is no directional preference, and the directional density distribution function can be simply written
as

ξ (θ, φ) = 1

4π
⇒
∫

θ

∫

φ

ξ sin θdθdφ = 1 (22)

For describing materials with general inherent anisotropy, directional density distribution functions may be
formulated as described in [13,18,41,42]. Considering the volume density of grain-pair interactions in a
material point to be Np, and assuming an average grain-pair stiffness within a solid angle d� = dθ sin θdφ,
the summations in Eqs. 19–21 can be converted to integrations in the following form:

CM
i jkl = 1

V

∑

α

KM
ik l

α
l l

α
j = l2Np

∫ π

θ=0

∫ 2π

φ=0

(
KM
ik n jnl

)
ξ sin θdφdθ (23)

Cm
i jkl = 1

V

∑

α

Km
ikl

α
l l

α
j = l2Np

∫ π

θ=0

∫ 2π

φ=0

(
Km
ikn jnl

)
ξ sin θdφdθ (24)
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Ag
i jklmn = 1

V

∑

α

Kg
il J

α
mn J

α
jk = l4Np

4

∫ π

θ=0

∫ 2π

φ=0

(
Kg
iln j nknmnn

)
ξ sin θdφdθ (25a)

Au
i jklmn = 1

V

∑

α

Gu
pqemlqe jiplkln = l2Np

∫ π

θ=0

∫ 2π

φ=0

(
Gu

pqelmqei jpnknn
)

ξ sin θdφdθ (25b)

It can be seen from the above equations that the granular micromechanical view of the material behavior
gives rise to three constitutive tensors. These include two fourth rank constitutive tensors, CM

i jkl and Cm
i jkl ,

and a sixth rank constitutive tensor given as the sum of tensors, Ag
i jklmn , and Au

i jklmn . The grain-pair stiff-
ness parameters in these constitutive tensors are conceived in a statistical sense to describe the essential
grain-scale mechanisms in a collective granular system and do not represent the behavior of two isolated
interacting grains. This view is in contrast to the previous continuum models of granular media in which the
grain-pair stiffness is often taken to be those of isolated interacting grains (see, for example, [27,28,30,31]).
In the current model, these stiffness parameters function as the fundamental material properties, which are
related to their measurable continuum counterparts. Needless to say, results of classical continuum model
will be recovered if the fluctuation, the second gradient, and the rotational inter-granular stiffness parame-
ters vanish. However, it is clear from the kinematic analyses presented here that these mechanisms should
have nonvanishing contributions. The need for including the fluctuation and second gradient terms is sup-
ported by analyses of grain packing [30,35] as well as computer simulations and experiments of grain
assemblies [32–34] that show strong non-affine motions in a volume element comprising large number of
grains.

It is clear from Eqs. 23 and 24 that the tensorsCM
i jkl andC

m
i jkl are formally similar. The differences between

the two are the grain-pair stiffness components. For isotropic elasticity, the following closed-form expressions
can be obtained by integrating Eqs. 23 and 24:

Cα
i i i i = l2Np

15

(
3K α

n + 2K α
w

) ; Cα
i i j j = l2Np

15

(
K α
n − K α

w

)

Cα
i j i j = l2Np

15

(
K α
n + 4K α

w

)
Cα
i j j i = l2Np

15

(
K α
n − K α

w

) ; i �= j

Cα
i jkl = 0; otherwise

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; α = m, M (26)

In Eq. 26, the subscripts take values 1, 2, or 3 and summation over repeated indices is not implied. It may
be recalled from Eq. 8 that the second rank stress tensor τi j is defined as conjugate to the symmetric part of
the displacement gradient; therefore, these symmetry conditions need to be imposed upon the stiffness tensor
CM
i jkl . The stiffness tensor can be decomposed into the following symmetric part

CM
iiii = l2Np

15

(
3KM

n + 2KM
w

)
; CM

ii j j = l2Np

15

(
KM
n − KM

w

)

CM
(i j)(i j) = l2Np

30

(
2KM

n + 3KM
w

)
; i �= j (27)

CM
i jkl = 0; otherwise

and an antisymmetric part, which is discarded for the remainder of this paper.

CM
[i j][i j] = l2Np

6

(
KM

w

)
CM
[i j][ j i] = − l2Np

6

(
KM

w

)
; i �= j

CM
i jkl = 0; otherwise

(28)

The components of the sixth rank tensors Ag
i jklmn and Au

i jklmn defined in Eqs. 25a and 25b for isotropic elasticity
are
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ag111111 = Ag222222 = Ag333333 = l4Np
5Kg

n +2Kg
w

35

Ag111122 = Ag111133 = Ag112112 = Ag113113 = Ag122111 = Ag133111 = Ag221221 = Ag222233 = Ag222211 = Ag223223

= Ag233222 = Ag331331 = Ag332332 = Ag333311 = Ag333322 = Ag211222 = Ag311333 = Ag322333 = l4Np
3Kg

n +4Kg
w

105

Ag111221 = Ag111313 = Ag112222 = Ag112211 = 3Ag112233 = 3Ag112332 = Ag113333 = Ag113311 = 3Ag113223 = 3Ag113322
= Ag122221 = 3Ag122331 = 3Ag123231 = 3Ag123312 = Ag133331 = 3Ag133221 = Ag221111 = Ag221122 = 3Ag221133
= 3Ag221331 = Ag222112 = Ag222332 = Ag223333 = Ag223322 = 3Ag223113 = 3Ag223311 = 3Ag231123 = 3Ag231321
= Ag233332 = 3Ag233112 = Ag331111 = Ag331133 = 3Ag331122 = 3Ag331221 = Ag332222 = Ag332233 = 3Ag332112
= 3Ag332211 = Ag333113 = Ag333223 = Ag211112 = 3Ag211332 = Ag311113 = 3Ag311223 = 3Ag312123 = 3Ag312231

= Ag322223 = 3Ag322113 = l4Np
Kg
n −Kg

w
35

Ag122122 = 3Ag122133 = 3Ag123123 = Ag133133 = 3Ag133122 = 3Ag231213 = Ag233233 = 3Ag233211 = Ag211211

= 3Ag211233 = Ag311311 = 3Ag311322 = 3Ag312312 = Ag322322 = 3Ag322311 = l4Np
Kg
n +6Kg

w
35

Agi jklmn = Agik jlmn = Agi jklnm = Agik jlnm
Agi jklmn = 0; otherwise

(29)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Au121121 = Au122122 = Au123123 = Au131131 = Au133133 = Au232232 = Au233233 = l2Np
15

(
Gu
n + 4Gu

w

)

Au132132 = Au231231 = l2Np
15

(
2Gu

n + 3Gu
w

)

Au121233 = Au122313 = Au123231 = Au123312 = Au131322 = Au132213 = Au132321 = Au133212 = Au231123

= Au231312 = Au232311 = Au233121 = A
l2Np
15

(
Gu
n − Gu

w

)

Aui jklmn = −Aujiklmn = −Aui jkmln
Aui jklmn = 0; otherwise

(30)

The nonzero components of the sixth rank tensor A are same as that obtained in [43].

5 Variational principle and balance equations

For completeness of our presentation and harmony of notations, the variational principle and the balance
equations are briefly discussed following the works of Mindlin [2] and Germain [6]. Utilizing the definitions
in Eq. 8, the variation of the internal potential energy can be written as follows

δW = τi jδεi j + σi jδγi j + μi jkδφi, jk = τi jδφ̄(i, j) + σi j
(
δφ̄(i, j) − δφi, j

)+ μi jkδφi, jk

= [(τi j + σi j
)
δφ̄i
]
, j − (τi j + σi j

)
, j δφ̄i − σi jδψi j + (μi jkδψi j

)
,k − μi jk,kδψi j (31)

where Leibniz differentiation rule and Eq. 2 have been used. The variational of the macro-scale deformation
energy functional can now be obtained utilizing Gauss’s divergence theorem of integration as follows

δW =
∫

v

δWdV = −
∫

v

(
τi j + σi j

)
, j δφ̄idV −

∫

v

(
μi jk,k + σi j

)
δψi jdV

+
∫

s

(
τi j + σi j

)
n jδφidS +

∫

s
μi jknkδψi jdS (32)

Further, following Mindlin [2,44], the variational of the kinetic energy functional can be written as,

δT =
∫ t

o
δT dt=−

∫ t

o
dt
∫

V

(
ρ ¨̄φiδφ̄i + 1

3
ρ′d2ik φ̈k, jδφi, j

)
dV = −

∫ t

o
dt
∫

V

(
ρ ¨̄φiδφ̄i + 1

3
ρ′d2ikψ̈k jδψi j

)
dV

(33)
where ρ is the overall mass density, ρ′ is the micro-scale mass density, and the superimposed dots indicate
time derivative. According to Mindlin, d is a second rank tensor defined as

d2i j = dpdq
(
δp1δq1li1l j1 + δp2δq2li2l j2 + δp3δq3li3l j3

) = d2j i (34)
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where di is equal to half of the length of the micro-volume in i th direction and li j is a matrix containing the
direction cosines of the micro-volume with respect to the internal coordinate system, x’. For micro-volumes
with edges of length 2d parallel to the axes of x’, we get

d1 = d2 = d3 = d

li j = δi j (35)

where δi j is the Kronecker delta. Finally, the variational of the external work done by (1) the long-range
volumic (body) forces and moments and (2) the contact surface forces and moments is defined as

δWext =
∫

v

fiδφ̄idV +
∫

v

�i jδψi jdV +
∫

s
tiδφ̄idS +

∫

s
Ti jδψi jdS (36)

In Eq. 36, fi is the non-contact volumic (body) force per unit volume, ti is the contact traction defined as
a surface force per unit area, �i j is the non-contact volumic (body) double force per unit volume, and Ti j
is the contact double traction defined as double force per unit area. Now utilizing the action functional, the
variational equation of motion is written using Hamilton’s principle as

δA =
∫ t

0

∫

v

(δT − δW ) dV dt +
∫ t

0
δWextdt =

∫ t

0

(
δWext − δW + δT

)
dt = 0 (37)

Using Eqs. 32, 33, 36, and 37 yields the following after dropping the integration over time

δA =
∫

v

[
fi + (τi j + σi j

)
, j − ρ ¨̄φi

]
δφ̄idV +

∫

v

[
�i, j + (μi jk,k + σi j

)− 1

3
ρ′d2ikψ̈k j

]
δψi jdV

+
∫

s

[
ti − (τi j + σi j

)
n j
]
δφ̄idS +

∫

s

[
Ti j − μi jknk

]
δψi jdS = 0 (38)

Since Eq. 38 should hold for any arbitrary kinematicmeasures, for the action functional to be always identically
zero, all integrands should vanish. This will lead to two balance equations stated in terms of the stress measures
as

(
τi j + σi j

)
, j + fi = ρ ¨̄φi (39a)

μi jk,i + σ jk + � jk = 1

3
ρ′d2ψ̈ jk (39b)

and two boundary conditions given in terms of the stress measures as
(
τi j + σi j

)
n j = ti (40a)

μi jknk = Tjk (40b)

6 Identification of Mindlin’s model using granular micromechanics

The constitutive relationships derived using the granular micromechanics approach can be identified with the
constitutive coefficients introduced by Mindlin [2] and Eringen [4] from purely continuum viewpoint. We
follow Mindlin’s model which includes the following constitutive equations neglecting the coupling terms of
his formulation to compare with the model derived in this paper

τi j = Ci jklεkl

σi j = Bi jklγkl
μi jk = Ai jklmnκlmn (41)

where the stiffness tensors are defined as

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)

Bi jkl = b1δi jδkl + b2δikδ jl + b3δilδ jk
Ai jklmn = a1δi jδklδmn + a2δi jδkmδnl + a3δi jδknδml + a4δ jkδilδmn + a5δ jkδimδnl

+a6δ jkδinδlm + a7δkiδ jlδmn + a8δkiδ jmδnl + a9δkiδ jnδlm + a10δilδ jmδkn

+a11δ jlδkmδin + a12δklδimδ jn + a13δilδ jnδkm + a14δ jlδknδim + a15δklδinδ jm (42)
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The identification of the constitutive coefficients of Mindlin’s model with those derived from the granular
micromechanics approach can be easily achieved by comparing the components of Ci jkl , Bi jkl , and Ai jklmn

with those ofCM
i jkl ,C

m
i jkl , and Au

i jklmn and Ag
i jklmn . Remarkably, the nonzero components inMindlin’s stiffness

tensors are same as the nonzero components derived from the present model, and the following relationships
between Mindlin’s coefficients and inter-granular stiffness measures are found

⎧
⎨

⎩
λ = l2Np

15

(
KM
n − KM

w

)

μ = l2Np
30

(
2KM

n + 3KM
w

) (43a)

{
b1 = b3 = l2Np

15

(
Km
n − Km

w

)

b2 = l2Np
15

(
Km
n + 4Km

w

) (43b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = a2 = a3 = a6 = a9 = l4Np
105

(
Kg
n − Kg

w

)

a4 = a13 = l2Np
105

(
7
(−Gu

n + Gu
w

)+ l2
(
Kg
n + 6Kg

w

))

a5 = a7 = a11 = a12 = l2Np
105

(
7
(
Gu

n − Gu
w

)+ l2
(
Kg
n − Kg

w

))

a8 = a15 = l2Np
105

(
7
(−Gu

n + Gu
w

)+ l2
(
Kg
n − Kg

w

))

a10 = l2Np
105

(
7
(
3Gu

n + 2Gu
w

)+ l2
(
Kg
n + 6Kg

w

))

a14 = l2Np
105

(
7
(−3Gu

n − 2Gu
w

)+ l2
(
Kg
n − Kg

w

))

(43c)

To illustrate the effects of the inter-granular stiffness coefficients on the macro-scale properties, the following
ratios between tangential and normal components of inter-granular stiffness measures are defined.

βM = KM
w

KM
n

; βm = Km
w

Km
n

; βg = Kg
w

Kg
n

βG = Gu
w

Gu
n

(44)

It is usually assumed that normal components of the inter-granular stiffness are larger than their corresponding
tangential values and they are both nonnegative. So these ratios are varied in the interval from 0 to 1. In Fig. 2,
macro-scale constitutive coefficients are plotted as functions of their corresponding inter-granular stiffness
measures. For the fourth rank stiffness tensors, the coefficients in Eqs. 43a–43c are presented while for the
sixth rank stiffness tensor, the nonzero components provided in Eqs. 29 and 30 are shown. The sixth rank
stiffness tensors from Mindlin can be derived using the presented components of Au

i jklmn and Ag
i jklmn .

7 Displacement equations of motion and wave propagation

The derived model is applied to study the influence of micro-scale parameters upon wave propagation in an
infinite medium. The displacement equations of motion are obtained by substituting the constitutive equations,
Eqs. 19–21, into the balance equation, Eqs. 39a and 39b to find:

(
CM
i jkl + Cm

i jkl

)
φ̄k,l j − Cm

i jklψkl, j = ρ ¨̄φi (45a)
(
Ag
i jklmn + Au

i jklmn

)
ψlm,ni + Cm

jklm φ̄l,m − Cm
jklmψlm = 1

3
ρ′d2ψ̈ jk (45b)

where the non-contact volumic forces and double forces, fi and �i j , are assumed to be absent. Without loss
of generality, we investigate the propagation of waves along x1 axis. In this case for a plane wave solution, all
kinematic measures should be only functions of x1 [45]

φ̄i = φ̄i (x1, t)

ψi j = ψi j (x1, t) (46)

There are altogether twelve equations of motion in terms of the three average displacement field variables, φ̄i ,
and nine micro-displacement gradient field variables, ψi j . For isotropic media, these twelve equations can be
decomposed into three independent equations plus three systems of three equations and three unknowns by
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Fig. 2 Normalizedmacro-scale constitutive coefficients shown as functions of the ratio between normal and tangential components
of the micro-scale stiffness parameters

using linear combination following Mindlin [2]. To this end, the second rank tensor ψi j is decomposed into a
volumetric part, a skew-symmetric part, and a deviatoric part as follows

ψi j = 1

3
ψkkδi j + ψ[i j] +

(
ψ(i j) − 1

3
ψkkδi j

)
= ψV

i j + ψ S
i j + ψD

i j (47)

where ψV
i j = 1

3ψkkδi j is the volumetric part, ψ S
i j = ψ[i j] is the skew-symmetric part, and ψD

i j = ψ(i j) −
1
3ψkkδi j is the deviatoric part. The twelve separated equations of motion include two uncoupled equations for
two transverse shear waves and one for a transverse rotational wave

(a10 + a13) ψ(23),11 − (b2 + b3) ψ(23) = 1

3
ρ′d2ψ̈(23) (48a)

(a10 + a13)
(
ψ22,11 − ψ33,11

)− (b2 + b3) (ψ22 − ψ33) = 1

3
ρ′d2

(
ψ̈22 − ψ̈33

)
(48b)

(a10 − a13) ψ[23],11 − (b2 − b3) ψ[23] = 1

3
ρ′d2ψ̈[23] (48c)

Other equations will not be in the decomposed fashion like Eqs. 48a–48c. These will include one system of
equations for longitudinal waves

⎧
⎪⎪⎨

⎪⎪⎩

k11φ̄1,11 − k12ψD
11,1 − k13ψV

,1 = ρ ¨̄φ1

k21φ̄1,1 + k22ψD
11,11 − k′

22ψ
D
11 + k23ψV

,11 = 1
2ρ

′d2ψ̈D
11

k31φ̄1,1 + k32ψD
11,11 + k33ψV

,11 − k′
33ψ

V = ρ′d2ψ̈V

(49)
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and two sets of equations for transverse waves
⎧
⎪⎪⎨

⎪⎪⎩

k̄11φ̄ξ,11 − k̄12ψ(1ξ),1 − k̄13ψ[1ξ ],1 = ρ ¨̄φξ

k̄21φ̄ξ,1 + k̄22ψ(1ξ),11 − k̄′
22ψ(1ξ) + k̄23ψ[1ξ ],11 = 2

3ρ
′d2ψ̈(1ξ)

k̄31φ̄ξ,1 + k̄32ψ(1ξ),11 + k̄′
33ψ[1ξ ],11 − k̄33ψ[1ξ ] = 2

3ρ
′d2ψ̈[1ξ ]

⎫
⎪⎪⎬

⎪⎪⎭
; ξ = 2 and 3 (50)

The stiffness constants used in Eq. 49, ki j , and k′
i j , derived in terms of the micro-scale stiffness components

used in this model are given as

k11 = l2Np

15

[(
3Km

n + 2Km
w

)+
(
3KM

n + 2KM
w

)]

k22 = l2Np

105

[
l2
(
11Kg

n + 10Kg
w

)+ 15Gu
w

]

k33 = l2Np

3

[
l2
(
Kg
n + 2Kg

w

)+ 2Gu
w

]

k23 = k32 = l2Np

15

[
2l2
(
Kg
n − Kg

w

)− 5Gu
w

]

k13 = k31 = l2Np

3
Km
n

k12 = k21 = l2Np

15

(
2Km

n + 3Km
w

)

k′
22 = l2Np

10

(
2Km

n + 3Km
w

)

k′
33 = l2NpK

m
n

(51)

and the ones used in Eq. 50, k̄i j , and k̄′
i j , are

k̄11 = l2Np

15

[(
Km
n + 4Km

w

)+
(
KM
n + 1.5KM

w

)]

k̄22 = l2Np

105

[
l2
(
12Kg

n + 16Kg
w

)+ 7
(
Gu

n + 4Gu
w

)]

k̄33 = l2Np

15

(
Gu

n + 4Gu
w

)

k̄23 = k32 = l2Np

15

[
l2Kg

w + (Gu
n − Gu

w

)]

k̄13 = k31 = l2Np

3
Km

w

k̄12 = k21 = l2Np

15

(
2Km

n + 3Km
w

)

k̄′
22 = l2Np

15

(
4Km

n + 6Km
w

)

k̄′
33 = 2l2Np

3
Km

w

(52)

Harmonic wave functions given below serve as solutions to the above set of equations (Eqs. 48a–48c)

φ̄i = Ai i exp [i (ξ x1 − ωt)]

ψi j = Bi j exp [i (ξ x1 − ωt)] (53)

where ξ is the wave number with units of 1/m,ω is the frequency with units of rad/s, and the coefficients Ai and
Bi j represent wave amplitudes. Substituting these solutions into the decomposed set of equations of motion,
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dispersion equations can be derived relating the frequency, ω, to the wave number, ξ . Thus, from Eqs. 48a and
48b, we get the following for uncoupled transverse shear waves

1

3
ρ′d2ω2 = b2 + b3 + (a10 + a13) ξ2 Uncoupled Transverse Shear Waves (54)

From Eq. 48c, we get the following for uncoupled transverse rotational waves

1

3
ρ′d2ω2 = b2 − b3 + (a10 − a13) ξ2 Uncoupled Transverse Rotational Wave (55)

Further from Eqs. 49 and 50, we get
∣∣
∣∣
∣∣
∣

k11ξ2 − ρω2 k12ξ k13ξ

k21ξ k22ξ2 + k′
22 − 1

2ρ
′d2ω2 k23ξ2

k31ξ k32ξ2 k33ξ2 + k′
33 − ρ′d2ω2

∣∣
∣∣
∣∣
∣
= 0; Longitudinal Waves (56)

and ∣∣
∣∣
∣∣
∣

k̄11ξ2 − ρω2 k̄12ξ k̄13ξ

k̄21ξ k̄22ξ2 + k̄′
22 − 2

3ρ
′d2ω2 k̄23ξ2

k̄31ξ k̄32ξ2 k̄33ξ2 + k̄′
33 − 2

3ρ
′d2ω2

∣∣
∣∣
∣∣
∣
= 0; Transverse Waves (57)

By using Eqs. 43a–43c, the dispersion relationships can be obtained in terms of the micro-scale stiffness and
length parameters. For example, Eqs. 54 and 55 will yield the following relationships

ω2 = l2Np

ρ′d2

[
2Km

n + 3Km
w

5
+
(
2Kg

n + 12Kg
w

35
l2 + 2Gu

n + 3Gu
w

5

)
ξ2
]

(58)

ω2 = l2Np

ρ′d2

[
Km

w + 4Gu
n + Gu

w

5
ξ2
]

(59)

The explicit forms of dispersion relations for the case of longitudinal and transverse waves are not shown here
due to their complexity. Numerical results for these cases will be presented later.

There are two distinct categories of waves: propagative waves and standing waves. Standing (evanescent)
waves are waves for which the wave number is imaginary. These waves do not propagate through the material
and just oscillate in a limited part of the material. Propagative waves for which the frequency is a real number
are in turn categorized into two distinct types based on the value of their frequency cutoff defined at vanishing
wave numbers (zero for acoustic waves and nonzero for optic waves). The frequency cutoffs are obtained from
the dispersion equations, Eqs. 54–57, as follows

ωξ=0 = ωns Uncoupled transverse shear

ωξ=0 = ωs Uncoupled transverse rotational (60)

ωξ=0 =
⎧
⎨

⎩

0
ωn
ωns

; Longitudinal ωξ=0 =
⎧
⎨

⎩

0
ωns
ωs

; Transverse (61)

where

ωn =
√(

l2Np

ρ′d2

)
Km
n ; ωs =

√(
l2Np

ρ′d2

)
Km

w ; ωns =
√(

l2Np

ρ′d2

)
2Km

n + 3Km
w

5
(62)

It should be noted that since normal stiffness coefficient is usually assumed to be higher than the tangential
stiffness coefficient, the frequency cutoffs can be usually ordered as 0 < ωs < ωns < ωn . It is clearly seen
that all branches of the uncoupled transverse waves are optical. The coupled waves (both the longitudinal and
transverse) have one acoustic branch and two optical branches. It is noteworthy that the frequency cutoffs
are functions of the stiffness components associated with the displacement gradient fluctuation, which is not
included in classical first gradient continuum theories. By assigning the value of these stiffness coefficients,
Km
n and Km

w , to be zero, it will be seen that all branches of all different wave types will turn into acoustic
branches with frequency cutoffs equal to zero.
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Now, taking derivatives of the equations governing the frequencies of the uncoupled transverse waves with
respect to wave number, we get

Shear
dω

dξ
= ω′ =

√
l2Np

ρ′d2

(
2Kg

n +12Kg
w

35 l2 + 2Gu
n+3Gu

w

5

)
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√
2Km

n +3Km
w
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n +12Kg
w

35 l2 + 2Gu
n+3Gu

w
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)
ξ2

Rotational
dω

dξ
= ω′ =

√
l2Np

ρ′d2
4Gu

n+Gu
w

5 ξ
√
Km

w + 4Gu
n+Gu

w

5 ξ2
(63)

The limit of the two equations as the wave number approaches infinity yields the constants that are the slopes
of inclined asymptotes for the two dispersion graphs given as

Shear ω =
⎛

⎝

√
l2Np

ρ′d2

(
2Kg

n + 12Kg
w

35
l2 + 2Gu

n + 3Gu
w

5

)⎞

⎠ ξ

Rotational ω =
⎛

⎝

√
l2Np

ρ′d2
4Gu

n + Gu
w

5

⎞

⎠ ξ (64)

It is observed from Eq. 63 that for vanishing rotational stiffness coefficients, Gu
n and Gu

w, the slope of the
transverse rotational optic wave dispersion graph will be always zero. In this case, the medium will support
transverse rotational opticwaves of single frequency,ωs . If in addition, the secondgradient stiffness coefficients,
Kg
n and Kg

w, also vanish, the slope of the shear wave will also be always identical to zero and the medium will
only support transverse shear optic wave of single frequency, ωns .

8 Results and discussions

To illustrate the relationship between the micro-scale parameters and the dispersion behavior, a parametric
study is performed by varying the ratios of tangential to normal inter-granular stiffness parameters defined
in Eq. 44. Dispersion plots showing the wave propagation frequencies versus the wave number for the eight
different waves (3 longitudinal, 3 transverse waves, and the 2 uncoupled transverse shear and rotational waves)
are presented in Fig. 3 for ratios of tangential to normal stiffness parameters ranging from 0 to 1. These
calculations are performed for the micro-scale parameters and the resultant macroscopic parameters as given
in Table 1, which could represent a hard to medium hard granular rock. The average grain size, l, has been
assumed to be 1mm, and the micro-volume is assumed to be composed of a grain and its immediate neighbors
such that, d = 1mm. For the assumed average grain size, the number of grain-pair interactions, Np, is
estimated. Figure 3a–d, show the effect of variation of ratios βM , βm, βg , and βG , respectively, while keeping
all other parameters constant. For the set of parameters as proposed in Table 1, we see a rather unique dispersion
behavior characterized by distinct band gaps over a wide range of wave numbers. To refrain from adding further
clutter in Fig. 3, the specific band gaps, especially those for which no kind of waves can propagate, are shown
later in Fig. 4. From Fig. 3, it is seen that, in general, longitudinal waves include two optic branches with
frequency cutoffs equal to ωn and ωns and an acoustic branch. Typically, transverse waves also have two optic
branches with cutoffs of ωs and ωns along with an acoustic branch, while the uncoupled waves consist of two
optical waves with frequency cutoffs ofωs andωns. There is an exception for the case of βm = 0 which implies
that frequency cutoff ωs = 0 leading to one less optical branch for both transverse and uncoupled waves. The
dispersion behavior of longitudinal and transversewaves (Fig. 3a1–d1, a2–d2) is similar characterized by (1) an
optical branch, which has a nonlinear monotonically increasing curve starting from a higher-frequency cutoff;
(2) a second optical branch beginning at lower-frequency cutoff, which shows initial increase before reaching
an asymptote; and (3) an acoustic branch which is an increasing function prior to reaching an asymptote.
The uncoupled waves are typically characterized by optical wave with a weak dependency upon wavenumber.
This is expected since the coefficient multiplying the wave number is composed of only stiffness parameters
associated with the second gradient and the rotation terms (see Eqs. 58 and 59), which are significantly smaller
than the other stiffness measures.
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Fig. 3 Dispersion behavior of longitudinal waves (a1–d1), transverse waves (a2–d2), and uncoupled transverse shear and rota-
tionalwaves (a3–d3).Dispersion graphs are given for different ratios betweennormal and tangential components of themicro-scale
stiffness parameters

It is interesting to note that there are regions in the frequency domain where none of the three distinct
wave categories show the existence of a wave number, which is non-imaginary. Thus, for the set of parameters
proposed in Table 1, complete band gap exists as none of the waves can propagate through the material.
Figure 3a1, a2 show that the stiffness components associated with the average displacement gradient field
change only the value of the asymptotes of the acoustic branches. Figure 3 also shows that the dispersion
behavior and the predicted band-gap phenomena are most affected by the tangential component of the inter-
granular stiffness parameter related to fluctuations (see the effect of βm in Fig. 3b1, b3). When the tangential
stiffness coefficient is zero (βm = 0), for both the coupled and uncoupled transverse waves, the dispersion
curve for acoustic branch is linearly increasing, implying that at all frequencies we have non-imaginary wave
number ruling out the possibility of a band gap. In this case, the skew-symmetric part of Cm

i jkl vanishes or
equivalently forMindlinmoduli b1(= b3) = b2. The situation is similar to the case in which,μc, in the recently
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Table 1 Micro-scale parameters (left) and the corresponding macro-scale constitutive parameters (right)

Model parameters Values Macroscopic parameters Values

l 10−3 m λ 6.67GPa
d 10−3 m μ 23.33GPa
Np 109 1/m3 E 51.85 GPa
ρ′ 3000Kg/m3 ν 0.111
ρ 1570Kg/m3 b1 = b3 6.67 GPa
KM
n 200 MN/m b2 40.00 GPa

βM 0.5 Ag
111111 2.29×10−6 MN

Km
n 200 MN/m Ag

111122 9.52×10−7 MN

βm 0.5 Ag
111221 9.52×10−8 MN

Kg
n 2 × 10−2 MN/m Ag

122122 7.62×10−7 MN

βg 0.5 Au
121121 4.00×10−6 MN

Gu
n 2 × 10−8 N.m Au

132132 4.67×10−6 MN

βG 0.5 Au
121233 6.67 × 10−7 MN

a1 a2 a3 

b1 b2 b3 

c1 c2 c3 
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Fig. 4 Dispersion behavior of longitudinal, transverse, and uncoupled tr ansverse waves for βm = 0.05 (a1–a3), βm = 0.05
(b1–b3), and βm = 1.0 (c1–c3)
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Fig. 5 Microstructural effects upon the dispersion behavior of longitudinal, transverse, and uncoupled transverse waves

proposed relaxed linear micromorphic model vanishes [46,47]. The results obtained are similar in this case to
those given in [45] for μc = 0. However, as βm becomes nonzero, an additional optic branch instead of the
acoustic branch appears for both the coupled and uncoupled transverse waves. Further, above a certain value of
βm , band gap appears. These effects are exemplified in Fig. 4, where we have separately shown the dispersion
curves for βm = 0.05, 0.5, and 1.0. As reference, the classical compressive, P , and shear, S, waves are also
included in Fig. 4 using

ωP = Cpξ =
(√

λ + 2μ

ρ

)

ξ ; ωS = Csξ =
(√

μ

ρ

)
ξ (65)

The band gap for which no kind of waves can propagate is shown by the shaded region in Fig. 4. In addition,
band gap for transverse waves is shown by the hatched region. Clearly, the band-gap region changes with
βm . For βm = 0.05 and 1.0, the frequency region between the maximum value of the acoustic branch of the
transverse waves and ωs represents a band gap for all transverse waves, coupled and uncoupled. For βm = 1.0,
the two optical branches of the longitudinal waves, transverse coupled waves, and transverse uncoupled waves
all have the same frequency cutoff, and their dispersion graphs show monotonically increasing curves. The
acoustic branches of the longitudinal and the coupled transverse waves have clear horizontal asymptote, which
is smaller than the nonzero frequency cutoff. The region between the horizontal asymptote of the longitudinal
wave and the nonzero frequency cutoff is a complete band-gap region. It is noteworthy that optical rotational
and transverse waves as well as frequency band gaps have been observed both in experiments and in discrete
models of regular hexagonal closed-paced grain packing [48,49]. Further, frequency band gaps have been
predicted for elastic metamaterials with resonators [50].

The microstructural effects upon dispersion behavior are further illustrated parametrically by varying the
following ratios dealing with the fluctuation, second gradient, and rotational inter-granular stiffness parameters

βmM = Km
n

K M
n

= Km
w

KM
w

; βsM = Kg
n

K M
n

= Kg
w

KM
w

= Gu
n

l2KM
n

= Gu
w

l2KM
w

(66)

The ratio, βmM , is varied between 0.50 and 1.50, while the remaining parameters kept same as in Table 1.
Figure 5a1–a3 gives the resultant variation in dispersion behavior. In all these cases, dispersion behavior is
similar with a characteristic band gap over the computed wave number range. The size of band gap increases
with βmM ; the frequency cutoff of the optical branches is particularly affected since they depend upon the
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fluctuation-related inter-granular stiffness. Furthermore, since Km
n and Km

w represent the stiffness related to
fluctuations caused by the microstructure, larger βmM implies a larger effect of microstructure. Figure 5b1–b3
gives the effect of varying βsM between 10−2 and 10−6. Again all the remaining parameters are kept same as
those in Table 1. The ratio βsM is related to the influence of characteristic length-scale associated with second
gradient moduli; thus, larger βsM implies stronger long-range effect. In this case, the initial cutoff frequencies
do not change, however, the band gap disappears for larger βsM . Thus, for strongly second gradient media, no
band gap will be observed, which agrees with the finding by Madeo et al. [45].

9 Summary and conclusion

The granularmicromechanics approach has been applied to find amicromorphic continuummodel for elasticity
of granular media. In this approach, continuum model of granular material is obtained by considering the
interactions of grain pairs. Since the complete granular microstructure and micromechanics of a material are
seldom known, it is impossible to know the displacement field of all the grains within a material point. In this
paper, we have adopted the kinematic analyses of Mindlin–Eringen microstructural elasticity or micromorphic
mechanics. As a result, the relative displacement of interacting grain pairs is decomposed into an average
term compatible with the macro-scale field, a micro-scale fluctuation term defined within a material point,
and its second gradient. In addition, the second gradient terms are found to give rise to relative rotations
between grain pairs. The macro-scale deformation energy density is thus modeled as a summation of micro-
scale deformation energy defined for each grain-pair as a function of inter-granular relative displacements and
rotations.Consequently, inter-granular force conjugates are defined for eachmicro-scale kinematicmeasure and
the macro-scale stress conjugates are obtained in terms of these inter-granular forces. Furthermore, for linear
elasticity, the micro-scale deformation energy is formulated as a quadratic function of the kinematic measures,
which requires introduction of four different inter-granular stiffness measures. The macro-scale constitutive
relationship is then obtained in terms of these inter-granular stiffness measures. These relationships are shown
to be consistent withMindlin–Eringenmodel, and the constitutive coefficients ofMindlin’smodel are identified
in terms of the inter-granular stiffness parameters. We note that the coupling between different strain and stress
has been neglected here and might be topics of future work.

The derived model is applied to investigate wave propagation phenomena. Dispersion graphs for different
cases and different ratios between the microscopic stiffness parameters have been presented. It is seen that
the model has the capability to present band gaps over a large range of wave numbers. In most cases, there is
a complete band gap in the frequency domain, wherein for none of the three wave categories (Longitudinal,
transverse, and uncoupled transverse), there exists a non-imaginary value for the wave number. It is shown that
the frequency cutoffs in the dispersion graphs which define whether the waves are optical or acoustic are only
functions of the stiffness parameters associated with the fluctuations in displacement gradient. Consequently,
in classical continuum where the fluctuations in displacement and their associated stiffness components are
ignored, all waves will be of acoustic type and there will be no possibility of frequency band gaps. Furthermore,
for relatively large values of stiffness measures associated with second gradient terms, the band gaps also
vanish. It is noteworthy, however, that second gradient terms are necessary for modeling some frequency
dependent wave transmission/reflection phenomena at material interfaces [51,52]. The calculations shown in
this paper indicate the possibility of designing materials with specific wave propagation behaviors that can
be used as alternates to piezoelectric materials used commonly for structural vibration control [53–59] or
for damage identification [60–62]. Alternatively, such materials can be applied to help the optimal control
procedures [63,64] or for optimal biomaterial design [65] in bone mechanics. The granular micromechanics-
based micromorphic model derived here or its micropolar and second gradient simplifications can also be used
to describe post-instability macro-scale behavior, such as boundary and localization layers in microstructured
media [66,67].
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