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Abstract A new non-classical Kirchhoff plate model is developed using a modified couple stress theory,
a surface elasticity theory and a two-parameter elastic foundation model. A variational formulation based
on Hamilton’s principle is employed, which leads to the simultaneous determination of the equations of
motion and the complete boundary conditions and provides a unified treatment of the microstructure, surface
energy and foundation effects. The new plate model contains a material length scale parameter to account
for the microstructure effect, three surface elastic constants to describe the surface energy effect, and two
foundation moduli to represent the foundation effect. The current non-classical plate model reduces to its
classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all
suppressed. In addition, the newly developed plate model includes the models considering the microstructure
dependence or the surface energy effect or the foundation influence alone as special cases and recovers the
Bernoulli–Euler beam model incorporating the microstructure, surface energy and foundation effects. To
illustrate the newmodel, the static bending and free vibration problems of a simply supported rectangular plate
are analytically solved by directly applying the general formulas derived. For the static bending problem, the
numerical results reveal that the deflection of the simply supported plate with or without the elastic foundation
predicted by the current model is smaller than that predicted by the classical model. Also, it is observed
that the difference in the deflection predicted by the new and classical plate models is very large when the
plate thickness is sufficiently small, but it is diminishing with the increase of the plate thickness. For the free
vibration problem, it is found that the natural frequency predicted by the new plate model with or without the
elastic foundation is higher than that predicted by the classical plate model, and the difference is significant
for very thin plates. These predicted trends of the size effect at the micron scale agree with those observed
experimentally. In addition, it is shown both analytically and numerically that the presence of the elastic
foundation reduces the plate deflection and increases the plate natural frequency, as expected.

Keywords Kirchhoff plate · Size effect · Couple stress theory · Surface elasticity · Hamilton’s principle ·
Winkler foundation · Pasternak foundation · Plate theory · Free vibration · Natural frequency

1 Introduction

Thin beams and plates widely used in MEMS and NEMS often exhibit microstructure- and surface energy-
dependent size effects [23,32,33]. Classical continuummechanics cannot be used to interpret such size effects
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because of a lack of any material length scale parameter. Hence, models based on higher-order (non-classical)
continuum theories that contain microstructure-dependent material parameters and can account for surface
energy effects need to be developed.

In higher-order continuum mechanics theories, either a continuum embedded with microstructures or a
non-local medium including long-range material interactions is employed (e.g., [31]). Strain gradient elasticity
theories (e.g., [9,19,35]) make use of the former, whereas non-local elasticity theories (e.g., [5,6,20]) utilize
the latter.

Several higher-order elasticity theories have been applied to develop non-classical plate models. Lazopou-
los [21] provided a non-classical von Karman plate model based on a simplified strain gradient elasticity
theory (SSGET) (e.g., [12,14]). This SSGET, which contains only one material length scale parameter, was
also employed in [36,37] to derive non-classical equations of motion for Kirchhoff plates of strain gradient
materials. By using a constitutive relation in non-local elasticity suggested in [5], Lu et al. [26] proposed a
Kirchhoff plate model and a Mindlin plate model without using a variational formulation. Based on a modified
couple stress theory that involves one additional material length scale parameter [39,53], three Kirchhoff plate
models were suggested in [1,18,51], respectively. Recently, three new models for Mindlin plates and third-
order shear deformation plates have been developed in [8,30,57] by using the modified couple stress theory
and Hamilton’s principle.

On the other hand, for solids with a large surface layer to bulk volume ratio, surface effects, which cannot
be described using classical elasticity, become important (e.g., [33]). Such surface effects can be interpreted
using a surface elasticity theory, in which the surface of a solid, where the atom arrangements and material
properties differ from those in the bulk (e.g., [4]), is regarded as a membrane or film with a negligible thickness
(e.g., [48,49]).

The surface elasticity theory (e.g., [15,16]) has been used to analyze thin plates involving surface effects. For
example, Miller and Shenoy [33] developed a model to describe the size dependency of the effective stiffness
of a nano-sized structural element (a bar, beam or plate). Lim and He [23] presented a geometrically nonlinear
plate model for nano-scale films based on the Kirchhoff hypothesis and the von Karman strains. Lu et al. [25]
constructed a size-dependent thin plate model by including the normal stress on and inside the surface of the
bulk substrate. Lü et al. [27] developed a nonlinear platemodel for functionally graded films using theKirchhoff
kinematic relations and the von Karman nonlinear strains for the bulk material. Wang andWang [52] provided
a model for nonlinear free vibrations of a Kirchhoff plate and a Mindlin plate using the von Karman strains.

However, very few models have been developed for thin plates by considering both the microstructure and
surface energy effects. One non-classical model for Kirchhoff thin plates was provided in [22] by employing
a strain gradient elasticity theory that contains two additional length scale parameters—one related to the bulk
strain energy and the other linked to the surface energy. Another non-classical Kirchhoff plate model, which
is based on a modified couple stress theory and a surface elasticity theory, was presented in [44] without using
a variational formulation. The elastic foundation effect was not considered in either of these two studies.

The objective of the current paper is to develop a non-classical model for a Kirchhoff plate resting on
a two-parameter elastic foundation characterized by the Winkler and Pasternak foundation moduli using the
modified couple stress theory [39,53], the surface elasticity theory [15,16] and Hamilton’s principle. This vari-
ational formulation leads to the simultaneous determination of the equations of motion and complete boundary
conditions and provides a unified treatment of the microstructure, surface energy and foundation effects.

The rest of the paper is organized as follows. In Sect. 2, a new non-classical model for a Kirchhoff plate on
a two-parameter elastic foundation is developed using a variational formulation based on Hamilton’s principle.
The newly obtained Kirchhoff plate model includes the models incorporating the microstructure dependence
or the surface energy effect or the elastic foundation influence alone as special cases and recovers the model for
Bernoulli–Euler beams based on the same modified couple stress theory and surface elasticity theory. Also, the
new plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy
and foundation effects are all suppressed. In Sect. 3, static bending and free vibration problems of a simply
supported rectangular plate are analytically solved by directly applying the new model. The numerical results
are also presented there to quantitatively show the differences between the current non-classical Kirchhoff
plate model and its classical counterpart. The paper concludes in Sect. 4 with a summary.

2 Formulation

The Kirchhoff plate theory, also known as the classical plate theory, is the simplest theory for analyzing
plates. It can be viewed as an extension of the Bernoulli–Euler beam theory to a two-dimensional plate theory.
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Fig. 1 Plate on a two-parameter elastic foundation

This classical plate theory has been generalized to include piezoelectric effects, leading to a piezo-electro-
mechanical Kirchhoff–Love plate theory [2].

Consider a Kirchhoff plate resting on an elastic foundation that can be characterized by a two-parameter
model including the Winkler foundation modulus kw to represent the spring elements and the Pasternak
foundation modulus kp to describe the shear layer which is incompressible and deforms in transverse shear
only (e.g., [43,54]), as schematically shown in Fig. 1. The effect of this two-parameter elastic foundation on
the plate deformation can be equivalently represented as a vertical body force q (in N/m2) given by [43]:

q(x, y, t) = kww(x, y, t) − kp∇2w(x, y, t), (1)

where ∇2 is the Laplacian, and w is the displacement of point (x, y, 0) on the mid-plane of the plate at time t .
By using the Cartesian coordinate system (x, y, z) shown in Fig. 2, the displacement field in a Kirchhoff

plate of uniform thickness h can be written as (e.g., [41])

u1 = u(x, y, t) − z
∂w

∂x
, u2 = v(x, y, t) − z

∂w

∂y
, u3 = w(x, y, t), (2a-c)

where u1, u2 and u3 are, respectively, the x-, y- and z-components of the displacement vector u of a point
(x, y, z) in the plate at time t , and u, v andw are, respectively, the x-, y- and z-components of the displacement
vector of the corresponding point (x, y, 0) on the plate mid-plane at time t . Note that the subscripts 1, 2, 3
(rather than x, y, z) are employed in Eqs. (2a-c) to facilitate the use of the index notation in the variational
formulation presented below.

In Fig. 2, S+ and S− denote, respectively, the lower and upper surface layers (with zero thickness) of
the Kirchhoff plate. These two surface layers are taken to be perfectly bonded to the bulk plate material at
z = ±h/2, respectively. The bulk material satisfies the modified couple stress theory [39,53], while the surface
layers have distinct material properties and are governed by the surface elasticity theory [15,16].

According to the modified couple stress theory [39,53], the constitutive equations for an isotropic linear
elastic material read

σi j = λεkkδi j + 2μεi j , (3)

mi j = 2l2μχi j , (4)

where σi j are the components of the Cauchy stress tensor, mi j are the components of the deviatoric part of
the couple stress tensor, δi j is the Kronecker delta, λ and μ are the Lamé constants in classical elasticity, l
is a material length scale parameter measuring the couple stress effect (e.g., [34,38]), and εi j and χi j are,
respectively, the components of the infinitesimal strain tensor and the symmetric curvature tensor defined by

εi j = 1

2

(
ui, j + u j,i

)
, (5)

χi j = 1

2

(
θi, j + θ j,i

)
, (6)

with ui being the displacement components and θi being the components of the rotation vector defined as

θi = 1

2
εi jkuk, j . (7)
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Fig. 2 Plate configuration and coordinate system

According to the surface elasticity theory (e.g., [15,16,48,49]), the surface layer of a bulk elastic material
satisfies distinct constitutive equations involving surface elastic constants. The governing equations for the
surface layer of zero thickness are given by (e.g., [16,42,56,58]):

σi j n j = τiα,α, σi j ni n j = ταβκαβ, (8a,b)

where καβ are the components of the surface curvature tensor, ni are the components of the outward-pointing
unit normal n(= niei ) to the surface, and ταβ are the in-plane components of the surface stress tensor expressed
as [15,16]

ταβ = [τ0 + (λ0 + τ0)uγ,γ

]
δαβ + μ0

(
uα,β + uβ,α

)− τ0uβ,α, (9)

where μ0 and λ0 are the surface elastic constants, and τ0 is the residual surface stress (i.e., the surface stress at
zero strain). These three constants μ0, λ0 and τ0 can be determined from atomistic simulations (e.g., [33,45])
or experimental measurements (e.g., [17,55]). Clearly, Eq. (9) shows that ταβ is not symmetric.

The out-of-plane components of the surface stress tensor read [16]

τ3β = τ0u3,β . (10)

Note that in Eqs. (3)–(10) and throughout the paper, the summation convention and standard index notation
are used, with theGreek indices running from1 to 2 and the Latin indices from1 to 3 unless otherwise indicated.

It follows from Eqs. (2a-c) and (5)–(7) that in the bulk of the current Kirchhoff plate,

εxx = ∂u

∂x
− z

∂2w

∂x2
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x
− 2z

∂2w

∂x∂y

)
, εyy = ∂v

∂y
− z

∂2w

∂y2
, εxz = εyz = εzz = 0, (11)

θ1 = ∂w

∂y
, θ2 = −∂w

∂x
, θ3 = 1

2

(
∂v

∂x
− ∂u

∂y

)
, (12)
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χxx = ∂2w

∂x∂y
, χxy = 1

2

(
∂2w

∂y2
− ∂2w

∂x2

)
, χyy = − ∂2w

∂x∂y
,

χxz = 1

4

(
∂2v

∂x2
− ∂2u

∂x∂y

)
, χyz = 1

4

(
∂2v

∂x∂y
− ∂2u

∂y2

)
, χzz = 0. (13)

The total strain energy in the elastically deformed Kirchhoff plate is given by

UT = UB +US +UF = 1

2

∫

�

(
σi jεi j + mi jχi j

)
dV + 1

2

∫

S+
ταβεαβdA + 1

2

∫

S−
ταβεαβdA

+1

2

∫

R
kww2dA + 1

2

∫

R
kp

(
∂w

∂x

)2
dA + 1

2

∫

R
kp

(
∂w

∂y

)2
dA, (14)

where � is the region occupied by the plate, S− and S+ represent, respectively, the top and bottom surface
layers of the plate (see Fig. 2), R denotes the area occupied by the mid-plane of the plate, dV is the volume
element, and dA is the area element. In Eq. (14), UB is the strain energy in the bulk of the plate, which is
governed by themodified couple stress theory,US is the strain energy in the surface layers S− and S+ satisfying
the surface elasticity theory, and UF is the strain energy representing the effect of the two-parameter elastic
foundation. Note that only the first part of UB is considered in the classical Kirchhoff plate theory as the total
strain energy (i.e., UC

T = 1
2

∫
�

σi jεi jdV ) in the plate.
From Eqs. (9)–(14), the first variation of the total strain energy in the plate on the time interval [0, T ] can

be obtained as

δ

∫ T

0
UT dt =

∫ T

0

∫

�

(
σi jδεi j + mi jδχi j

)
dV dt +

∫ T

0

∫

S+

(
τ+
αβ − 1

2
τ0δαβ

)
δε+

αβdAdt

+
∫ T

0

∫

S−

(
τ−
αβ − 1

2
τ0δαβ

)
δε−

αβdAdt +
∫ T

0

∫

R
kwwδwdAdt

−
∫ T

0

∫

R
kp

(
∂2w

∂x2
+ ∂2w

∂y2

)
δwdAdt

+
∫ T

0

∮

∂R
kp

(
∂w

∂x
nx + ∂w

∂y
ny

)
δwdsdt, (15)

where ∂R is the boundary curve enclosing the area R, ds is the differential element of arc length along ∂R,
and τ+

αβ and τ−
αβ represent, respectively, the surface stress components on the plate bottom (S+) and top (S−)

surfaces. In reaching Eq. (15), use has been made of Green’s theorem and the fact that ταβ is non-symmetric.
This fact has been overlooked in other variational studies employing the surface elasticity theory [15,16].

Note that the volume integral of a sufficiently smooth function D(x, y, z, t) over the region � occupied
by a uniform-thickness plate can be represented by

∫

�

D(x, y, z, t)dV =
∫

R

∫ h/2

−h/2
D(x, y, z, t)dzdA, (16)

where h is the plate thickness, and R is the plate mid-plane area.
Using Eqs. (11), (13) and (16) in (15) gives, with the help of Green’s theorem,

δ

∫ T

0
UTdt = −

∫ T

0

∫

R

{[
Nxx,x + Nxy,y + 1

2

(
Yxz,xy + Yyz,yy

)+ τ+
xx,x + τ−

xx,x + 1

2

(
τ+
xy,y + τ−

xy,y

)

+1

2

(
τ+
yx,y + τ−

yx,y

)]
δu +

[
Nyy,y + Nxy,x − 1

2

(
Yxz,xx + Yyz,xy

)+ τ+
yy,y + τ−

yy,y + 1

2

(
τ+
xy,x + τ−

xy,x

)

+1

2

(
τ+
yx,x + τ−

yx,x

)]
δv +

[
Mxx,xx + 2Mxy,xy + Myy,yy − Yxx,xy + Yxy,xx − Yxy,yy + Yyy,xy

+h

2

(
τ+
αβ − τ−

αβ

)

,αβ
− kww + kp

(
∂2w

∂x2
+ ∂2w

∂y2

)]
δw

}
dAdt + 1

2

∫ T

0

∮

∂R

{[
2Nxxnx + 2Nxyny
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+1

2

(
Yxz,xny + Yxz,ynx

)+ Yyz,yny + 2
(
τ+
xx + τ−

xx − τ0
)
nx +

(
τ+
xy + τ−

xy + τ+
yx + τ−

yx

)
ny

]
δu

+
[
2Nxynx + 2Nyyny − Yxz,xnx − 1

2

(
Yyz,xny + Yyz,ynx

)+ 2
(
τ+
yy + τ−

yy − τ0

)
ny

+
(
τ+
xy + τ−

xy + τ+
yx + τ−

yx

)
nx

]
δv +

[
2
(
Mxx,x + Mxy,y

)
nx + 2

(
Mxy,x + Myy,y

)
ny

−1

2

(
Yxx−Yyy

)
,x ny−

1

2

(
Yxx−Yyy

)
,y nx−

(
Yxx,x + Yxy,y

)
ny + Yxy,xnx − Yxy,yny + (Yxy,x + Yyy,y

)
nx

+h
(
τ+
αβ,β − τ−

αβ,β

)
nα + 2kp

(
∂w

∂x
nx + ∂w

∂y
ny

)]
δw −

[
2Mxxnx + 2Mxyny − 1

2

(
Yxx − 3Yyy

)
ny

+2Yxynx + h
(
τ+
xx − τ−

xx

)
nx + h

(
τ+
xy − τ−

xy

)
ny

]
δw,x −

[
2Mxynx + 2Myyny − 1

2

(
3Yxx − Yyy

)
nx

−2Yxyny + h
(
τ+
yx − τ−

yx

)
nx + h

(
τ+
yy − τ−

yy

)
ny

]
δw,y − 1

2
Yxznyδu,x −

(
1

2
Yxznx + Yyzny

)
δu,y

+1

2

(
2Yxznx + Yyzny

)
δv,x + 1

2
Yyznxδv,y

}
dsdt, (17)

where

Nxx ≡
∫ h/2

−h/2
σxxdz, Nyy ≡

∫ h/2

−h/2
σyydz, Nxy ≡

∫ h/2

−h/2
σxydz,

Mxx ≡
∫ h/2

−h/2
σxx zdz, Myy ≡

∫ h/2

−h/2
σyyzdz, Mxy ≡

∫ h/2

−h/2
σxyzdz,

Yxx ≡
∫ h/2

−h/2
mxxdz, Yyy ≡

∫ h/2

−h/2
myydz, Yxy ≡

∫ h/2

−h/2
mxydz, Yxz ≡

∫ h/2

−h/2
mxzdz,

Yyz ≡
∫ h/2

−h/2
myzdz (18)

are the Cauchy stress and couple stress resultants through the plate thickness. Note that in reaching Eq. (17)
use has been made of the relations S+ = R = S−, ∂S+ = ∂R = ∂S− for the uniform-thickness plate under
consideration in order to facilitate the integral evaluations.

The kinetic energy of the plate has the form (e.g., [8,30])

K = 1

2

∫

�

ρ
[
(u̇1)

2 + (u̇2)
2 + (u̇3)

2] dV , (19)

where ρ is the mass density of the plate material. Note that here and in the sequel the overhead “·” and “··”
denote, respectively, the first and second time derivatives (e.g., u̇1 = ∂u1/∂t, ü1 = ∂2u1/∂t2). It should be
mentioned that the kinetic energy given in Eq. (19) is not tied to the surface stress components on S+ and S−,
since in the current formulation the surface effect is described using the surface elasticity theory of Gurtin and
Murdoch [15,16], in which the surface layer is regarded as a thin film of zero thickness and thus has no mass
or kinetic energy. If the surface layer were to be treated to have its own mass density, elastic properties, and
inertia, then a different surface elasticity theory would have to be used in order to account for the effects of
surface mass density and inertia on the kinetic energy and its variations (e.g., [40]).

From Eqs. (2a-c), (16) and (19), the first variation of the kinetic energy, on the time interval [0, T ], can be
obtained as

δ

∫ T

0
Kdt = −

∫ T

0

∫

R
(m0üδu + m0v̈δv + m0ẅδw + m2ẅ,xδw,x + m2ẅ,yδw,y)dAdt, (20)

where

m0 ≡
∫ h/2

−h/2
ρdz = ρh, m2 ≡

∫ h/2

−h/2
ρz2dz = ρh3

12
. (21)
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In reaching Eq. (20), it has been assumed that the initial (t = 0) and final (t = T ) configurations of the plate
are prescribed so that the virtual displacements vanish at t = 0 and t = T . In addition, ρ is taken to be constant
along the plate thickness and over the time interval [0, T ] such that ṁ0 = 0, ṁ2 = 0.

From the general expression of the work done by external forces in the modified couple stress theory [39]
and in the surface elasticity theory [15,16], the virtual work done by the forces applied on the current plate
over the time interval [0, T ] can be written as

δ

∫ T

0
Wdt =

∫ T

0

∫

R
(f · δu + c · δθ) dAdt+

∫ T

0

∮

∂R

(
t̄ · δu + s̄ · δθ

)
dsdt+

∫ T

0

∫

S
ts · δ(u3e3)dAdt, (22)

where f and c are, respectively, the body force resultant (force per unit area), body couple resultant (moment
per unit area) through the plate thickness acting in the area R (i.e., the plate mid-plane), t̄ and s̄ are, respectively,
the Cauchy traction resultant (force per unit length) and the surface couple resultant (moment per unit length)
through the plate thickness acting on ∂R (i.e., the boundary of R), S represents the top and bottom surfaces
of the plate (with S = S+ ∪ S−), and ts is the surface traction that is related to the surface stress τ through
ts = ∇s ·τ = τiα,αei (e.g., [3,16]). Note that the last term in the virtual work expression in Eq. (22) accounts for
the contribution of the normal stress on the top and bottom plate surfaces σ±

33 (= ±τ±
3α,α from the equilibrium

equations in Eq. (8a)), which is neglected in the classical Kirchhoff plate theory that does not consider the
surface energy effect.

Using Eqs. (2a-c), (8a) and (12) in Eq. (22) leads to, with the help of Green’s theorem,

δ

∫ T

0
Wdt =

∫ T

0

∫

R

[
fxδu + fyδv + fzδw + cxδw,y − cyδw,x + 1

2
cz(δv,x − δu,y)

]
dAdt

+
∫ T

0

∮

∂R

[
txδu + tyδv + tzδw − Mxδw,x − Myδw,y + sxδw,y − syδw,x

+1

2
sz(δv,x − δu,y)

]
dsdt

+
∫ T

0

∫

S+
τ+
3α,αδwdAdt +

∫ T

0

∫

S−
τ−
3α,αδwdAdt, (23)

where fi , ci , ti and si (i = x, y, z) are, respectively, the components of f, c, t̄ and s̄, and Mx and My are,
respectively, the applied moments per unit length about the y-axis and x-axis acting on ∂R. Note that the
positive directions of Mx and My are, respectively, opposite to those of ∂w/∂x and ∂w/∂y (see Fig. 2).

According to Hamilton’s principle (e.g., [8,28–30,41]),

δ

∫ T

0
[K − (UT − W )] dt = 0. (24)

Using Eqs. (17), (20) and (23) in Eq. (24) and applying the fundamental lemma of the calculus of variations
(e.g., [11,46,47])will result in, with the arbitrariness of δu, δv and δw and the relations S+ = R = S−, ∂S+ =
∂R = ∂S− due to the uniform thickness of the plate,

Nxx,x + Nxy,y + 1

2

(
Yxz,xy + Yyz,yy

)+ τ+
xx,x + τ−

xx,x + 1

2

(
τ+
xy,y + τ−

xy,y

)
+ 1

2

(
τ+
yx,y + τ−

yx,y

)

+ fx + 1

2
cz,y = m0ü, (25a)

Nxy,x + Nyy,y − 1

2

(
Yxz,xx + Yyz,xy

)+ τ+
yy,y + τ−

yy,y + 1

2

(
τ+
xy,x + τ−

xy,x

)
+ 1

2

(
τ+
yx,x + τ−

yx,x

)

+ fy − 1

2
cz,x = m0v̈, (25b)

Mxx,xx + 2Mxy,xy + Myy,yy − Yxx,xy + Yxy,xx − Yxy,yy + Yyy,xy − kww + kp

(
∂2w

∂x2
+ ∂2w

∂y2

)

+h

2

(
τ+
αβ − τ−

αβ

)

,αβ
+ τ+

3α,α + τ−
3α,α + fz − cx,y + cy,x = m0ẅ − m2

∂2ẅ

∂x2
− m2

∂2ẅ

∂y2
(25c)
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Fig. 3 Two coordinate systems

as the equations of motion of the Kirchhoff plate for any (x, y) ∈ R and t ∈ (0, T ), and

−1

2

∫ T

0

∮

∂R

{[
2Nxxnx + 2Nxyny + 1

2
Yxz,xny + 1

2
Yxz,ynx + Yyz,yny + 2

(
τ+
xx + τ−

xx − τ0
)
nx

+
(
τ+
xy + τ−

xy + τ+
yx + τ−

yx

)
ny + czny − 2tx

]
δu +

[
2Nxynx + 2Nyyny − Yxz,xnx − 1

2
Yyz,xny

−1

2
Yyz,ynx +

(
τ+
xy + τ−

xy + τ+
yx + τ−

yx

)
nx + 2(τ+

yy + τ−
yy − τ0)ny − cznx − 2ty

]
δv

+
[
2(Mxx,x + Mxy,y)nx + 2(Mxy,x + Myy,y)ny − 1

2
(Yxx − Yyy),xny − 1

2
(Yxx − Yyy),ynx

+Yxy,xnx − Yxy,yny + (Yxy,x + Yyy,y)nx − (Yxx,x + Yxy,y)ny + 2kp

(
∂w

∂x
nx + ∂w

∂y
ny

)

+h
(
τ+
αβ,β − τ−

αβ,β

)
nα − 2cxny + 2cynx − 2tz + 2m2(ẅ,xnx + ẅ,yny)

]
δw −

[
2Mxxnx + 2Mxyny

−1

2
(Yxx − 3Yyy)ny + 2Yxynx + h

(
τ+
xx − τ−

xx

)
nx + h(τ+

xy − τ−
xy)ny − 2Mx − 2sy

]
δw,x −

[
2Mxynx

+2Myyny − 1

2
(3Yxx − Yyy)nx − 2Yxyny + h

(
τ+
yx − τ−

yx

)
nx + h

(
τ+
yy − τ−

yy

)
ny − 2My + 2sx

]
δw,y

−1

2
Yxznyδu,x −

(
1

2
Yxznx + Yyzny − sz

)
δu,y +

(
Yxznx + 1

2
Yyzny − sz

)
δv,x + 1

2
Yyznxδv,y

}
dsdt

= 0, (26)

which can be further simplified to obtain the boundary conditions.
Note that the integrand of the line integral in Eq. (26) is expressed in terms of the Cartesian components

of the resultants and displacements that are functions of the Cartesian coordinates (x, y, z) with the unit
base vectors {e1, e2, e3}. This is convenient for a rectangular plate whose edges are parallel to the x- and
y-axes. However, for a more general case of a plate whose boundary is not aligned with the x- or y-axis, as
shown in Fig. 3, it is more convenient to use a Cartesian coordinate system (n, s, z) with the unit base vectors
{en, es, e3}, where en (= nxe1+nye2) and es (= −nye1+nxe2) are, respectively, the unit normal and tangent
vectors on the plate boundary ∂R.

It can be shown that the components in the coordinate system (x, y, z) are related to those in the coordinate
system (n, s, z) through the following transformation expressions:

{u, v}T = [R1] {un, vs}T ,
{
w,x , w,y

}T = [R1]
{
w,n, w,s

}T
,

{
tx , ty

}T = [R1]
{
tn, ts

}T
,
{
sx , sy

}T = [R1] {sn, ss}T ,
{
cx , cy

}T = [R1] {cn, cs}T ,
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{
Mx , My

}T = [R1]
{
Mn, Ms

}T
,
{
Yxz, Yyz

}T = [R1] {Ynz, Ysz}T ,
[
Nxx Nxy
Nxy Nyy

]
= [R1]

[
Nnn Nns
Nns Nss

]
[R1]

T ,

[
Yxx Yxy
Yxy Yyy

]
= [R1]

[
Ynn Yns
Yns Yss

]
[R1]

T ,

[
Mxx Mxy
Mxy Myy

]
= [R1]

[
Mnn Mns
Mns Mss

]
[R1]

T ,

[
Yxz,x Yxz,y
Yyz,x Yyz,y

]
= [R1]

[
Ynz,n Ynz,s
Ysz,n Ysz,s

]
[R1]

T ,

[
τ±
xx τ±

xy
τ±
yx τ±

yy

]
= [R1]

[
τ±
nn τ±

ns
τ±
sn τ±

ss

]
[R1]

T ,

[
u,x u,y
v,x v,y

]
= [R1]

[
un,n un,s
vs,n vs,s

]
[R1]

T ,

{
Mxx,x , Mxx,y, Mxy,x , Mxy,y, Myy,x , Myy,y

}T = [R3]
{
Mnn,n, Mnn,s, Mns,n, Mns,s, Mss,n, Mss,s

}T
,

{
Yxx,x , Yxx,y, Yxy,x , Yxy,y, Yyy,x , Yyy,y

}T = [R3]
{
Ynn,n, Ynn,s, Yns,n, Yns,s, Yss,n, Yss,s

}T
,

{
τ±
xx,x , τ±

xy,y, τ±
yx,x , τ±

yy,y

}T = [R4]
{
τ±
nn,n, τ±

nn,s, τ±
ns,n, τ±

sn,n, τ±
ns,s, τ±

sn,s, τ±
ss,n, τ±

ss,s

}T
, (27)

where

[R1] ≡
[
nx −ny
ny nx

]

,

[R3] ≡

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

n3x −n2xny −2n2xny 2nxn2y nxn2y −n3y
n2xny n3x −2nxn2y −2n2xny n3y nxn2y
n2xny −nxn2y n3x − nxn2y −n2xny + n3y −n2xny nxn2y
nxn2y n2xny n2xny − n3y n3x − nxn2y −nxn2y −n2xny

nxn2y −n3y 2n2xny −2nxn2y n3x −n2xny

n3y nxn2y 2nxn2y 2n2xny n2xny n3x

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

,

[R4] ≡

⎡

⎢⎢
⎢⎢
⎣

n3x −n2xny −n2xny −n2xny nxn2y nxn2y nxn2y −n3y
nxn2y n2xny n2xny −n3y n3x −nxn2y −nxn2y −n2xny

n2xny −nxn2y −nxn2y n3x n3y −n2xny −n2xny nxn2y
n3y nxn2y nxn2y nxn2y n2xny n2xny n2xny n3x

⎤

⎥⎥
⎥⎥
⎦

,

(28a-c)

with n2x + n2y = 1.
Using Eqs. (27) and (28a-c) in Eq. (26) yields, after some lengthy algebra,
∫ T

0

∮

∂R

{
2

(
Nnn + 1

4
Ynz,s + τ+

nn + τ−
nn − τ0 − tn

)
δun −

(
−2Nns + Ynz,n + 1

2
Ysz,s − τ+

ns − τ−
ns

−τ+
sn − τ−

sn + cz + 2ts
)
δvs +

[
2Mnn,n + 2Mns,s + h

(
τ+
nn,n − τ−

nn,n + τ+
ns,s − τ−

ns,s

)− 1

2
Ynn,s + 2Yns,n

+3

2
Yss,s + 2cs − 2tz + 2m2ẅ,n + 2kpw,n

]
δw + (−2Yns − 2Mnn − hτ+

nn + hτ−
nn + 2Mn + 2ss

)
δw,n

+
(

−2Mns + 3

2
Ynn − 1

2
Yss − hτ+

sn + hτ−
sn + 2Ms − 2sn

)
δw,s +

(
−1

2
Ynz + sz

)
δun,s

+(Ynz − sz)δvs,n + 1

2
Yszδvs,s

}
dsdt = 0. (29)

Note that on the closed boundary ∂R, the following identity:
∮

∂R
Dδg,sds = −

∮

∂R
D,sδgds (30)

holds, where D, g are two smooth functions. Using Eq. (30) in Eq. (29) leads to
∫ T

0

∮

∂R

(
N̂nnδun + N̂ssδvs + N̂zzδw + T̂zδw,n + T̂sδvs,n

)
dsdt = 0, (31)
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where

N̂nn ≡ 2

(
Nnn + 1

2
Ynz,s + τ+

nn + τ−
nn − τ0 − 1

2
sz,s − tn

)
,

N̂ss ≡ 2Nns − Ynz,n − Ysz,s + τ+
ns + τ−

ns + τ+
sn + τ−

sn − cz − 2ts,

N̂zz ≡ 2Mnn,n + 4Mns,s − 2Ynn,s + 2Yns,n + 2Yss,s + h
(
τ+
nn,n − τ−

nn,n + τ+
ns,s − τ−

ns,s

+τ+
sn,s − τ−

sn,s

)+ 2cs − 2Ms,s + 2sn,s − 2tz + 2m2ẅ,n + 2kpw,n,

T̂z ≡ −2Yns − 2Mnn − hτ+
nn + hτ−

nn + 2Mn + 2ss,

T̂s ≡ Ynz − sz .

(32a-e)

The use of the fundamental lemma of the calculus of variations in Eq. (31) gives

N̂nn = 0 or un = un,

N̂ss = 0 or vs = vs,

N̂zz = 0 or w = w,

T̂z = 0 or w,n = w,n,

T̂s = 0 or vs,n = vs,n

(33a–e)

as the boundary conditions for any (x, y) ∈ ∂R and t ∈ (0, T ), where the overhead bar defines the prescribed
value.

From Eqs. (3), (4), (11), (13) and (18), the Cauchy stress and couple stress resultants can be expressed in
terms of u, v and w as

Nxx = h

[
(λ + 2μ)

∂u

∂x
+ λ

∂v

∂y

]
,

Nyy = h

[
(λ + 2μ)

∂v

∂y
+ λ

∂u

∂x

]
,

Nxy = μh

(
∂u

∂y
+ ∂v

∂x

)
,

Mxx = − 1

12
h3
[
(λ + 2μ)

∂2w

∂x2
+ λ

∂2w

∂y2

]
,

Myy = − 1

12
h3
[
(λ + 2μ)

∂2w

∂y2
+ λ

∂2w

∂x2

]
,

Mxy = −1

6
μh3

∂2w

∂x∂y
,

Yxx = 2μl2h
∂2w

∂x∂y
,

Yyy = −2μl2h
∂2w

∂x∂y
,

Yxy = μl2h

(
∂2w

∂y2
− ∂2w

∂x2

)
,

Yxz = 1

2
μl2h

(
∂2v

∂x2
− ∂2u

∂x∂y

)
,

Yyz = 1

2
μl2h

(
∂2v

∂x∂y
− ∂2u

∂y2

)
. (34a-k)

From Eqs. (9), (10) and (2a-c), it follows that the surface stress components are given by

τ±
xx = τ0 + (λ0 + τ0)

(
∂v

∂y
∓ h

2

∂2w

∂y2

)
+ (λ0 + 2μ0)

(
∂u

∂x
∓ h

2

∂2w

∂x2

)
,
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τ±
yy = τ0 + (λ0 + τ0)

(
∂u

∂x
∓ h

2

∂2w

∂x2

)
+ (λ0 + 2μ0)

(
∂v

∂y
∓ h

2

∂2w

∂y2

)
,

τ±
xy = μ0

(
∂u

∂y
+ ∂v

∂x

)
− τ0

∂v

∂x
∓ 1

2
(2μ0 − τ0)h

∂2w

∂x∂y
,

τ±
yx = μ0

(
∂u

∂y
+ ∂v

∂x

)
− τ0

∂u

∂y
∓ 1

2
(2μ0 − τ0)h

∂2w

∂x∂y
,

τ+
3x = τ−

3x = τ0
∂w

∂x
,

τ+
3y = τ−

3y = τ0
∂w

∂y
. (35a-f)

Using Eqs. (34a-k) and (35a-f) in Eqs. (25a-c) then yields the equations of motion of the Kirchhoff plate
in terms of u, v and w as

(λ + 2μ)hu,xx + μhu,yy + (λ + μ)hv,xy + 1

4
μl2h(−u,xxyy − u,yyyy + v,xxxy + v,xyyy)

+2(2μ0 + λ0)u,xx + (2μ0 − τ0)u,yy + (2μ0 + 2λ0 + τ0)v,xy + fx + 1

2
cz,y = m0ü, (36a)

(λ + 2μ)hv,yy + μhv,xx + (λ + μ)hu,xy + 1

4
μl2h(u,xxxy + u,xyyy − v,xxxx − v,xxyy)

+2(2μ0 + λ0)v,yy + (2μ0 − τ0)v,xx + (2μ0 + 2λ0 + τ0)u,xy + fy − 1

2
cz,x = m0v̈, (36b)

−
[
1

12
(λ + 2μ)h3 + μl2h + 1

2
(λ0 + 2μ0)h

2
]

(w,xxxx + 2w,xxyy + w,yyyy)

+(2τ0 + kp)(w,xx + w,yy) − kww + fz − cx,y + cy,x = m0ẅ − m2
∂2ẅ

∂x2
− m2

∂2ẅ

∂y2
. (36c)

The boundary-initial value problem for determining u, v and w is defined by the differential equations in
Eqs. (36a–c), the boundary conditions in Eqs. (33a–e), and given initial conditions at t = 0 and t = T . It is seen
from Eqs. (36a–c) that the in-plane displacements u and v are uncoupled with the out-of-plane displacementw
and can therefore be obtained separately from solving Eqs. (36a, b) subject to prescribed boundary conditions
of the form in Eqs. (33a, b, e) and suitable initial conditions.

When l = 0 and ci = 0, Eqs. (36a–c) will reduce to the governing equations for the Kirchhoff plate in the
absence of the microstructure (or couple stress) effect.

When λ0 = μ0 = τ0 = 0, Eqs. (36a–c) will become the governing equations for the Kirchhoff plate
without the surface energy effect.

When l = 0, ci = 0, and λ0 = μ0 = τ0 = 0, Eqs. (36a–c) will degenerate to the classical elasticity-based
governing equations for the Kirchhoff plate resting on the two-parameter elastic foundation.

When l = 0, ci = 0, λ0 = μ0 = τ0 = 0, and kw = kp = 0, Eqs. (36a–c) reduce to

(λ + 2μ)hu,xx + μhu,yy + (λ + μ)hv,xy + fx = m0ü, (37a)

(λ + 2μ)hv,yy + μhv,xx + (λ + μ)hu,xy + fy = m0v̈, (37b)

− 1

12
(λ + 2μ)h3(w,xxxx + 2w,xxyy + w,yyyy) + fz = m0ẅ − m2

∂2ẅ

∂x2
− m2

∂2ẅ

∂y2
, (37c)

which are the governing equations for the Kirchhoff plate based on classical elasticity.
When u = v = 0, w = w(x, t), fx = fy = 0, and cx = cz = 0, the Kirchhoff plate considered here

becomes a Bernoulli–Euler beam with a unit width and a height h undergoing only bending deformations. For
this case, Eqs. (36a–c) are simplified as

−
[
1

12
(λ + 2μ)h3 + μl2h + 1

2
(λ0 + 2μ0)h

2
]

w,xxxx + (2τ0 + kp)w,xx − kww + fz + cy,x

= m0ẅ − m2
∂2ẅ

∂x2
(38)
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Fig. 4 Simply supported plate

for any x ∈ (0, L) and t ∈ (0, T ), where L is the length of the beam (plate). When the elastic foundation
is not present (i.e., kw = kp = 0), the governing equation in Eq. (38) reduces to that for the Bernoulli–Euler
beam with a unit width and a height h without considering axial loading and the surface energy effect on the
two side surfaces of the beam [7,13]. That is, the current Kirchhoff plate model recovers the non-classical
Bernoulli–Euler beammodel based on the samemodified couple stress theory and surface elasticity theory. For
static bending,w = w(x), and Eq. (38) further reduces to the static equilibrium equation for a Bernoulli–Euler
beam without the elastic foundation derived in [10].

3 Examples: static bending and free vibration of a simply supported plate

To demonstrate the new Kirchhoff model developed in Sect. 2, static bending and free vibration problems of
a simply supported rectangular plate (see Fig. 4) are analytically solved herein by directly applying the new
model.

In view of the general form of the boundary conditions (BCs) in Eqs. (33a–e), the BCs for this simply
supported plate can be identified as

un = 0, N̂ss = 0, w = 0, T̂z = 0, T̂s = 0 (39)

for all (x, y) on the boundaries x = 0, a and y = 0, b. Also, the following applied traction resultants vanish
on these boundaries:

ss = sz = 0, Mn = 0, ts = 0. (40)

For the boundaries x = 0, a, ny = 0 and nx = −1 (on x = 0) or nx = 1 (on x = a), and Eq. (39)
becomes, with the help of Eqs. (27), (28a), (32b, d, e) and (40),

u(0, y) = u(a, y) = 0,

w(0, y) = w(a, y) = 0,

Nxy − 1

2
Yxz,x − 1

2
Yyz,y + 1

2

(
τ+
xy + τ−

xy + τ+
yx + τ−

yx

)
− 1

2
cz = 0 on x = 0 and x = a,

Mxx + Yxy + h

2

(
τ+
xx − τ−

xx

) = 0 on x = 0 and x = a,

Yxz = 0 on x = 0 and x = a. (41a–e)

Using Eqs. (34c, d, i–k) and (35a, c, d) in Eqs. (41c–e) gives

μh(u,y + v,x ) + 1

4
μl2h(u,xxy − v,xxx ) + 1

4
μl2h(u,yyy − v,xyy) + (2μ0 − τ0)(u,y + v,x ) − 1

2
cz = 0,

μl2h(−w,xx + w,yy) − 1

12
h3[(λ + 2μ)w,xx + λw,yy] − 1

2
h2(λ0 + 2μ0)w,xx − 1

2
h2(λ0 + τ0)w,yy = 0,

−u,xy + v,xx = 0 (42a–c)
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on x = 0 and x = a.
For the boundaries y = 0, b, nx = 0 and ny = −1 (on y = 0) or ny = 1 (on y = b), and Eq. (39) now

becomes, with the help of Eqs. (27), (28a), (32b, d, e) and (40),

v(x, 0) = v(x, b) = 0,

w(x, 0) = w(x, b) = 0,

−Nxy − 1

2
(Yxz,x + Yyz,y) − 1

2
(τ+

xy + τ−
xy + τ+

yx + τ−
yx ) − 1

2
cz = 0 on y = 0 and y = b,

Myy − Yxy + h

2
(τ+

yy − τ−
yy) = 0 on y = 0 and y = b,

Yyz = 0 on y = 0 and y = b. (43a-e)

Using Eqs. (34c, e, i–k) and (35b–d) in Eqs. (43c–e) results in

μh(u,y + v,x ) − 1

4
μl2h(u,yyy − v,xyy) − 1

4
μl2h(u,xxy − v,xxx ) + (2μ0 − τ0)(u,y + v,x ) + 1

2
cz = 0,

μl2h(w,xx − w,yy) − 1

12
h3[λw,xx + (λ + 2μ)w,yy] − 1

2
h2[(λ0 + τ0)w,xx + (λ0 + 2μ0)w,yy] = 0,

u,yy − v,xy = 0 (44a–c)

on y = 0 and y = b.

3.1 Static bending

For static bending problems, u, v and w are independent of time t so that all of the time derivatives involved
in Eqs. (36a–c) vanish.

The boundary value problem (BVP) for the static bending of the simply supported plate shown in Fig. 4
is defined by Eqs. (36a–c) and the boundary conditions in Eqs. (41a, b), (42a–c), (43a, b) and (44a–c), with
u = u(x, y), v = v(x, y) and w = w(x, y).

As mentioned in Sect. 2, the in-plane displacements u and v are uncoupled with w. They can be obtained
from solving the BVP defined by Eqs. (36a), (36b), (41a), (42a, c), (43a) and (44a, c). For the current case
with fx = fy = 0 and cz = 0, the solution of this BVP gives u = v = 0 for any (x, y) ∈ R.

The out-of-plane displacement w can be obtained from solving the BVP defined by Eqs. (36c), (41b),
(42b), (43b) and (44b).

Consider the following Fourier series solution for w:

w =
∞∑

m=1

∞∑

n=1

Wmn sin
(mπx

a

)
sin
(nπy

b

)
, (45)

where Wmn is the Fourier coefficient to be determined for each pair of m and n. It can be readily shown that
w in Eq. (45) satisfies the boundary conditions in Eqs. (41b), (42b) at x = 0, a and in Eqs. (43b), (44b) at
y = 0, b for any Wmn .

The force fz(x, y) involved in Eq. (36c) can also be expanded in a Fourier series as

fz(x, y) =
∞∑

m=1

∞∑

n=1

Qmn sin
(mπx

a

)
sin
(nπy

b

)
, (46)

where the Fourier coefficient Qmn is given by

Qmn = 4

ab

∫ a

0

∫ b

0
fz(x, y) sin

(mπx

a

)
sin
(nπy

b

)
dxdy. (47)

In the current case (see Fig. 4), fz(x, y) = Pδ(x − a
2 )δ(y − b

2 ), where δ(·) is the Dirac delta function. Using
this fz in Eq. (47) yields

Qmn = 4P

ab
sin
(mπ

2

)
sin
(nπ

2

)
. (48)
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Fig. 5 Deflection of the simply supported Kirchhoff plate on y = b/2 with K̄w = 100, K̄p = 10

Using Eqs. (45) and (46) in Eq. (36c) results in, with cx = cy = 0,

Wmn = Qmn

�
(49)

where

� ≡
[
h3

12
(λ + 2μ) + μl2h + h2

2
(λ0 + 2μ0)

](
m2π2

a2
+ n2π2

b2

)2
+ (2τ0 + kp)

(
m2π2

a2
+ n2π2

b2

)
+ kw.

(50)

Substituting thisWmn into Eq. (45) will give the exact solution w based on the current non-classical Kirchhoff
plate model for the simply supported plate subjected to the concentrated force at the center of the plate shown
in Fig. 4.

Clearly, Eqs. (49) and (50) show that the incorporation of the microstructure effect (i.e., with l �= 0) will
always lead to increased plate stiffness (thus reduced deflections), while the inclusion of the surface energy
effect (i.e., with any of {μ0, λ0, τ0} not being zero) can result in either increased or decreased plate stiffness,
depending on the signs of 2μ0 + λ0 and τ0. It is also seen from Eqs. (49) and (50) that the presence of the
elastic foundation (i.e., with kw > 0 and/or kp > 0) will always lead to reduced plate deflection.

Figure 5 displays the variations of the plate deflection w along the line y = b/2 predicted by the current
non-classical Kirchhoff plate model and by its classical elasticity-based counterpart. The numerical results
predicted by the new model are directly obtained from Eqs. (45) and (48)–(50), while those by the classical
model are computed using the same equations but with l = 0, λ0 = μ0 = τ0 = 0, and kw = kp = 0. In
generating the numerical results shown in Fig. 5, the shape of the plate is fixed by letting a = b = 20h, while
the plate thickness h is varying. The plate material is taken to be aluminum with the following properties
[10,24]: E = 90GPa, v = 0.23, l = 6.58µm for the bulk properties, and μ0 = −5.4251N/m, λ0 =
3.4939N/m, τ0 = 0.5689N/m for the surface layers, where Young’s modulus E and Poisson’s ratio ν are
related to the Lamé constants λ and μ through (e.g., [50]):

λ = Ev

(1 + v)(1 − 2v)
, μ = E

2(1 + v)
. (51)

The foundation moduli are non-dimensionalized and taken to be K̄w = 100, K̄p = 10, where K̄w ≡
kwa4/D, K̄p ≡ kpa2/D, with D = Eh3/[12(1 − v2)] being the plate flexural rigidity. The number of terms



A non-classical Kirchhoff plate model 209

Fig. 6 Deflection of the plate with different values of kw and kp

included in Eq. (45) is controlled by adjusting m and n. The numerical results for the plate deflection w
obtained with m = 30 and n = 30 are found to be the same as those computed with larger m and n values (up
to m = 90, n = 90) to the fourth decimal place. This indicates that using m = 30, n = 30 in the expansion
is sufficient for the convergent numerical solution of w displayed in Fig. 5.

From Fig. 5, it is clearly seen that the deflectionw predicted by the current Kirchhoff model with or without
the foundation is always lower than that predicted by the classical model in all cases considered. It also shows
that the differences between the values predicted by the new model and the classical model are very large
when the thickness of the plate h is small (with h = l = 6.58µm here), but the differences are diminishing
when the thickness of the plate h becomes large (with h = 5l = 32.9µm here). This predicted size effect
agrees with the general trend observed experimentally (e.g., [32]). In addition, it is observed from Fig. 5 that
the presence of the elastic foundation does reduce the plate deflection, as expected (and noted earlier from
Eqs. (49) and (50)). This is further shown in Fig. 6, where more cases with different values of kw and kp are
compared, including the case without the foundation (as the top curve with kw = kp = 0). Note that the values
of the other parameters are the same as those used in obtaining the numerical results shown in Fig. 5.

Both the microstructure and surface energy effects are included in the numerical results shown in Figs. 5
and6.To illustrate the surface energy effect, additional numerical results are presented inFig. 7 for the deflection
of the simply supported plate shown in Fig. 4, which are obtained from Eqs. (45) and (48)–(50) by letting
l = 0. For comparison purposes, the results predicted by the classical elasticity-based Kirchhoff plate model
are also plotted in Fig. 7, which are computed using (45) and (48)–(50) with l = 0 and λ0 = μ0 = τ0 = 0. The
plate material in this case is taken to be iron with the following properties [16]: E = 177.33GPa, v = 0.27 for
the bulk, and μ0 = 2.5N/m, λ0 = −8N/m, τ0 = 1.7N/m for the surface layers. The cross-sectional shape is
kept to be the same by letting a = b = 20h (see Fig. 4) for all cases. In addition, the foundation moduli are
set to be kw = kp = 0 to examine only the surface energy effect.

From Fig. 7, it is observed that the plate deflection predicted by the current model including the surface
energy effect alone is always smaller than those predicted by the classical model in all cases considered here for
the iron plate. Figure 7 also shows that the differences between the two sets of predicted values are significant
only when the plate thickness h is very small, but they are diminishing as h increases. This indicates that the
surface effect is important only when the plate is sufficiently thin.

3.2 Free vibration

For free vibration problems, the BVP for the simply supported plate shown in Fig. 4 is defined by Eqs. (36a–
c), (41a, b), (42a–c), (43a, b) and (44a–c), with all external forces vanished (i.e., fx = fy = fz = 0 and
cx = cy = cz = 0).
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Fig. 7 Deflection of the simply supported plate predicted by the new model considering the surface energy effect alone (i.e., with
l = kw = kp = 0) and by the classical model

For the current case with fx = fy = 0 and cz = 0, Eqs. (36a, b), (41a), (42a, c), (43a) and (44a, c) give
u = u(x, y, t) = 0, v = v(x, y, t) = 0 for any (x, y) ∈ R and t ∈ [0, T ].

For w = w(x, y, t), consider the following Fourier series expansion:

w(x, y, t) =
∞∑

m=1

∞∑

n=1

WV
mn sin

(mπx

a

)
sin
(nπy

b

)
eiωnt , (52)

where ωn is the nth natural frequency of vibration of the plate, WV
mn is the Fourier coefficient, and i is the

imaginary unit satisfying i2 = −1. It can be readily shown that w in Eq. (52) satisfies the boundary conditions
in Eqs. (41b), (42b), (43b) and (44b) for any t [0, T ].

Using Eq. (52) in Eq. (36c) gives, for a non-trivial solution with WV
mn �= 0,

ωn =

√√√
√√

kw +
{
2τ0 + kp +

[
h3
12 (λ + 2μ) + μl2h + h2

2 (λ0 + 2μ0)
] (

m2π2

a2
+ n2π2

b2

)} (
m2π2

a2
+ n2π2

b2

)

ρh + 1
12ρh

3
(
m2π2

a2
+ n2π2

b2

) ,

(53)

where use has been made of Eq. (21). From Eq. (53), it is seen that the inclusion of the microstructure effect
(with l �= 0) and the presence of the foundation (with kw > 0 and/or kp > 0) will always lead to increased
values of ωn, while the incorporation of the surface energy effect may result in increased or decreased values
of ωn, depending on the signs of λ0 + 2μ0 and τ0.

Figure 8 shows the variation of the first natural frequency ω1 obtained from Eq. (53) (with m = 1, n = 1)
with the plate thickness predicted by the current Kirchhoff plate model and by the classical model. The
results for the current plate model with the Winkler–Pasternak (K̄w = 1000, K̄p = 100) or Winkler (K̄w =
1000, kp = 0) or no foundation (kw = kp = 0) shown in Fig. 8 are obtained from Eq. (53), while those for
the classical plate model are computed from the same equation but with l = 0, λ0 = μ0 = τ0 = 0, and
kw = kp = 0. The material properties and geometry of the aluminum plate used here are the same as those
employed earlier to obtain the numerical results displayed in Figs. 5 and 6. In addition, the density for the
aluminum plate is taken to be ρ = 2.7 × 103 kg/m3, which is needed in Eq. (53).

From Fig. 8, it is clearly seen that the natural frequency predicted by the current model with or without the
foundation is always higher than that predicted by the classical elasticity-based model. The difference between
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Fig. 8 Natural frequency varying with the plate thickness

the predictions by the current model (with the microstructure and surface energy effects) and the classical
model is significant when the plate thickness h is very small (with h < 2l = 13.16µm here if excluding the
foundation effect). However, the difference is diminishing as h becomes large (with h > 6l = 39.48µm here
for the case with kw = kp = 0). This shows that the size effect on the natural frequency is important only
when the plate thickness is very small. In addition, it is observed from Fig. 8 that the presence of the elastic
foundation indeed increases the natural frequency and this effect can be significant when the plate thickness
is small but diminishes as the thickness becomes large.

4 Summary

A new non-classical Kirchhoff plate model is developed using a modified couple stress theory, a surface elas-
ticity theory and a two-parameter elastic foundation model via a variational formulation based on Hamilton’s
principle. The equations of motion and the complete boundary conditions are determined simultaneously, and
the microstructure, surface energy and foundation effects are treated in a unified manner. The new model
contains a material length scale parameter to describe the microstructure effect, three surface elastic constants
to account for the surface energy effect, and two foundation moduli to represent the foundation effect. The
inclusion of the additional material constants enables the newmodel to capture the microstructure- and surface
energy-dependent size effects.

It is shown that when the microstructure, surface energy, and foundation effects are all ignored, the new
plate model recovers its classical elasticity-based counterpart as a limiting case. Also, it is seen that the
newly developed plate model includes the models considering the microstructure dependence or the surface
energy effect or the foundation effect alone as special cases and reduces to the Bernoulli–Euler beam model
incorporating the microstructure, surface energy and foundation effects.

As direct applications of the newmodel, the static bending and free vibration problems of a simply supported
rectangular plate are analytically solved, with the solutions compared to those based on the classical Kirchhoff
plate theory. The numerical results show that the deflection of the simply supported plate with or without the
elastic foundation predicted by the current model is smaller than that predicted by the classical model. Also,
it is observed that the difference in the deflection predicted by the two plate models is very large when the
plate thickness is sufficiently small, but it is diminishing with the increase of the plate thickness. In addition,
it is found that the natural frequency predicted by the new plate model with or without the foundation is
higher than that predicted by the classical plate model, and the difference is significant for very thin plates.
These predicted size effects at the micron scale agree with the general trends observed in experiments (e.g.,
[19,32,55]). Finally, both the analytical formulas and the numerical results show that the plate deflection is
reduced and the plate natural frequency is increased in the presence of the elastic foundation, as expected.
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