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Abstract In this paper, we provide a new example of the solution of a finite deformation boundary-value
problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension,
inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and
governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated
for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for
the pressure, axial load and torsional moment required to maintain the given deformation. For two specific
simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit
closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities
on ameasure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless
form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress.
The results for the two strain-energy functions are compared and also compared with results when there is no
residual stress.

Keywords Residual stress · Finite elasticity · Elastic tube deformation

Mathematics Subject Classification 74B20 · 74E10

1 Introduction

The problem of extension and torsion of a solid cylinder for large deformations has been dealt with many
authors dating back to the theoretical and experimental work on rubber of Rivlin et al. [1–5], with the material
considered to be isotropic. See also the monograph by Green and Adkins [6], which provides several general
formulas for this problem for both incompressible and compressible materials. An approach to the problem of
extension and torsion of an incompressible isotropic cylinder based on principal axes was provided by Ogden
and Chadwick [7].

For compressible isotropic elastic materials, apart from the early work described in [6], Horgan and
Polignone [8] used the Blatz–Ko material model to examine loss of ellipticity. Kirkinis and Ogden [9] derived

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell’Isola.

J. Merodio
Department of Continuum Mechanics and Structures, E.T.S. Ingenieros Caminos, Canales y Puertos,
Universidad Politécnica de Madrid, 28040 Madrid, Spain

R. W. Ogden (B)
School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK
E-mail: raymond.ogden@glasgow.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00161-015-0411-z&domain=pdf


158 J. Merodio, R. W. Ogden

conditions on the form of strain-energy function for which the isochoric deformation of pure torsion superim-
posed on a uniform extension can be supported with vanishing traction on the lateral surfaces of the cylinder,
and pure torsion of a compressible isotropic elastic material was also examined in [10].

A model of limiting chain extensibility for incompressible isotropic elastic materials was used by Horgan
and Saccomandi in [11] in examining simple torsion, and byKanner andHorgan in [12] for extension combined
with torsion. Recently, Horgan and Murphy [13,14] considered the pure torsion and finite extension combined
with torsion of incompressible solid cylinders reinforced with a single family of fibres arranged helically and
locally in planes normal to the cylinder radius, with particular reference to axially aligned fibres.

For a circular cylindrical tube, as distinct from a solid cylinder, under extension, torsion and inflation, some
general results for an incompressible isotropic elastic solid were provided by Rivlin [15]. A short contribution
involving the combination of torsion and telescopic shear of a compressible isotropic tube of Blatz–Komaterial
was published by Zidi [16]. Some general results for transversely isotropic materials (both incompressible and
compressible) with the direction of transverse isotropy aligned with the tube axis can be found in [6].

Two papers by Zidi [17,18] examined the torsion of a compressible tube combined with either anti-plane
shear or axial and azimuthal shear for a transversely isotropic material with the direction of transverse isotropy
arranged helically normal to the radial direction, and in [19] the authors considered the combined torsion,
azimuthal shear and radial expansion of an incompressible tube with the same arrangement of transverse
isotropy. Recently, El Hamdaoui et al. [20] analysed the problem of extension and inflation of a tube for
an incompressible transversely isotropic material and showed, in particular, that only certain directions of
transverse isotropy are compatible with this deformation.

None of the aforementioned contributions took account of the possible existence of residual stresses.
To motivate the need to include residual stresses, we mention first that for rubberlike materials used, for
example, in bush mountings for the support of engines, residual stresses are often introduced during the
vulcanization process or in manufacturing (see, for example, [21,22]). In this situation, the residual stresses
can have a detrimental influence on the material performance. Secondly, in soft biological tissues, residual
stresses are produced during growth, development and remodelling and have an important positive influence
on the mechanical behaviour of the tissues, as is well known for arteries, for example, and the heart. In each
case, the effect of residual stress on the material behaviour needs to be better understood.

In the context of artery walls, in particular, residual stresses are often accounted for by using a pre-
deformation from a fictitious ‘stress-free’ configuration associated with the so-called opening angle method,
which shows that when a ring of artery is cut radially, it springs open, thereby releasing, at least in part, the
residual stresses. The resulting opened sector is used to model the effect of residual stresses by deforming the
sector into an intact ring (see, for example, [23–25], which were concerned with the extension and inflation
of a tube). For the same deformation, Ogden and Schulze-Bauer [26] calculated the residual stress under the
assumption that, at a typical physiological pressure, the circumferential stress in a single artery layer is uniform;
see also [27]. A three-dimensional analysis of residual stress that takes account of the axial residual stress as
well as the circumferential and radial stresses was reported in [28].

The opening anglemethod has also been employed in the series of papers [29–32] in considering the torsion
of a tube combined with a variety of shear-type deformations for compressible isotropic and transversely
isotropic materials, again with the direction of transverse isotropy arranged helically normal to the radial
direction.

However, to fully take account of residual stress, a more general approach is necessary, and, in particular,
the residual stress needs to feature in the constitutive law for the elastic response of the material, on which
we focus in this paper, or for more general material response. Residual stress is regarded as a stress that is in
equilibrium in the absence of external loads (tractions or body forces), as in the definition found in [33]. A
formulation of the constitutive law for a residually stressed transversely isotropic hyperelastic material in terms
of invariants has been provided by Hoger [34], and this formulation (and its specialization to the case without
a preferred direction associated with transverse isotropy) has been used as a basis for analysing various wave
propagation problems in initially stressed (as distinct from residually stressed) elastic materials in [35–38].

The general equilibrium equations satisfied by the residual stress in cylindrical polar coordinates and
various special cases in which residual stress can in principle be determined from experimental set-ups have
been provided by Hoger [39], while the problem in which residual stress is generated by eversion of a sphere
has been examined in [40].

Recently, for a circular cylindrical tube, Merodio et al. [41] provided a general formulation of the elastic
constitutive law for plane strain and solved the problem of the effect of residual stress on the azimuthal shear
response of the tube. They also used the three-dimensional formulation to examine the problem of extension
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and torsion of a residually stressed solid cylinder. In [42], a solution of the problem of determining the effect
of (a special choice of radial and circumferential) residual stress on the extension and inflation of a circular
cylindrical tube with and without fibre reinforcement was derived. Otherwise, as far as we are aware, there
are no papers in the literature that solve specific finite deformation elastic boundary-value problems where the
residual stress is explicitly included in the constitutive law.

The purpose of the present work is to extend this short catalogue of solutions by incorporating residual
stresses into the analysis of the problem of extension, inflation and torsion of a circular cylindrical tube under
finite deformations.

The structure of the paper is as follows. In Sect. 2, the geometry and kinematics of the problem are
summarized, specifically the geometry of a circular cylindrical tube which retains its circular cylindrical shape
under extension, inflation and torsion. In Sect. 3, residual stress is introduced along with the equilibrium
equations, and a particular form of residual stress appropriate for the considered geometry is discussed. The
effect of residual stresses on the constitutive law has a parallel with the effect of fibre reinforcement in that
the residual stress tensor can be regarded as a generalized structure tensor from which certain invariants can
be formed. The independent invariants associated with the combination of deformation and residual stress
are listed in Sect. 4 for an incompressible material, on which we focus here. The form of the strain-energy
function in terms of invariants is given, along with the general expression for Cauchy stress. In the reference
configuration, the latter reduces to the residual stress and thereby putting restrictions on the form of the energy
function and its derivatives with respect to the invariants in the reference configuration.

The theory of Sect. 4 is applied in Sect. 5 to the geometry and deformation considered herein. General
formulas, in the form of integrals, for the pressure P , the axial load N and the torsional moment M required
to maintain the considered deformation are given in a simple form for a general form of strain-energy function
that is expressed in terms of three key kinematic variables.

In Sect. 6, two prototype forms of strain-energy function that include dependence on the residual stress in
a very simple way are introduced, and these enable explicit formulas for P, N , M to be obtained by evaluating
the integrals in closed form. These formulas are used to obtain numerical results to illustrate the effect on
P, N , M of the residual stress compared with results in its absence for different choices of the geometric
parameters and the magnitude of the residual stress.

Finally, in Sect. 7, some concluding remarks are provided and we also consider briefly the strong ellipticity
character of the constitutive laws.

2 Kinematics and geometry

For full details of the kinematics involved in finite deformation theory, we refer to the standard text [43]. Here
we just summarize the kinematics that are needed for the problem considered herein.

Consider amaterial continuumwhich,when unstressed and unstrained, occupies the reference configuration
Br. Let a typical material point in this configuration be identified by its position vector X. The corresponding
position vector in the deformed configuration B is denoted x, and the deformation from Br to B is written
x = χ(X), where the vector function χ is referred to as the deformation (attention is confined to quasi-static
deformations here). The deformation gradient tensor, denoted F, is given by

F = Gradχ(X), (1)

where Grad is the gradient operator with respect to X. The associated right and left Cauchy–Green deformation
tensors, denoted C and B, respectively, are defined by

C = FTF = U2, B = FFT = V2, (2)

where T signifies the transpose of a second-order tensor, U and V, respectively, are the right and the left stretch
tensors, which are positive definite and symmetric and come from the polar decompositionsF = RU = VR, R
being a proper orthogonal tensor. For a homogeneous incompressible nonlinearly isotropic elastic solid, the
elastic stored energy (defined per unit volume) depends on only two invariants,which are the principal invariants
of C (equivalently of B), defined by

I1 = tr(C) = λ21 + λ22 + λ23, I2 = 1

2

[
(trC)2 − tr(C2)

] = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3, (3)
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where λi > 0, i ∈ {1, 2, 3} are the principal stretches, i.e. the eigenvalues of U and V. The incompressibility
constraint may be written as

det F = 1, or λ1λ2λ3 = 1, (4)

equivalently in terms of F and the principal stretches, respectively.

2.1 Combined extension, inflation and torsion

We now consider a circular cylindrical tube, which, in terms of cylindrical polar coordinates (R, Θ, Z), is
defined by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L (5)

in the reference configuration Br, where A and B are the internal and external radii and L is the length of the
tube. The position vector X of a point of the tube is given by

X = RER + ZEZ , (6)

where ER and EZ are the unit basis vectors associated with R and Z , respectively. We also denote by EΘ the
corresponding unit vector associated with Θ .

The position vector x in the deformed tube is written

x = rer + zez, (7)

where we make use of cylindrical polar coordinates (r, θ, z) in B, which are associated with unit basis vec-
tors er , eθ , ez , respectively. The (isochoric) deformation consisting of axial extension, radial inflation and a
superimposed torsion is defined by

r =
√
a2 + λ−1

z (R2 − A2), θ = Θ + ψλz Z , z = λz Z , (8)

where λz is the (uniform) axial stretch of the cylinder, and ψ is the torsional deformation per unit deformed
length. Plane cross sections of the tube remain plane, and an initial radius at axial coordinate Z turns through
an angle ψz after axial extension. The deformed geometry of the tube is defined by

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l = λz L . (9)

For this deformation, the deformation gradient is calculated explicitly as

F = λr er ⊗ ER + λθ eθ ⊗ EΘ + λz ez ⊗ EZ + λzγ eθ ⊗ EZ , (10)

where we have defined γ as γ = ψr and λr , λθ and λz are the principal stretches in the radial, azimuthal and
axial directions prior to application of the torsion. In particular, λθ = r/R. Once the torsion is applied, λθ and
λz are no longer principal stretches. Nevertheless, the incompressibility constraint (4)2 becomes

λrλθλz = 1, (11)

which is independent of γ . In general, application of the torsion will change the geometry given by (9), but here
we fix the length of the tube during torsion at zero pressure and the internal radius is adjusted accordingly prior
to application of a pressure to ensure that the circular cylindrical configuration is maintained with appropriate
axial load and torsional moment. The deformation tensors (2) are calculated as

C = λ2rER ⊗ ER + λ2θEΘ ⊗ EΘ + λ2z (1 + γ 2)EZ ⊗ EZ

+ γ λzλθ (EΘ ⊗ EZ + EZ ⊗ EΘ),

B = λ2r er ⊗ er + (λ2θ + γ 2λ2z )eθ ⊗ eθ + λ2zez ⊗ ez

+ γ λ2z (eθ ⊗ ez + ez ⊗ eθ ). (12)

By referring to the expression for C above, the definition (3)1, (4)2 and (11), it may be deduced that the
principal stretches λ1, λ2, λ3, with a suitable ordering, can be taken to satisfy

λ1 = λr , λ2λ3 = λθλz, λ22 + λ23 = λ2θ + λ2z (γ
2 + 1). (13)
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3 Equilibrium and residual stress

Throughout this paper, we assume that there are no body forces present. The Cauchy stress σ and the nominal
stress S then satisfy the equilibrium equations

divσ = 0, DivS = 0, (14)

respectively, where div and Div are the divergence operators with respect to x ∈ B and X ∈ Br, respectively,
and are connected by σ = FS for the considered incompressible material. In the absence of intrinsic couple
stresses, σ is symmetric and hence (FS)T = FS. Appropriate traction boundary conditions should be imposed
on all or part of the boundary ∂B of B, equivalently on the boundary ∂Br of Br, but we do not specify these at
this point. We refer to [43] for possible options for general problems.

We now assume that the reference configuration Br is residually stressed, with the residual stress tensor
denoted by τ . In this configuration, S = σ = τ , i.e. there is no distinction between different measures of stress
since the deformation is measured from Br.

The source of τ does not concern us here. It may be associated with some prior material processing, plastic
deformation or manufacturing process, for example, and is assumed to be known. It arises in the absence of
body forces and surface tractions on the boundary ∂Br of the material body Br. It is also assumed that it is not
accompanied by intrinsic couple stresses, so that it is symmetric (τT = τ ) and therefore the rotational balance
equations are satisfied in Br as well as the equilibrium equation

Divτ = 0. (15)

Since there are no surface tractions, then, by definition, τ must also satisfy the boundary condition

τN = 0 on ∂Br. (16)

Note that τ is a residual stress in the sense of Hoger [33] and is distinguished from other types of initial
stress, which may be associated with surface tractions. We emphasize at this point that residual stresses are
necessarily non-uniform and geometry dependent, and the elastic response of a residually stressed material
body is therefore inhomogeneous.

For the considered circular cylindrical geometry, it is appropriate to assume that the only components of
residual stress are τRR, τΘΘ and τZ Z , i.e. there is no residual shear stress, an assumption that is compatiblewith
the boundary condition (16) that the residual stress must satisfy. However, the Z component of the equilibrium
equation and corresponding boundary conditions τZ Z = 0 on the ends of the (finite length) tube then ensure
that τZ Z ≡ 0. The remaining components, τRR and τΘΘ , can then be taken to depend only on R, and the
non-trivial component of the equilibrium equation (15) is the radial equation

dτRR
dR

+ 1

R
(τRR − τΘΘ) = 0, (17)

with accompanying boundary conditions from (16):

τRR = 0 on R = A, B. (18)

Note that if τRR is known, then τΘΘ is determined by (17) as d(RτRR)/dR.

4 Constitutive laws

For a homogeneous incompressible elastic solid, the strain energy is a function only of the deformation gradient
F, and we write the strain-energy function as W (F) per unit volume, although, by objectivity, W depends on
F only through the right Cauchy–Green tensor C defined in (2). The Cauchy and nominal stress tensors σ and
S are given by

σ = F
∂W

∂F
− pI, S = ∂W

∂F
− pF−1, (19)

where p is a Lagrange multiplier associated with the incompressibility constraint (4)1 and I is the identity
tensor in B.
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When the material is residually stressed, then it is also inhomogeneous. We consider its response still to
be elastic relative to Br, with dependence on X through τ (X), and we account for this by including τ in the
argument of W . Thus, we write

W = W (F, τ ). (20)

Note that this is automatically objective since τ is unaffected by rotations in the deformed configuration B and
W depends on F only via C = FTF.

We also note that if the material has no intrinsic preferred directions in Br other than those associated with
τ (its eigenvectors), then the elastic properties of the material relative to Br are anisotropic, i.e. τ has an effect
on the constitutive law analogous to that of a structure tensor associated with preferred directions. We shall
elaborate on this point shortly.

The presence of τ does not affect the formula (19)1 for the Cauchy stresses except by the dependence of
W on τ . It given by

σ = F
∂W

∂F
(F, τ ) − pI. (21)

When F = I this reduces to

τ = ∂W

∂F
(I, τ ) − p(r)I, (22)

where p(r) is the value of p inBr. Equation (22) imposes restrictions on the combination ofW and τ , restrictions
that will be made more explicit in the following subsection.

Any symmetric second-order tensor can be expressed in spectral form in terms of its eigenvalues and
eigenvectors. In particular, in terms of its eigenvalues, τ1, τ2, τ3 and (unit) eigenvectors M1, M2, M3, say, τ
can be written

τ = τ1M1 ⊗ M1 + τ2M2 ⊗ M2 + τ3M3 ⊗ M3, (23)

and when τ is included in W , each Mi ⊗ Mi , i = 1, 2, 3, has a role similar to a structure tensor associated
with a single preferred direction, as for a fibre-reinforced material (see, e.g., [44]). However, the Mi ⊗ Mi are
not all independent since they satisfy the identity

M1 ⊗ M1 + M2 ⊗ M2 + M3 ⊗ M3 = I, (24)

where I is the identity tensor in Br. Thus, τ generates invariants, which contribute to the independent variables
in the functional dependence ofW . In particular, by specializing τ to a rank-one tensor, say M⊗M, we recover
the invariants associated with transverse isotropy. We now consider an invariant formulation for W with the
invariants generated by C and τ .

4.1 Invariant formulation

With W written explicitly as W (C, τ ), it is clear that W is automatically objective. In the absence of any
intrinsic material symmetry, W is an isotropic function of the combination of the C and τ according to the
theory of Spencer [45] and must therefore satisfy the symmetry condition

W (Q∗CQ∗T, Q∗τQ∗T) = W (C, τ ), (25)

for all orthogonal Q∗ in Br. For an incompressible material, this is equivalent to the dependence of W on nine
invariants of C, τ and their combination. These are typically taken to be, for C,

I1 = trC, I2 = 1

2

[
(trC)2 − tr(C2)

]
, (26)

as for an isotropicmaterial (note that the third invariant I3 = det C is equal to 1 for an incompressiblematerial).
Similarly for τ (except that there is no counterpart for τ of the incompressibility constraint det C = 1),

I4 = {I41, I42, I43} ≡
{
trτ ,

1

2

[
(trτ )2 − tr

(
τ 2)] , det τ

}
, (27)
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which are collectively denoted I4. Then, we take the set of independent invariants involving the combination
of C and τ to be

I5 = tr(τC), I6 = tr(τC2), I7 = tr(τ 2C), I8 = tr(τ 2C2). (28)

Herewe have considered a specialization of the list of invariants given byHoger [34] for a transversely isotropic
material with residual stress, and also used in [46].

We emphasize that the above set of nine invariants, or an equivalent set of alternative invariants, forms a
complete set of invariants of C and τ in three dimensions. When the dimension of the considered problem is
reduced from three to two, such as for plane strain, the number of independent invariants is reduced, as detailed
in [41].

Wemay now regardW as a function of the above invariants. Thus,we takeW = W (I1, I2, I4, I5, I6, I7, I8),
and in the following we use the notation Wi = ∂W/∂ Ii , i = 1, 2, 5, 6, 7, 8. On evaluation of ∂ Ii/∂F, i =
1, 2, 5, 6, 7, 8, the Cauchy stress tensor (21) then expands out as

σ = 2W1B + 2W2(I1B − B2) + 2W5Σ + 2W6(ΣB + BΣ)

+ 2W7ΣB−1Σ + 2W8(ΣB−1ΣB + BΣB−1Σ) − pI, (29)

in which we have introduced the notation Σ = FτFT for the Eulerian tensor which is the push forward of τ
from Br to B. We also recall that B = FFT is the left Cauchy–Green tensor.

The invariants of τ are not affected by the deformation, while in the configuration Br, the other invariants
reduce to

I1 = I2 = 3, I5 = I6 = trτ , I7 = I8 = tr(τ 2). (30)

By evaluating (29) in Br, we obtain the specialization of (22) in the form

τ = (2W1 + 4W2 − p(r))I + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ
2, (31)

where all Wi , i ∈ {1, 2, 5, 6, 7, 8}, are evaluated for the invariants given by (30). Thus, following [35], we
obtain the residual stress-dependent restrictions

2W1 + 4W2 − p(r) = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0, (32)

on the strain-energy function in Br, where again the Wi are evaluated in Br.

5 Application to combined extension, inflation and torsion

For the considered deformation, with C given by (12)1 and residual stress components τRR and τΘΘ , the
invariants are given by

I1 = λ2r + λ2θ + λ2z (1 + γ 2), I2 = λ2θλ
2
z + λ2rλ

2
z (1 + γ 2) + λ2rλ

2
θ ,

I41 = τRR + τΘΘ, I42 = τRRτΘΘ, I43 = 0,

I5 = λ2r τRR + λ2θ τΘΘ, I6 = λ4r τRR + λ2θ (λ
2
θ + γ 2λ2z )τΘΘ,

I7 = λ2r τ
2
RR + λ2θ τ

2
ΘΘ, I8 = λ4r τ

2
RR + λ2θ (λ

2
θ + γ 2λ2z )τ

2
ΘΘ. (33)

They depend on just three independent deformation variables, which we take as λθ , λz and γ , together with
τRR and τΘΘ, λr being given by the incompressibility condition (11) in terms of λθ and λz . We therefore write
the strain energy as a function of these variables, specifically Ŵ (λθ , λz, γ, τRR, τΘΘ), which is defined by

Ŵ (λθ , λz, γ, τRR, τΘΘ) = W (I1, I2, I4, I5, I6, I7, I8), (34)

with I1, I2, I4, I5, I6, I7, I8 given by (33).
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Then, a straightforward calculation using the appropriate specialization of the components of the Cauchy
stress in (29), the expression for B in (12) and the component matrix of Σ = FτFT, which has the diagonal
form diag[λ2r τRR, λ2θ τΘΘ, 0], leads to the compact formulas

σθθ − σrr = λθ

∂Ŵ

∂λθ

+ γ
∂Ŵ

∂γ
, σθ z = ∂Ŵ

∂γ
,

σzz − σrr = λz
∂Ŵ

∂λz
− γ

∂Ŵ

∂γ
, (35)

with σrθ = 0 and σr z = 0. These formulas are the same as those for a fibre-reinforced material with a
single family of fibres except that in that case σrθ and σr z are in general nonzero [20], although the content is
different since Ŵ is different—it involves residual stress instead of the transverse isotropy associated with a
single preferred direction. By default, these formulas also apply in the isotropic case, which is recovered by
setting the residual stress to zero.

5.1 Equilibrium and boundary loads

Since λz is a constant and λθ and γ depend only on r (equivalently R) while σrθ = σr z = 0, the equilibrium
equation (14)1 reduces to just one scalar equation, namely

r
d

dr
(σrr ) + σrr − σθθ = 0, (36)

which can be integrated to give

σrr − σrr (a) =
∫ r

a
(σθθ − σrr )

dr

r
, (37)

where σrr (a) is the value of the radial stress σrr on the boundary r = a.
We now consider the situation in which the inner surface r = a is subject to a pressure P and no traction

is applied on r = b. Then σrr (a) = −P and σrr = 0 on r = b, and, with the help of (35)1, Eq. (37) becomes

P =
∫ b

a

(

λθ

∂Ŵ

∂λθ

+ γ
∂Ŵ

∂γ

)
dr

r
. (38)

The resultant moment M on any cross section of the tube is given by

M =
∫ b

a

∫ 2π

0
σθ zr

2 dr dθ = 2π
∫ b

a

∂Ŵ

∂γ
r2 dr, (39)

where the expression (35)2 has been used.
The resultant axial load N on any cross section is given by

N =
∫ b

a

∫ 2π

0
σzzr dr dθ = 2π

∫ b

a
σzzr dr. (40)

On use of (36)1, the boundary values of σrr , and (35), this leads to an expression for the so-called reduced
axial load F , which is defined as the total axial load N on the ends of a tube with closed ends reduced by the
contribution of the pressure P . This is given by

F ≡ N − πa2P = π

∫ b

a

(

2λz
∂Ŵ

∂λz
− λθ

∂Ŵ

∂λθ

− 3γ
∂Ŵ

∂γ

)

r dr. (41)

The above formulas for P, M and F are the same formulas as for an isotropic material or for a transversely
isotropic material [20], but, as for (35), the content is different.

We also note that, since γ = ψr , then, by Eq. (39), (41) can be written as

F = π

∫ b

a

(

2λz
∂Ŵ

∂λz
− λθ

∂Ŵ

∂λθ

)

r dr − 3

2
ψM. (42)
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6 Two simple models with residual stress

The dependence of material properties on residual stress and, in general, the character of residual stress is
not well understood, particularly in the case of soft materials such as elastomers and biological tissues. Some
information is obtainable from the opening angle method, but it is qualitative rather than reliably quantitative.
For these reasons, it is inappropriate to adopt a very general constitutive law that includes all the invariants
that depend on the residual stress. Indeed, it suffices to illustrate the effect of residual stress on the solution of
boundary-value problems by considering prototype strain-energy functions that depend on the residual stress
in the simplest possible way.

We therefore restrict attention to strain-energy functions that consist of a basic neo-Hookean isotropic
energy function supplemented by a term linear in either I5 or I6, and hence linear in τ . Thus, we consider the
strain-energy functions defined by

W = 1

2
μ(I1 − 3) + 1

2
(I5 − trτ ) (43)

and

W = 1

2
μ(I1 − 3) + 1

4
(I6 − trτ ), (44)

where μ (>0) is a constant, which corresponds to the shear modulus in the undeformed configuration of a
neo-Hookean (isotropic) material. The second term is the strain energy associated with the residual stress and
we have taken account of the restriction (32)2. The invariants I1, I5 and I6 are given by (33). Both models
were used in [41]. The former is a particular case of a model quadratic in I5 − trτ used in [35] and [37] and
was also adopted in [42].

The expression (29) for the Cauchy stress simplifies to

σ = μB + Σ − pI, σ = μB + 1

2
(ΣB + BΣ) − pI, (45)

respectively, for these two energy functions, so that the residual stress is accounted for in somewhat different
ways. The components of σ can be read off by using the expressions for B given in (12) and the components
of Σ given just above Eq. (35), but the separate components are not needed here. Only the expressions derived
from (35) are required.

In conjunction with these models, it suffices to adopt a specific form of the residual stress component τRR
that satisfies the boundary conditions (18). We therefore choose the simple form

τRR = α(R − A)(R − B), (46)

and hence, from (17), τΘΘ is given by

τΘΘ = α[3R2 − 2(A + B)R + AB], (47)

where α is a constant which defines the strength of the residual stress. Note that τRR < 0 (>0) if α > 0 (<0)
and that the mean value of τΘΘ through the thickness of the tube vanishes.

In Fig. 1, representative plots of τ̄RR = τRR/α and τ̄ΘΘ = τΘΘ/α are shown as functions of R∗ = R/A for
four different values of η = B/A. We observe, in particular, that for η = 1.2 in Fig. 1a, a value appropriate for
arterial walls, the plots are very similar to those arising from the opening angle method (see, for example, [27]).
Typical values of η for the examples of arteries considered in Holzapfel et al. [25] are in the range 1.2–1.5.
Note the changes in the magnitude and the character of τ̄ΘΘ as the wall thickness increases. In particular, it
develops a minimum.

Bearing in mind the expressions (38), (39) and (42) for P, M and F , respectively, we obtain for (43)

λθ Ŵλθ = μ(λ2θ − λ−2
θ λ−2

z ) + λ2θ τΘΘ − λ−2
θ λ−2

z τRR,

λz Ŵλz = μ[(1 + γ 2)λ2z − λ−2
θ λ−2

z ] − λ−2
θ λ−2

z τRR,

Ŵγ = μγλ2z , (48)
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Fig. 1 Plots of τ̄RR = τRR/α (dashed curves) and τ̄ΘΘ = τΘΘ/α (continuous curves) versus R∗ = R/A for different values of
η = B/A: a 1.2; b 2; c 3; d 4

and for (44)

λθ Ŵλθ = μ
(
λ2θ − λ−2

θ λ−2
z

)
+ (

λ4θ + 1
2γ

2λ2θλ
2
z

)
τΘΘ − λ−4

θ λ−4
z τRR,

λz Ŵλz = μ
[
(1 + γ 2)λ2z − λ−2

θ λ−2
z

]
+ 1

2γ
2λ2θλ

2
zτΘΘ − λ−4

θ λ−4
z τRR,

Ŵγ = μγλ2z + 1
2γ λ2θλ

2
zτΘΘ. (49)

For each of the two models, we give results for P, M and F in the dimensionless forms P∗, M∗ and F∗
defined by

P∗ = P

μ
, M∗ = M

πμA3 , F∗ = F

πμA2 , (50)

and we also define the dimensionless quantities

η = B/A, ψ∗ = ψ A, α∗ = αA2/μ, λa = a/A, e = λ2aλz − 1. (51)

It is convenient to write

P∗ = P∗
0 + P∗

i , M∗ = M∗
0 + M∗

i , F∗ = F∗
0 + F∗

i , (52)

where i = 5 and 6 for (43) and (44), respectively, the terms with the zero subscript corresponding to the results
without residual stress.

The integrals in (38), (39) and (42) can all be evaluated explicitly and give (after some detailed but
elementary calculations)

P∗
0 = −1

2
λ−1
z log

[
η2 + e

η2(1 + e)

]
+ 1

2
λ−1
z

(η2 − 1)e

(η2 + e)(1 + e)
+ 1

2
λzψ

∗2(η2 − 1),

P∗
5 = −1

2
λ−1
z α∗η log

[
η2 + e

η2(1 + e)

]
+ α∗λ−1

z e log

[
η2 + e

1 + e

]

− 3

2
α∗λ−1

z (η + 1)e1/2 tan−1
[
(η − 1)e1/2

η + e

]
,
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P∗
6 = α∗λ−2

z [η + 3e + λ2zψ
∗2ηe] log η − 3

2
α∗λ−2

z
(η2 − 1)e

η

+ 1

12
α∗ψ∗2(η2 − 1)[(η − 1)2 − 6e] − 1

2
α∗λ−2

z (η − 3e) log

[
η2 + e

1 + e

]

− 1

8
α∗λ−2

z
(η2 − 1)(η + e)e

(η2 + e)(1 + e)
− 15

8
α∗λ−2

z (η + 1)e1/2 tan−1
[
(η − 1)e1/2

η + e

]
, (53)

M∗
0 = 1

2
ψ∗(η2 − 1)(2e + η2 + 1), M∗

5 = 0,

M∗
6 = 1

60
ψ∗α∗λ−1

z (η2 − 1)[3(η − 1)2(2η2 + η + 2) + 10(η − 1)2e − 30e2]
+ ψ∗α∗λ−1

z ηe2 log η, (54)

and

F∗
0 = −1

2
ψ∗M∗

0 + (η2 − 1)(λz − λ−2
z ) + 1

2
λ−2
z e log

[
η2 + e

η2(1 + e)

]
,

F∗
5 = 1

2
α∗λ−2

z ηe log

[
η2 + e

η2(1 + e)

]
− 1

2
α∗λ−2

z e2 log

[
η2 + e

1 + e

]

+ α∗λ−2
z (η + 1)e3/2 tan−1

[
(η − 1)e1/2

η + e

]
,

F∗
6 = 3

2
α∗λ−3

z
(η2 − 1)e2

η
− 3

2
α∗λ−3

z e2 log

[
η2(η2 + e)

1 + e

]
− ψ∗M∗

6

+ α∗λ−3
z ηe log

[
η2 + e

η2(1 + e)

]
+ 5

2
α∗λ−3

z (η + 1)e3/2 tan−1
[
(η − 1)e1/2

η + e

]
. (55)

For a solid cylinder, obtained by taking the limit A → 0 (and a → 0), the deformation (8)1 reduces to
r = λ

−1/2
z R and hence λr = λθ = λ

−1/2
z (the deformation corresponds to that associated with simple tension),

and hence e = 0, we obtain for the model (43) the classical results for a neo-Hookean material (see [15], in
which results were given for the Mooney–Rivlin material):

M0 = 1

2
πμψB4, F0 = πμ

(
λz − λ−2

z

)
B2 − 1

2
ψM0. (56)

The residual stress does not affect these results (M5 = F5 = 0).
On the other hand, for the model (44), we obtain for a solid cylinder M = M0 + M6, F = F0 + F6, where

M6 = 1

10
παψλ−1

z B6, F6 = −ψM6. (57)

Thus, the residual stress does have an influence in this case. The latter results agree with those obtained in [41]
for a solid cylinder. The notation Awas used instead of B and λ instead of λz in equations (82) and (84) of [41],
and the α therein has the opposite sign to that used here. Moreover, λ−2 instead of λ−1 appeared incorrectly
in the expressions involving A6 in [41].

In the following, we provide numerical results to illustrate the dependence of P∗, M∗ and F∗ on e, which is
a measure of the radial expansion of the tube for a given axial stretch λz , for various fixed values of η, λz, ψ∗
and α∗.

6.1 Numerical results

First, since M∗ is proportional to ψ∗, we plot M∗/ψ∗ versus e for M∗ = M∗
0 + M∗

6 based on Eq. (54), noting
that M∗

5 = 0. In Fig. 2, M∗/ψ∗ is shown as a function of e for λz = 1, for four values of η with α∗ = 3, 0,−3
in each case, while in Fig. 3 M∗/ψ∗ is shown as a function of e for λz = 1, for η = 1.7 and for four separate
sets of values of α∗. Note that e = λ2aλz − 1 captures dependence on the radius, through λa , and, in general,
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Fig. 2 Plots of M∗/ψ∗ versus e for λz = 1 and α∗ = 3, 0, −3 (continuous, thick continuous and dashed curves, respectively)
with the following values of η: a 1.3; b 1.7; c 2.1; d 2.5
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Fig. 3 Plots of M∗/ψ∗ versus e for λz = 1 and η = 1.7 with the following values of α∗: a 1, 0, −1; b 3, 0, −3; c 5, 0, −5;
d 10, 0, −10, corresponding in each panel to the continuous, thick continuous and dashed curves, respectively

the axial stretch λz , and that results in the absence of residual stress correspond to α∗ = 0. In the latter case,
M∗/ψ∗ is linear in e, as is clear from the thick continuous lines in Figs. 2 and 3, but depends strongly on the
tube thickness via η.

In Fig. 2, we see that M∗/ψ∗ increases with the thickness of the tube for positive α∗, develops a maximum
and, for sufficiently large e, would become negative, so that M∗ and ψ∗ have opposite signs. Thus, according
to the model (44), increasing inflation counteracts the effect of torsion and ultimately reverses it. On the other
hand, for negative α∗, M∗/ψ∗ becomes negative for small e when the tube thickness is sufficiently large.
A similar trend can be seen in Fig. 3 with increasing magnitude of α∗ at a fixed value of the tube thickness.
These results suggest, intuitively, that the predictions of the model (44) run counter to physical expectations
for residual stresses beyond a certain magnitude. This is consistent with the requirements of strong ellipticity
considered in Sect. 7, which impose restrictions on the possible range of values of α∗.
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Fig. 4 Plots of P∗ = P∗
0 + P∗

5 versus e for λz = 1 and η = 1.5, with the following values of ψ∗: a 0; b 0.5; c 1; d 1.5. In each
case, the continuous, thick continuous and dashed curves correspond to α∗ = 5, 0, −5

Results for M∗ itself can, of course, be read off from these graphs for any given value of ψ∗. Note that the
differences between the results for the different values of α∗ in Fig. 2 increase with the thickness of the tube,
while for a fixed tube thickness in Fig. 3, the differences in the curves for the three values of α∗ in each panel
increase with the magnitude of α∗, and a maximum develops as positive α∗ increases. Thus, in summary, the
effect of the residual stress is greater for thick than for thin tubes, and, not surprisingly, the material response
in torsion is more affected by a large residual stress than by a smaller one.

Note that λz appears in M∗
6 only as a factor λ−1

z and therefore does not have a significant influence on the
behaviour of M∗

6 . On the other hand, λz does not appear explicitly in M∗
0 . Nevertheless, as our calculations

have shown for a series of values of λz , the inclusion of λz �= 1 in M∗ does not affect the qualitative features
of Figs. 2 and 3, and we do not therefore include separate plots of M∗ for λz �= 1. A change in λz has only a
minor numerical influence on M∗, and the results for λz = 1 are intermediate between those for λz > 1 and
λz < 1.

We have found that this is also the case for P∗ and F∗, and we therefore illustrate the results for P∗ and
F∗ by setting λz = 1.

We recall thatM∗
5 does not depend on the residual stress, whileM

∗
6 does. By contrast, P

∗
5 and F∗

5 do depend
on the residual stress, as do P∗

6 and F∗
6 . In the following, therefore, we illustrate the behaviour of both P∗ and

F∗ in each case. First, in Fig. 4, for the representative value η = 1.5 of the tube thickness ratio, P∗ = P∗
0 + P∗

5
is plotted against e for four different values of the torsional strain ψ∗, with α∗ = −5, 0, 5 in each case. The
plots in Fig. 4a correspond to pure inflation (ψ∗ = 0). For a nonzero value of ψ∗, the curves start at e < 0
because, when a torsion is applied at zero pressure e decreases, i.e. the (inner) radius of the tube decreases.
Without residual stress (α∗ = 0), the curves correspond to the well-known neo-Hookean behaviour. When
residual stress is present, the behaviour is qualitatively similar, a positive (negative) α∗ reducing (increasing)
the pressure required to achieve a given inflation but the pressure increases to a finite asymptotic value in each
case. The difference in the results for α∗ = 0 and α∗ �= 0 is most pronounced for small ψ∗ and decreases as
ψ∗ increases. Increasing torsion causes the pressure response to be stiffer, i.e. for a larger ψ∗, a larger P∗ is
required to produce a given value of e.

Next, in Fig. 5, we plot P∗ = P∗
0 + P∗

6 against e for the same η and ψ∗ but a smaller α∗. For a negative
value of α∗, the pressure increases monotonically with e, so the residual stress in this case might be considered
to have a stabilizing influence. On the other hand, a positive α∗ causes the pressure to have a maximum, which
then reduces to zero and becomes negative. This is physically unrealistic and therefore suggests that the model
(44) is limited to relatively small values of e when α∗ > 0. As with Fig. 4, for a larger ψ∗, a larger P∗ is
required to produce a given value of e.
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Fig. 6 Plots of F∗ = F∗
0 + F∗

5 versus e for λz = 1 and η = 2.5 with the following values of ψ∗: a 0; b 0.5; c 1; d 1.5. In each
case, the continuous, thick continuous and dashed curves correspond to α∗ = 1, 0, −1

We now illustrate the behaviour of the reduced axial load in the dimensionless form F∗, noting that F∗ is
required to maintain the axial length of the tube with λz = 1 when it is subject to torsion and internal pressure.
In Fig. 6, F∗ = F∗

0 + F∗
5 is plotted against e. The curves start on the left at a value of e corresponding to zero

pressure, and the four panels correspond to different values of the applied torsional strain ψ∗. As for P∗, the
residual stress has a significant effect for small torsion but less so as the magnitude of the torsion increases.
In each case, F∗ is negative so the tube would extend under the combined pressure and torsion if it were free
to do so without the application of F∗, a negative value of which is required to prevent an increase in λz . The
magnitude |F∗| increases with the magnitude of the torsion ψ∗.
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Fig. 7 Plots of F∗ = F∗
0 + F∗

6 versus e for λz = 1 and η = 2.5 with the following values of ψ∗: a 0; b 0.5; c 1; d 1.5. In each
case, the continuous, thick continuous and dashed curves correspond to α∗ = 1, 0, −1

The behaviour shown in Fig. 6 has some similarities with that for a fibre-reinforced tube under inflation
and torsion. For example, for a neo-Hookean material supplemented by the standard reinforcing model and
radial reinforcement, F∗ becomes negative as e increases, although it is positive as inflation begins and then
reaches a maximum before monotonically decreasing; see, for example, El Hamdaoui et al. [20] for discussion
of the present problem for fibre-reinforced materials.

Plots of F∗ = F∗
0 + F∗

6 are shown in Fig. 7 for the same values of all the parameters as in Fig. 6. The
behaviour shown here is generally quite different from that shown in Fig. 6 when residual stress is present. For
ψ∗ = 0, for example, a positive α∗ leads to a positive F∗, even for small values of e (for which the P∗ results
are realistic), while for negative α∗ the behaviour of F∗ is qualitatively similar to that shown in Fig. 6, although
numerically somewhat different. This changes significantly as ψ∗ increases, when, for positive α∗, F∗ is
negative as inflation begins but then decreases to a minimum as e increases and ultimately becomes positive.
On the other hand, for negative α∗, F∗ is slightly positive for small e, reaches a maximum and then quickly
becomes negative and monotonically decreasing as e increases. The qualitative features in Fig. 7 remain as the
magnitude of α∗ increases, but, interestingly, our calculations show that for larger positive α∗, F∗ in Fig. 6a
is positive and monotonically increasing with e, as in Fig. 7a.

7 Concluding remarks

It should be emphasized that the results highlighted in the previous section are for very simple models of
elasticity incorporating residual stress. These simple models may not be truly representative of the effect
of residual stress, but, at present, there are not adequate quantitative data available to inform or justify the
development of more elaborate models.

It is clear from the illustrations that the considered residual stress can have a significant effect on the
elastic response of a tube, in some cases improving performance but in other examples weakening the material
response, possibly destabilizing the material and leading to counterintuitive and what might be considered
unphysical behaviour. A thorough analysis of the influence of residual stress on stability is needed, but is
beyond the scope of the present work.

We do, however, provide a brief analysis of strong ellipticity here since it is a local concept that can be
applied to the models (43) and (44) themselves without reference to the geometry of the considered problem.
For an incompressible material, the strong ellipticity condition has the form

[Q(n)m] · m > 0 for all nonzero vectors m and n such that m · n = 0, (58)



172 J. Merodio, R. W. Ogden

where Q(n) is the acoustic tensor, which is given, in Cartesian components, by Qi j (n) = Apiq j n pnq (with
summationover indices p andq from1 to3),Apiq j being the components of the elasticity tensor. For a residually
stressed material, the latter components were given in [35], and in general, the component expressions are very
lengthy and therefore not reproduced here. We focus on the specializations of the strong ellipticity condition
for the models (43) and (44). First, for (43), the strong ellipticity condition obtained by using the expression
for Apiq j in [35] is independent of m and has the form

μ(Bn) · n + (Σn) · n > 0, n �= 0. (59)

For the considered deformation and residual stress, this specializes to

(μ + τRR)λ2r n
2
r + (μ + τΘΘ)λ2θn

2
θ + μλ2z (γ nθ + nz)

2 > 0, (nr , nθ , nz) �= (0, 0, 0), (60)

where (nr , nθ , nz) are the components of n. Necessary and sufficient conditions for (60) to hold are simply

μ + τRR > 0, μ + τΘΘ > 0, (61)

independently of the deformation.
For the specific forms of τRR and τΘΘ given in (46) and (47) with R ∈ [A, B], the strong ellipticity

inequalities

− 1

η(η − 1)
< α∗ <

3

1 − η + η2
(62)

may be deduced, where we recall that η = B/A and α∗ = αA2/μ. For η = 1.5, we obtain−4/3 < α∗ < 12/7,
which corrects the inequalities (59) given in [41]. Note that the α∗ here corresponds to the notation −ᾱ used
in [41]. For a solid cylinder (A → 0), the inequalities (62) reduce to −μ < αB2 < 3μ.

For the model (44), the counterpart of (59), obtained from the formula in [35], is

μ(Bn) · n + (ΣBn) · n + (Σm) · n(Bm) · n

+ 1

2
[(Σn) · n(Bm) · m + (Σm) · m(Bn) · n] > 0, (63)

with m · n = 0, m �= 0, n �= 0. This depends in a relatively complicated way on the deformation, and it is
not possible to extract simple necessary and sufficient conditions in general in this case. When evaluated in
the reference configuration, however, necessary and sufficient conditions are found to be

μ + 1

2
(3τRR + τΘΘ) > 0, μ + 1

2
(τRR + 3τΘΘ) > 0. (64)

Again using the specific forms of τRR and τΘΘ given in (46) and (47), restrictions on the parameters α∗ and
η that guarantee strong ellipticity are obtained as

− 2

3

1

η(η − 1)
< α∗ <

80

49(η + 1)2 − 160η
, (65)

which are more restrictive than (62). For a solid cylinder, these become −2μ/3 < αB2 < 80μ/49.
Some values of α∗ used for illustration in the previous section are outside the ranges of values appropriate

for satisfaction of the strong ellipticity inequalities above, but for values within these ranges, the behaviour is
similar qualitatively.
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