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Abstract We illustrate a numerical tool for analyzing plane arches such as those frequently used in historical
masonry heritage. It is based on a refined elastic mechanical model derived from the isogeometric approach. In
particular, geometry and displacements are modeled by means of non-uniform rational B-splines. After a brief
introduction, outlining the basic assumptions of this approach and the corresponding modeling choices, several
numerical applications to arches, which are typical of masonry structures, show the performance of this novel
technique. These are discussed in detail to emphasize the advantage and potential developments of isogeometric
analysis in the field of structural analysis of historical masonry buildings with complex geometries.

Keywords Masonry arches · NURBS · Isogeometric analysis · Curved Timoshenko beam

1 Introduction

In the last ten years, the so-called isogeometric approach was largely applied to various field of the mechanics.
Starting from the seminal work [1], many extensions are contained in [2] and [3] and concern a wide range
of problems such as vibrations and wave propagations, nearly incompressible solids, fluids, fluid-structure
interaction. Isogeometric approach generalizes some ideas already used both in finite elements, see [4–7], and
boundary elements [8,9] which use 2nd-order spline interpolation for displacements for finite elements and
displacements and tractions for boundary elements.

The advantages of the isogeometric approach with reference to classical finite elements lie basically in
the use of the same tools adopted by computer aided design (CAD), computer aided engineering (CAE) and
computer aided manufacturing (CAM) and in the ability to represent in an exact way conic sections such as
circles and ellipses. To better understand this issue, most software packages currently used for architectural
design are precisely based on such CAD techniques. Hence, the ability to perform structural analyses on the
same model used for design is extremely appealing. Up to now, however, researchers have concentrated most of
their efforts on 2-D and 3-D continuum models or on shell-like structures [10–12]. Only recently some papers
on 1-D problem appeared, even though they were particularly concerned on locking control, see [13–18].
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This suggests us to develop a curved Timoshenko beam element based on NURBS interpolation both for
geometry and displacements. In [20], some details about the accuracy, the convergence and the computational
cost of this approach are reported. Here, the focus is on technical examples which are meaningful from the
architectural point of view. Some of them are inspired by famous historical building and are used to show the
main features of the proposed approach. In particular, we investigate deformations and stresses in masonry
arches. The presented results descend from the numerical simulation produced by the proposed theoretical
model. Of course, the correspondence of such results to the behavior of existing structures (detected by means
of field tests) can only be ascertained a posteriori. Therefore, based on a thrust line approach the presented
method is used for a preliminary study on the stability of masonry structures. We highlight that buckling
problem is not considered in this paper. Interested readers can found some insights in [21–24] and the papers
cited therein.

The paper is organized as follows. First, we discuss, Sect. 2, the principal guidelines of the NURBS
interpolation and the basic key points to build a mechanical model based on the isogeometric approach.
Successively, some numerical results are presented and discussed in Sect. 3 to assess the performances of this
numerical model. Finally, in Sect. 4, there are some concluding remarks and future developments.

2 Isogeometric model of plane curved beams with shear stiffness

Non-Uniform Rational B-Spline (NURBS) curves have been largely used in CAD, CAM and CAE for some
decades. They constitute a smart way to construct lines, surfaces and solids which are somehow smooth.
Essentially, the heart of the technology is based on the so-called Bézier curves (which take their name from
this French engineer, working in the automotive industry Renault, who used them for the first time to design
the shape of a car body) and have been precisely defined in 1959 by de Casteljau’s recursive algorithm. By
referring the interested reader to the specialized book [25] for an extended discussion of NURBS, both from
theoretical and algorithmic point of view, here only the main key points will be outlined.

The starting point is the definition of a polynomial curve of order n by means of n + 1 control points
which define the so-called control polygon, see Fig. 1. The most important characteristic of these curves
is the invariance for affine transformation: Each isometric transformation, such as translation, rotation and
reflection, can be applied to the curve simply applying it to the control points. The peculiar drawback of Bézier
idea is the global nature of the interpolation: modifying one single control point changes the entire curve. This
disadvantage is overcome by the B-spline concept: the curve is obtained joining several Bézier curves and
preserving the desired continuity. As a consequence, each control point modifies only a part of the whole curve.
However, B-splines cannot exactly represent circles or ellipses and, furthermore, they are non-invariant under
a projective transformation. Conversely, NURBS, besides being invariant under projective transformations,
are able to represent exactly conic sections, even those different from a parabola. This, in practice, is realized
by assigning to each control point a weight which is able to attract the curve or to push it away with respect
to the control point, as it is outlined in Fig. 1.

Fig. 1 NURBS basics: control points (•), control polygon, curve and control point weights influence
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Fig. 2 B-spline bases up to 2nd order (on the abscissae there are knot indexes)

ξ0 1

Fig. 3 NURBS basics: element subdivision and knots (�)

The keystone to build the numerical model is the NURBS representation of a curve. By referring to [25] for
a systematic exposition on this issue, here, we recall only the bases useful to construct the numerical model.
We say that a curve x has a p-degree NURBS representation when there exist n ∈ N, control points Pi ∈ R

3,
weights gi ∈ R, i = 1, . . . , n, and a knot vector, i.e., a set � = {

0 = ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1 = 1
}

such that,
for any ξ ∈ [0; 1]:

x(ξ) =
n∑

i=1

Ri,p(ξ)Pi , (1)

where the NURBS basis {Ri,p(ξ)} can be expressed as:

Ri,p(ξ) = Bi,p(ξ)gi∑n
i=1 Bi,p(ξ)gi

, (2)

in terms of B-splines bases {Bi,p(ξ)} defined by the Cox-De Boor recursive formula (see also Fig. 2 for their
graphical representation up to 2nd order):

Bi,0(ξ) =
{

1
0

if ξi ≤ ξ < ξi+1
otherwise , (3)

Bi,p(ξ) = ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (4)

The so-called knot vector � defines a partition of the parameter space [0; 1] similar to the classic finite
element subdivision, see Fig. 3. Non-uniform knot vectors and repeated knots are the key ingredients of
NURBS flexibility and produce refined geometric descriptions. Weights gi related to i th control point enlarge
the capabilities of the B-splines interpolation allowing also an exact representation of conic sections, see again
Fig. 1.

Among all the properties of NURBS interpolations, the most interesting is the high degree of continuity.
More precisely, each pth order function is of class C p−1, i.e., it is continuous with its derivatives up to the
(p− 1)th order, and in particular, it is smooth on the inter-element boundaries (knots), but not on the NURBS
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Fig. 6 Plane curved beam: centroid line and reference systems

boundaries (patch). However, if necessary, continuity degree can also be lowered by using repeated knots, see
Figs. 4 and 5.

NURBS tools can be used to efficiently describe the geometry of a wide range of curves both in 2-D and
3-D. In order to build our numerical model, now we consider a curved plane beam (see Fig. 6) whose centroid
line is a plane curve parametrized by the arc-length s ∈ [0; �]. We suppose also that one of the principal inertia
axis and the shear center of the cross-section lie in the same plane. Let the global reference system be denoted
by (O; x1, x2) and the local one by (o; t , r ), t and r being, respectively, the tangent and the normal unit vectors
to the curve. Moreover, we denote by R the curvature radius and by (·)′ the derivatives with respect to the
arc-length s. With this notation, the differential form of equilibrium and kinematic compatibility equations
describing the curved Timoshenko plane beam problem in the local reference system are:

N ′ − T

R
+ qt = 0, T ′ + N

R
+ qr = 0, M ′ − T + m = 0, (5)

ε = u′ − w

R
, γ = w′ + u

R
+ ϕ, χ = ϕ′ . (6)

Here, N , T and M denote the generalized stresses (axial and shear force and bending moment, see Fig. 6 for
the definition of positive quantities) and qt , qr and m the generalized external forces per unit length (tangent
and radial forces and distributed couples). In the local reference system, u and w are the displacements of the
axis line and ϕ the section rotation while ε, γ and χ denote the generalized strains (axial, shear and curvature
bending).
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When the ratio h/R is small enough (h being the depth of the cross-section) the strain energy is practically
indistinguishably from that derived from de Saint-Venant approach for a straight beam:

φ = E Aε2 + E Iχ2 + GA∗γ 2. (7)

Here, the above-mentioned definition of the strain energy has been used, while a more complete discussion on
this topic will be presented in a forthcoming paper, see [19].

The curved beam problem can now be set in an equivalent variational formulation, such as the classical
principle of total potential energy, which is certainly more suitable for a solution strategy based on finite
elements:

arg min
u,w,ϕ

{
1

2

∫ �

0
φds −

∫ �

0
(qtu + qrw + mϕ)ds

}
. (8)

The main idea of the isogeometric approach is to exactly describe the geometry of the problem by NURBS
interpolation and to use the same interpolating basis to represent the generalized displacements:

u(ξ) ≈
n∑

i=1

Ri,p(ξ)ui , w(ξ) ≈
n∑

i=1

Ri,p(ξ)wi , ϕ(ξ) ≈
n∑

i=1

Ri,p(ξ)ϕi , (9)

by means of control points ui , wi , and ϕi .
Using the dot to denote the derivatives with respect to ξ and denoting by J the Jacobian of the transformation,

we have:

J = ṡ =
√
ẋ2

1 + ẋ2
2 , R = J 3

|ẋ1 ẍ2 − ẍ1 ẋ2| , (10)

thus, the generalized strains take the form:

ε = u̇

J
− w

R
, γ = ẇ

J
+ u

R
+ ϕ, χ = ϕ̇

J
. (11)

Finally, problem (8) can now be discretized as:

arg min
u,w,ϕ

{
1

2

ne∑

e=1

∫ ξe+1

ξe

φe Jdξ −
∫ ξe+1

ξe

(qtu + qrw + mϕ)Jdξ

}

. (12)

where ne is the number of subdivision of the parameter space. Enforcing (12) produces a linear system of
algebraic equations whose unknowns are the values of the control point parameters ui , wi and ϕi , which
completely define the deformed shape of the beam.

To set up the stiffness matrix and the load vector, it is necessary to evaluate some integrals. This task can
be performed numerically by using the Gauss quadrature rule, even if the integrand functions are somewhat
different from polynomials. Some guidelines about the number of Gauss points to be used for an efficient
quadrature, can be deduced from [3] and from [20].

3 Numerical results

Here, the numerical results which are relevant to some arches, having a sound architectural and technical
interest, are presented. For each arch, the deformed shape of the centroidal axis along with the diagrams of
axial, shear and bending stresses and strains and the thrust line (referred to the arch outline) are shown: All
these follow from an elastic analysis, where masonry is considered equally reacting to compressive and tensile
stresses. All computations have been performed assuming constant values for material parameters. However,
the code can deal with material parameters whose values are variable, provided their position dependence is
known.

It should be emphasized that according to Heyman’s safe theorem [26–28], an elastic analysis provides
acceptable results in term of the thrust line only if such line strictly lies within the strip enclosed between the
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Fig. 7 Graphical user interface of the Arch-NURBS code

intrados and the extrados; otherwise, a limit analysis explicitly accounting for the no-tension material nature
of masonry is required.

In general, therefore, the safety of an arch cannot be established by an elastic analysis only; however, if
an elastic analysis provides an acceptable thrust line, then this is sufficient to ensure that for the given load
condition the arch is safe. A deeper discussion of these and other issues for the assessment of the mechanical
response of historic masonry buildings can be found in [29] and in [30]. Different arch examples can be found,
instead, in [20]. There results are compared with analytical solutions and the output of other finite elements
already presented in technical literature.

For all numerical tests an ad hoc developed MATLAB code has been used, whose graphical user interface
is shown in Fig. 7. It is essentially based on NURBS algorithms reported in [25] (and later coded in a NURBS
library) and on the GeoPDEs library, see [31]. The code is able to treat both arches having one of the most usual
shapes, such as the circular, lancet, elliptic, parabolic one and arches whose geometry can be user-defined by
means of control points in a standard DXF format. Particularly, attention has been paid to the interface in order
to make simple each data modification allowing an easy use in a design process.

3.1 A circular arch

For the first test, one of the circular arches of the nave of Saint Saturnino church in Cagliari, Sardinia is
considered. Figure 8 shows a view of the church facade (a) and of the considered arch (b) which can be exactly
located from the plan (c) and the longitudinal cross-section (d) which are reported in the same figure.

The underlying St. Saturnino arch was accurately studied both from a geometric and mechanical point
of view. It is characterized by an inner radius Ri = 1.67 m, an outer radius Re = 2.03 m and a thickness
d = 0.70 m, see Fig. 9. It is formed by yellow limestone blocks whose properties are: Young’s modulus
E = 65 GPa and Poisson’s ratio ν = 0.1. A vertical uniformly distributed load qv = 243 kN/m, deriving for
an accurate load analysis, has been considered besides the dead load of the arch and of the spandrel. Both of
them are based on a mass-density ρ = 2,300 kg/m3.

In order to select the number of elements and the degree of the NURBS, we can look at some results
presented in [20]. It turns out, in particular that for a semicircular arch subjected to a vertical distributed
load, 16 elements of 4th order are sufficient to reduce to less than 0.1 % the error on the generalized stresses;
the error on displacements is, of course, much less, since the adopted model relies on a displacement-based
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Fig. 8 Church of Saint Saturnino, Cagliari (Sardinia): front view (a), circular arches (b), plan (c) and cross-section (d)

Ri

Re

qv

Fig. 9 Circular arch from the church of Saint Saturnino: the adopted structural scheme

formulation. Therefore, we use this mesh for the Saint Saturnino arch. Figure 10 reports a plot of the deformed
shape of the centroid line superimposed to the undeformed one (a) and generalized strains ε, γ and χ (b),
while Fig. 11 reports generalized stresses N , T and M (a) and the thrust line (b). From the analysis, we point
out that the vertical displacement of the keystone is 0.22 mm; the normal force N lies in the range −484.40 kN
≤ N ≤ −246.07 kN (i.e., it is always a compressive one); the shear force T varies between −246.69 and
246.69 kN and the bending moment is such that −79.045 kNm ≤ M ≤ 44.309 kNm. Finally, we note that the
thrust line lies always inside the region bounded by the intrados and the extrados of the arch.
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Fig. 10 Circular arch from the church of Saint Saturnino: displacements (a) and strains (b)

3.2 A lancet arch

We also consider a lancet arch typical of the gothic architecture such as, for example, one of those appearing
in the cloister of the Department of Architecture of the University of Cagliari, see Fig. 12a. The structural
scheme is reported in Fig. 12b. Geometry of the lancet is defined by the measured span s = 1.71 m and raise
r = 1.35 m. The rectangular cross-section has depth h = 0.4 m and thickness d = 0.4 m. For the yellow
limestone blocks, the assumed properties are: Young’s modulus E = 65 GPa and Poisson’s ratio ν = 0.1. A
vertical uniformly distributed load was evaluated by means of an accurate load analysis giving qv = 24 kN/m,
besides the dead load of the arch and of the spandrel which were both based on a mass-density ρ = 2,550 kg/m3

and 2,450 kg/m3, respectively.
With these data, the lancet arch was analyzed using a mesh of 32 NURBS elements of the 3rd order. This

choice descends, as it is usual, by a convergence analysis performed both on displacements and generalized
stresses taking into account only the dead load, for which an analytical solution exists, see [20]. Indeed, for
these mesh the error on the displacements is less than 0.0001 % while the errors on generalized stresses are
less than 0.4 %.

Figure 13 reports, in a graphical way, displacements (a) and generalized strains ε, γ and χ (b) while
Fig. 14 reports the generalized stresses N , T and M (a) and the thrust line (b). We underline a negligible
vertical displacement of the keystone, which is less 0.01 mm, a maximum compressive normal force equal to
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Fig. 11 Circular arch from the church of Saint Saturnino: stresses (a) and thrust line (b)
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Fig. 13 Lancet arch: displacements (a) and strains (b)

21.103 kN while the shear force varies between −6.159 and 6.159 kN. The bending moment lies in the range
between −1.1085 and 1.400 kNm. Finally, we note that the thrust line is really close to the centroid line, and
this shows how effective are, from the viewpoint of structural design, lancet arches in Gothic architecture.

3.3 A parabolic arch

The test is inspired by one of the arches sustaining the roof in the loft of Milà house (also known as “la
Pedrera”), one of the most famous creation by Gaudí, see Fig. 15a.

Following the descriptions of [32] and of [33] and referring to Fig. 15b for the structural scheme, the
geometric data used to study this arch are: R = 2.8 m and R′ = 2.9 m. For the constitutive parameters, we
have assumed those available in technical literature to brick masonry, i.e., Young’s modulus E = 30 GPa and
Poisson’s ratio ν = 0.15. The rectangular cross-section of the arch is assumed to be 0.50 m (depth) by 0.10 m
(thickness). The arch was analyzed for dead load and spandrel load based on a mass-density ρ = 1,800 kg/m3

and a vertical load qv = 50 kN/m. We remarks that these data are not derived from an accurate load analysis
but were only estimated.

A convergence analysis, not reported here for the sake of brevity, suggests the use of 4th order NURBS
and 16 finite elements.
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Fig. 14 Lancet arch: stresses (a) and thrust line (b)
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Fig. 15 Parabolic arch from Milà house: the arch (a) and the corresponding structural scheme (b)

Figure 16 reports, as before, a plot of displacements (a) and generalized strains ε, γ and χ (b) while Fig. 17
reports generalized stresses N , T and M (a) and the thrust line (b). In this case, we note that the maximum
value of the axial force is Nmax = −163 kN while shear force is practically negligible. The bending moment is
somewhat small, too. The thrust line runs close to the centroid line of the parabolic arch, as it is expected, since
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Fig. 16 Milà house arch: displacements (a) and strains (b)

the parabola is the funicular line for a uniformly distributed load along the projection of the span. Furthermore,
as indicated in Fig. 16, the displacements are small. Indeed, the maximum vertical component is about 0.05 mm.

It is somehow interesting to compare, for the same values of loads and mechanical properties, the behavior
of this parabolic arch with that of a circular arch having the same span. Figure 18 shows the generalized
stresses, (a), and the thrust line, (b), for the equal span circular arch. It is clear that although the axial force is
comparable in both cases, the shear force is now about fortyfold larger, while the bending moment, which is
about tenfold larger, produces a thrust line somewhat far from the centroid line. In particular, at the keystone
it lies out of the cross-section boundary.

3.4 An ogee arch

Finally, we consider the structural scheme of an ogee arch, like that depicted in Fig. 19, along with its
construction rules, based on four equal equilateral triangles which are completely defined by the main geometric
parameter R. The used data are R = 1 m and a rectangular cross-section having depth h = 0.3 m and
thickness b = 1 m. The material data are those corresponding to a typical sandstone, i.e., Young’s modulus
E = 65 GPa and Poisson’s ratio ν = 0.15. A concentrated load F = 20 kN applied at the keystone, a uniformly
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Fig. 17 Milà house arch: stresses (a) and thrust line (b)

distributed vertical load qv = 10 kN/m and a dead load corresponding to a mass-density ρ = 2,300 kg/m3 are
simultaneously acting on the arch.

For this problem, a reference solution is not available and so it was studied by means of a convergence
analysis, which ensured that results in terms of both displacements and generalized stresses are stable by using
8 elements based on 5th order NURBS on one-half of the arc, when symmetry is accounted for.

In Fig. 20, displacements (a) and generalized strains (b), and in Fig. 21, generalized stresses (a) and the
thrust line (b), for one-half of the ogee arch are, respectively, reported. From these plots, we observe that
the maximum value of the compressive axial force N is equal to 37.976 kN while that of the shear force T
(occurring at the impost) is 18.640 kN; the bending moment range goes from −1.7925 to 4.5413 kNm leaving
the thrust line close to the centroid line. Displacements are negligible, since the vertical component at the
keystone is less than 0.01 mm.

4 Concluding remarks

A quick tool for the elastic analysis of plane arches has been presented. The model is based on the isogeometric
approach and provides the full advantages that such kind of interpolation, both for geometry and displacements,
exhibits, viz. a high accuracy due to the refined representation of the geometry. Displacements, generalized
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Fig. 18 Circular arch having the same span (and subjected to the same load condition) as the parabolic arch of Milà house:
stresses (a) and thrust line (b)
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Fig. 19 Structural scheme of an ogee arch
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Fig. 20 Ogee arch: displacements (a) and strains (b)

stresses and thrust line can be calculated and represented in graphical way in a snap. This feature is particularly
useful for interactive design and is particularly suitable when dealing with structural rehabilitation problems
in historical buildings.

The thrust line representation is particularly suggestive since, thanks to the safe theorem proposed by
Heyman [26–28], it is a powerful tool for analyzing and understanding the structural behavior of arches
(see [34–36]). Indeed, it ensures that from the statics point of view, an arch is safe as long as, for the given
load condition, a thrust line can be constructed which entirely lies within the depth of the arch, i.e., within the
strip delimited by intrados and extrados.

In the present paper, only thrust-lines provided by elastic analyses have been presented; this is, however, a
standard first step in the study of any arch. A more general framework which encompasses also limit analysis
and reinforcement techniques based on Fiber-Reinforced Polymers (FRP), and which can be thought of as a
further step in the study of arch response to loading, is being developed in [37].

Possible future developments concern:

• the generalization to 2D problem such as vaults or domes;
• the development of an interface which can produce a valid input file for the ArchNURBS code starting

from the geometric data obtained by modern laser-scanner techniques;
• the model improvement, for example using a suitable damage parameter [38–42] taking into account that

in some cases, it leads to non-unique and non-stable solutions, see [43–45]. Alternatively, there is the way
proposed in [46,47], where a two-dimensional model for an interfacial zone is introduced, and this could be
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Fig. 21 Ogee arch: stresses (a) and thrust line (b)

used to describe more carefully concentrated damages. Furthermore, the variational techniques presented
in [48], being adapted to dissipative phenomena, may be of use in this context. Finally, it seems attractive
the use of higher continuum models as those described in [49–52];

• the damage detection using for example the procedure proposed by [53,54] which uses traveling loads as
a signal;

• the extension to plasticity for evaluating collapse load, see for example [55–60].
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