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Abstract We present and analyse a thermodynamical theory of rheology with single internal variable. The
universality of the model is ensured as long as the mesoscopic and/or microscopic background processes sat-
isfy the applied thermodynamical principles, which are the second law, the basic balances and the existence
of an additional—tensorial—state variable. The resulting model, which we suggest to call the Kluitenberg–
Verhás body, is the Poynting–Thomson–Zener body with an additional inertial element or, in other words, is
the extension of Jeffreys model to solids. We argue that this Kluitenberg–Verhás body is the natural thermo-
dynamical building block of rheology. An important feature of the presented methodology is that nontrivial
inequality-type restrictions arise for the four parameters of the model. We compare these conditions and other
aspects to those of other known thermodynamical approaches, like Extended Irreversible Thermodynamics or
the original theory of Kluitenberg.

Keywords Rheology · Solid · Irreversible thermodynamics · Internal variable

1 Introduction

Themethod of internal variables can be considered as a universalmodelling tool for classical, macroscopic field
theories. It is universal in the sense that one introduces minimal assumption about the physical mechanism of
the modelled phenomena. An additional field variable is the starting point. Its relation and coupling to existing
physical quantities and its evolution equation are the key questions that are to be answered. Irreversible
thermodynamics proposes a particular method in this respect [1,2]. The general idea is that one can obtain the
form of the evolution equation and also the connection to other processes considering only general principles,
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first of all, the second law [3–5]. Evolution equations derived from any structural, mesoscopic or microscopic
realization of the extra field variable must belong to this general form, as long as they are restricted by the
same general principles. The first application of thermodynamical ideas for continua is due to Eckart, who also
investigated deviations from ideal elastic behaviour, in another wording, anelasticity [6,7]. A thermodynamical
framework for anelasticity with internal variables was first treated by Biot [8] and developed by Kluitenberg
as a state variable theory [9–17]. Less systematic applications are popular for various phenomena in solids,
sometimes without any thermodynamical background [18].

The concept of internal variables has a long history [19,20], and there are numerous different versions
and names. The name internal degrees of freedom was introduced in thermodynamics as an extension of
the configurational space and originally denoted an extension of the deterministic field with statistical and
probabilistic aspects [21,22]. This is the origin of the so-called mesoscopic theories [23–25]. This meaning
is strictly distinguished from the macroscopic fields named under the same terminology internal degrees of
freedom, used by Maugin for field theories with Lagrangian dynamics [1,26]. The so-called internal variables
of state are again different, as their evolution is relaxational and has a thermodynamic origin [1,3]. In spite
of the fine details where these notions are different for different authors (controllability, boundary conditions,
weak nonlocality, etc.), we can find a sufficiently general framework where these concepts coincide and appear
as a powerful modelling tool of modern continuum physics [27,28]. In what follows, we do not address these
aspects but demonstrate the constructive modelling power of a seemingly restricted conceptual framework.

A specific version of the concept of internal variable is called dynamical degree of freedom [29,30],
which variable becomes zero in local thermodynamical equilibrium, and thus quantifies, along a process,
the instantaneous deviation from equilibrium, so to say, the amount of irreversibility present. This simple,
natural and general assumption, utilized by us here as well, is crucial. Other approaches introduce various
additional conditions due to the considered direct interpretation of the state variables; hence, they lead to
different classification and different restrictions on the constitutive coefficients. For example, in Extended
Irreversible Thermodynamics (EIT) [31,32], the additional state variable is the dissipative stress, while in the
original Kluitenberg theory, the state variable is anelastic strain, which additively modifies the elastic strain of
the rheological process.

The tensorial order of the internal variable can usually be deduced from the properties of the modelled
phenomenon. For example, for a simple description of the damage of solids, a scalar variable may suffice,
characterizing the level of degradation of the structure of the solid. For describing heat conduction effects
beyond the Fourier theory, a correction to the heat flux is expected; therefore, a vectorial internal variable
offers itself [33–35]. For the description of rheological effects, corresponding to the fact that stress and strain
are symmetric tensorial quantities, the naturally expected, and here confirmed, internal variable is a symmetric
second-order tensor.

As shown below, for linear Onsagerian equations, one can eliminate this internal state variable and obtains a
linear relationship between stress, strain and some of its time derivatives: the zeroth and first derivative of stress
and the zeroth, first and second derivative of strain. In notation, we will denote this by (0, 1 � 0, 1, 2). Conse-
quently, this relationship covers a number of classic rheological models as special subclasses: the Kelvin–Voigt
model, which is the (0 � 0, 1) case, the (0, 1 � 1)Maxwellmodel, the (0, 1 � 0, 1) Poynting–Thomson–Zener
model and the (0, 1 � 1, 2) Jeffreysmodel. Therefore, the internal variable approachprovides a universal frame-
work for discussing these models on a common ground and, in particular, to investigate the thermodynamical
properties of these models.

More closely, we find here that one (0, 1 � 0, 1, 2) model arises for the relationship between the deviatoric
part of stress and of strain (and its derivatives), and another independent (0, 1 � 0, 1, 2) relationship emerges
for the spherical (trace) part of these tensors. This means four material coefficients for the deviatoric part
and another four for the spherical part. Remarkably, it is just this 4 + 4 = 8-parameter model that is found
needed and satisfactory in the Anelastic Strain Recoverymethod [36–38], an experimental method determining
underground 3D in situ stress via measuring the rheological relaxation of borehole rock samples, and which
has also been utilized recently for evaluating uniaxial experiments stretching plastic samples ([39], C. Ass-
zonyi, A. Csatár, T. Fülöp: Thermomechanics of elastic, thermal expansion and plastic processes—theory and
experiment, in preparation). In uniaxial loading processes, the deviatoric and spherical parts get intertwined,
and the resulting relationship between stress and longitudinal strain turns out to be a (0, 1, 2, 3 � 0, 1, 2, 3, 4)
model, as is shown in the Appendix.

In a (0, 1 � 0, 1, 2) model, the material coefficients cannot be arbitrary because thermodynamics—more
closely, thermodynamical stability and non-negative entropy production—reveals conditions on them. A non-
trivial finding below is that, even within the remaining parameter region, only half of it can be represented
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via rheological networks made of springs and dashpots. For the other half, an additional element, the (0 � 2)
inertial element—introduced by Verhás [29,40]—is also necessary.

There is an additional advantage of the elimination procedure: it makes it manifest that the problem of
boundary conditions does not emerge here. This is actually due to the homogeneous (i.e. free-of-gradients)
constitutive equations, and thus, uniqueness of a solution is ensured by the same boundary conditions that
determine a unique solution for the corresponding elasticity problem, only the naturally expected further
initial conditions have to be added [41]. In addition, in the light of a unified treatment with the Maugin-
type internal degrees of freedom and considering also a weakly nonlocal extension, the question of boundary
conditions can be handled either by variational or direct thermodynamic prescriptions [27,28].

Our treatment here is different from the ones given by Kluitenberg, by EIT and by Verhás, and also from
the approach of classical irreversible thermodynamics, in an important respect. When introducing the classic
constitutive solution of the entropy inequality, assuming linear relationships between the thermodynamical
fluxes and forces, we do not impose Onsager–Casimir symmetry relations. The principal reasons of this choice
are Occam’s razor: without microscopic interpretation of the internal variables, the conditions of Onsager
need not apply [42,43]. This way the rightful criticism of Truesdell [44] does not hold for our treatment. This
generality has already proved to be crucial for the idea of dual internal variables [27], which turned out to be a
powerful unification method for waves in solids [45–49] and also for deriving generalized mechanics [28,50].

In what follows, we develop the thermodynamical theory of rheology of solids in the small strain approxi-
mation. First, we present the essential steps in one spatial dimension, starting from the mechanical properties
and introducing the thermodynamical requirements. The essential elements of the theory, as well as the most
important consequences, are manifest in this presentation. Then we develop the three-dimensional complete
version. Finally, we discuss our approach and compare it to the original assumptions and consequences by
Kluitenberg and by EIT. Two Appendices are devoted to two special technical aspects: the combined behav-
iour of the deviatoric and volumetric components in uniaxial loadings, and a variant of the introduction of the
internal state variable.

2 The procedure in one spatial dimension

2.1 The initial system

According to the internal state variable methodology, first we have an initial thermodynamical system, then we
assume an additional internal variable, shift the entropy by a concave expression of it, and ensure the positive
definiteness of entropy production via Onsagerian equations. For our present purposes, the initial system is a
linearly elastic solid. To place the focus on the essential aspects, let us start with the simple setting of the one
space dimensional case.

Namely, we have a solid, with elastic strain (or deformedness, see [51]) variable ε, which is a scalar in one
dimension, and with elastic stress

σ(ε) = Eε, (1)

where, again for simplicity, the Young modulus E is treated as constant. Assuming small deformations only,
which is actually a fairly good approximation for many situations concerning solids, the velocity gradient is
approximately equal to ε̇, the time derivative of strain and the mechanical power exerted by σ is simplified to

σ ε̇ = Eεε̇ = d

dt

(
E

2
ε2

)
= ρ

d

dt

(
E

2ρ
ε2

)
= ρėel (2)

with the specific elastic energy

eel(ε) = E

2ρ
ε2 (3)

and the mass density ρ, which is constant within the range of small deformations. Staying within the small-
deformation regime, we also do not have to distinguish among partial time derivative, comoving/substantial
time derivative and the various objective time derivatives (see [52] for the finite deformation differences among
such derivatives).
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As the function of temperature T and strain ε, the specific internal energy e of the initial system is considered
as

e(T, ε) = eth(T ) + eel(ε), (4)

eth(T ) being related to the constant or nonconstant specific heat [eth(T ) = cT in the constant case]. The
separated variables in (4) indicate that thermal expansion is now also disregarded.

Again if written as a function of temperature, the thermodynamically corresponding specific entropy is
s = s(T ), satisfying the thermodynamical consistency property

ds

dT
= 1

T

deth
dT

, (5)

which follows—via (4), (3) and (1)—from the Gibbs relation ρde = ρT ds + σdε, rearrangable as

ρds = ρ

T
de − σ

T
dε. (6)

For example, in the constant specific heat case,

s(T ) = c ln
T

T0
+ s0 (7)

is found, with auxiliary constants T0, s0.
Taking (2) for the expression of power, the balance of internal energy—i.e. the first law of thermo-

dynamics—is now

ρė = − j ′e + σ ε̇ (8)

where je is the heat current and prime denotes the spatial derivative.
For the entropy current js , we take the standard choice js = je/T [22]. Then, utilizing (5) in the balance

for entropy,

ρ ṡ = − j ′s + πs, (9)

gives for the entropy production πs , via (6) and (8),

πs = ρ ṡ + j ′s = ρ

T
ė − σ

T
ε̇ +

(
je
T

)′
= − j ′e

T
+

(
je
T

)′
= je

(
1

T

)′
, (10)

which we can ensure to be positive definite by choosing Fourier heat conduction,

je = λ

(
1

T

)′
, (11)

with a positive heat conduction coefficient λ.
We can also work in the canonical thermodynamical variables e, ε. This is achieved by expressing T from

(4) as a function of e and ε and substituting it into the entropy, obtaining s(e, ε). For example, in the constant
specific heat case, we have

s(e, ε) = c ln
e − (E/2)ε2

cT0
+ s0. (12)

In the canonical variables, temperature and stress are accessed [cf. (6)] as

1

T
(e, ε) = ∂s

∂e

∣∣∣∣
ε

,
σ

ρT
(e, ε) = − ∂s

∂ε

∣∣∣∣
e
. (13)

Entropy can be shown to be concave in the canonical variables under the conditions T > 0, E > 0 and
deth/dT > 0.

We note that the reason we started using the variables T, ε instead of the canonical variables e, ε is that
this enabled us to express the neglection of thermal expansion easily [cf. (4)].

The first stage, the characterization of the initial system has thus been completed.
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2.2 Introducing the internal variable

Now comes the second step: in addition to the variables e, ε, let us assume the existence of an additional
variable ξ , and shift entropy by a ξ dependent term. This term should be concave and vanishing for ξ = 0
(in equilibrium). Assuming that the second derivative of entropy with respect to ξ is nonzero, by the Morse
lemma, we can simply take the additional term in the form − 1

2ξ
2:

s̃(e, ε, ξ) = s(e, ε) − 1

2
ξ2; (14)

namely, we can choose ξ to be the variable in which the additional term is of this form. Note that this choice
can be made only if we have no direct physical knowledge about the origin of the assumed internal variable and
have thus a freedom in choosing it. If we had some explicit information about ξ—for example, a microscopic
interpretation—then we should not have enforced this specific form for the additional term but a more general
concave function must have been allowed, possibly dependent on e and ε as well [29,30]. In our present case,
we do not possess such background knowledge.

In the light of (6), we find the Gibbs relation for the extended entropy to be

ρds̃ = ρ

T
de − σ

T
dε − ρξdξ. (15)

Most significantly, rheological effects manifest themselves in the mechanical behaviour, so, in parallel, we
allow an additional source of mechanical stress also:

σ̃ = σ + σ̂ , (16)

σ̂ being the stress contribution of rheological (nonequilibrium) origin, and σ̃ denoting the total stress. Conse-
quently, in the mechanical power, and in the balance for internal energy, an additional term σ̂ ε̇ appears:

ρė + j ′e = σ̃ ε̇ = σ ε̇ + σ̂ ε̇. (17)

Utilizing this and (15), the entropy production can be calculated, assuming js̃ = je/T :

πs̃ = ρ ˙̃s + j ′s̃ = ρ

T
ė − σ

T
ε̇ − ρξ ξ̇ +

(
je
T

)′
(18)

= − j ′e
T

+ σ̂

T
ε̇ − ρξ ξ̇ +

(
je
T

)′
= je ·

(
1

T

)′
+ σ̂

T
ε̇ − ρξ ξ̇ . (19)

In the rhs, for the first term (heat conduction), let us keep the previous Fourier choice je = λ
( 1
T

)′
; actually, in

the three-dimensional treatment, we will see that in isotropic materials, heat conduction cannot couple to the
rheological side because the former is vectorial while the latter is a sum of a tensorial (deviatoric) and a scalar
(spherical) contribution. Concerning the remaining part, let us ensure its positive definiteness, rewritten as

σ̂ ε̇ − ρT ξ ξ̇ ≥ 0, (20)

via Onsagerian equations

σ̂ = l11ε̇ + l12(−ρT ξ), (21)

ξ̇ = l21ε̇ + l22(−ρT ξ) (22)

with appropriate conditions on the coefficients li j . Remarkably, these coefficients may depend on the state
variables and also on the thermodynamic forces. Therefore, the above constitutive equationsmay be quasilinear
and even nonlinear according to the classification in [53]. The conditions on the li j s are defined by the positive
definiteness of the quadratic form obtained by substituting (21)–(22) into (20), finding

l11ε̇
2 + (l12 + l21)ε̇(−ρT ξ) + l22(−ρT ξ)2 = (

ε̇ −ρT ξ
)(l11 lS12

lS12 l22

)(
ε̇

−ρT ξ

)
≥ 0 (23)
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with lS12 = 1
2 (l12 + l21), the offdiagonal element of the symmetric part of the matrix l. Hence, the symmetric

part lS of the matrix l is required to be positive definite. This necessitates, due to Sylvester’s criterion,

l11 ≥ 0, l22 ≥ 0, det lS ≥ 0. (24)

(These three conditions are not independent: in fact, either of the first two is implied by the other two.)
Note that the antisymmetric part, lA, of the coefficientmatrix l does not contribute to the entropy production;

it is only the symmetric part that creates irreversibility.

2.3 Eliminating the internal variable

As mentioned above, the coefficients li j need not be constants, and their dependence in the present case could
be on temperature. Now let us assume that l11, ρT l12, l21 and ρT l22 are constant, at least along a process, at
least to a good approximation—which is a very frequent situation. In this case, it is easy to eliminate the internal
variable ξ from (21)–(22) (although the elimination is straightforward at the general level, too). Notably, the
elimination of internal variables has already been applied by Meixner, in [54].

We start by rewriting (22) in a form where a differential operator acts on ξ :(
d

dt
+ ρT l22

)
ξ = l21ε̇. (25)

Then, if we operate d
dt + ρT l22 on (21), utilizing (25) yields

ρT l22σ̂ + ˙̂σ = ρT (det l) ε̇ + l11ε̈. (26)

Knowing σ̂ = σ̃ − Eε, we can bring this into the final form

σ̃ + 1

ρT l22
˙̃σ = Eε +

(
det l

l22
+ E

ρT l22

)
ε̇ + l11

ρT l22
ε̈. (27)

That is, we have obtained a (0, 1 � 0, 1, 2) rheological model:

σ̃ + τ ˙̃σ = E0ε + E1ε̇ + E2ε̈, (28)

where

τ = 1

ρT l22
> 0, E0 = E, E1 = det l

l22
+ E0

ρT l22
≥ E0

ρT l22
> 0, E2 = l11

ρT l22
≥ 0, (29)

which are the necessary and sufficient conditions coming from thermodynamics.
A minor inconvenience is that τ = 0 and E1 = 0 are excluded so the (0 � 0) model σ̃ = E0ε is not

included directly but can be covered as a l22 → ∞ limit. We can easily overcome this nuisance. Let us observe
that, assuming l22 > 0, it is possible to rearrange (21)–(22) as

σ̂ = det l

l22
ε̇ + l12

l22
ξ̇ = m11ε̇ + m12ξ̇ , (30)

−ρT ξ = − l21
l22

ε̇ + 1

l22
ξ̇ = m21ε̇ + m22ξ̇ . (31)

Now, equations of the form

σ̂ = m11ε̇ + m12ξ̇ , (32)

−ρT ξ = m21ε̇ + m22ξ̇ (33)

are just another possible valid Onsagerian way to ensure the positive definiteness of (20). Namely, using
(32)–(33), (20) has the form

m11ε̇
2 + (m12 + m21)ε̇ξ̇ + m22ξ̇

2 = (
ε̇ ξ̇

)(m11 mS
12

mS
12 m22

)(
ε̇

ξ̇

)
, (34)
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again a quadratic form which is positive definite if and only if

m11 ≥ 0, m22 ≥ 0, detmS ≥ 0. (35)

Note again that only the symmetric part of m is related to the entropy production.
When we eliminate ξ from (32)–(33)—now observing the differential operator m22

d
dt + ρT in the time

derivative of (33), and applying this operator on (32)—the result is

σ̃ + m22

ρT
˙̃σ = Eε +

(
m11 + m22

ρT
E

)
ε̇ + detm

ρT
ε̈. (36)

The coefficients are thus

τ = m22

ρT
≥ 0, E0 = E, E1 = m11 + m22

ρT
E0 ≥ 0, E2 = detm

ρT
≥ 0. (37)

We again obtain essentially the same family of rheological models, differences being only at the boundary
of the thermodynamically allowed parameter region. Indeed, the latter way, the (0 � 0) Hooke model is also
incorporated. Moreover, the τ = 0, E0 = 0, E1 = 0, E2 > 0 model—in other words, the (0 � 2) body—(on
which see more in Sect. 2.4) is also uncovered as a thermodynamically valid case. In parallel, there is a part
of the boundary that is missing here but was allowed in the former formulation: l22 = 0 would have allowed
(1 � 1, 2) models, too. However, those relationships between σ , ε and derivatives do not include the (0 � 0)
Hooke case, do not provide information for static processes of solids and are thus incomplete for solids.

Hereafter, for definiteness, the coefficients mi j will be used but analogous statements will hold for the
coefficients li j as well.

2.4 Special cases and analysis

The obtained (0, 1 � 0, 1, 2) rheological model (28) covers a number of well-known classic cases. In fact,
it includes the (0 � 0) Hooke model, the (0 � 0, 1) Kelvin–Voigt model, the (0, 1 � 1) Maxwell model, the
(0, 1 � 0, 1) Poynting–Thomson–Zener model and the (0, 1 � 1, 2) Jeffreys model. In this respect, an impor-
tant contribution of the present internal state variable approach is that it reveals thermodynamical constraints
of the coefficients of these models. Based on (35), (37) and the identity

detm = detmS +
(
m12 − m21

2

)2

= detmS + (
mA

12

)2
, (38)

, these constraints read

τ ≥ 0, E0 ≥ 0, I1 := E1 − τ E0 = m11 ≥ 0, E2 ≥ 0, (39)

where the index of damping, I1, has been introduced. This combination I1, together with the similarly defined
index of inertia,

I2 := E2 − τ I1 = −m12m21

ρT
=

(
mA

12

)2 − (
mS

12

)2
ρT

, (40)

are two important characteristics of the (0, 1 � 0, 1, 2) models. I1 ≥ 0 means a nontrivial combined condition
for τ , E0 and E1, which, for example, rules out the existence of (0, 1 � 0) and (0, 1 � 0, 2) models, on
thermodynamical ground. In parallel, I2 is allowed to be positive as well as negative but these two cases
indicate remarkably different situations. When I2 < 0, in other words, when the symmetric part of the
coefficient matrix m dominates over the antisymmetric part, then if stress is prescribed as a function of time
then the characteristic equation of the emerging second-order linear inhomogeneous differential equation
[εhomog.(t) ∼ eλt ⇒ E0 + E1λ + E2λ

2 = 0] has two negative real roots, meaning that the solution is
characterized by two decreasing exponential functions of time. On the other side, when I2 > 0, i.e. when the
antisymmetric part dominates, the two roots are not real. The real parts are negative, ensuring damping, but
the imaginary parts describe oscillations in the solution. This opens the possibility for bringing the material
into resonance via a periodic excitation with a frequency near to the self-frequency of the rheological material.
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E2

Fig. 1 The inertial element, corresponding to the elementary (0 � 2) model, σ̃ = E2ε̈

It is important to note that this resonance is completely different from elastic resonance, which occurs when
the geometric sizes of a body, the velocity of elastic waves within the body and the frequency of the periodic
external force at the boundary are in tune. The rheological resonance is a completely local phenomenon,
independent from the geometrical properties of the body, and is a result of the relationship among E0 and the
two rheological coefficients E1 and E2. The inertia-like coefficient refers not to the usual mechanical inertia
but to a rheology-related different type of inertia.

That the overdamped (or underinertial), i.e. I2 < 0, models differ remarkably from the under-
damped/overinertial (I2 > 0) cases can be demonstrated in another way as well. Namely, one can show
[55]—via steps analogous to those in Appendix A—that, when two rheological networks are arranged in par-
allel, the sum of their index of damping equals the index of damping of the resulting system, and the same
additive property holds for the index of inertia as long as the resultingmodel is not beyond (0, 1 � 0, 1, 2). Fur-
thermore, when two rheological networks are arranged in series, non-negative indices of damping also prove to
lead to non-negative index of damping (and positive ones to positive) and nonpositive indices of inertia lead to
nonpositive index of inertia (and negative ones to negative). A reassuring consequence is that networks created
by springs and dashpots in a combination of serial and parallel arrangements always have positive index of
damping, in conform with the thermodynamical constraint. A nontrivial other consequence, however, is that
springs and dashpots—possessing zero index of inertia—can never be combined, in any serial-plus-parallel
way, to a rheological model with positive index of inertia. In particular, the generalized Kelvin–Voigt and
generalized Maxwell–Wiechert models—which are Kelvin–Voigt or Maxwell models in serial, resp. parallel,
arrangement—are not able to reproduce these thermodynamically completely legitim models.

This necessitates the introduction of a new rheological element, corresponding to the (0 � 2) model. The
need for this new element was indicated first—to our knowledge—by Verhás [29,40]. Hereafter, we call this
element the inertial element, and its depicting will follow Verhás’ notation (see Fig. 1).

3 The procedure in three spatial dimensions

Now we treat the three-dimensional case, in complete analogy to the one-dimensional situation.

3.1 The initial system

In three dimensions, elastic strain, ε, and stress, σ , are symmetric tensors. Assuming isotropic Hooke elasticity,
stress depends linearly on elastic strain via two scalar elastic coefficients, one connecting the deviatoric tensorial
components and the other relating the spherical ones:

σ (ε) = Edεd + E sεs, εs = 1

3
(tr ε)1, εd = ε − εs, Ed = 2G, E s = 3K . (41)

We stay in the small-deformation regime, where (approximately) the density ρ is constant and the symmetric
part of the velocity gradient tensor equals ε̇. Correspondingly, the mechanical power of σ can be expressed as

tr(σ ε̇) = tr(σ dε̇d) + tr(σ sε̇s) = ρėel (42)

with

eel(ε) = Ed

2ρ
tr
(
εdεd

) + E s

2ρ
tr
(
εsεs

)
. (43)

Total specific energy is considered in the form

e(T, ε) = eth(T ) + eel(ε). (44)
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The Gibbs relation ρde = ρT ds + tr(σdε), rearrangeable as

ρds = ρ

T
de − 1

T
tr(σdε), (45)

holds with a specific entropy s = s(T ) satisfying

ds

dT
= 1

T

deth
dT

. (46)

With the expression of power (42), the balance of internal energy (the first law) is

ρė = −∇ · je + tr(σ ε̇). (47)

We take the standard choice js = je/T between the entropy current js and the heat current je . Then, in the
balance for entropy,

ρ ṡ = −∇ · js + πs, (48)

the entropy production πs is calculated, using (45) and (47), as

πs = ρ ṡ + ∇ · js = ρ

T
ė − 1

T
tr(σ ε̇) + ∇ ·

(
je
T

)
= − 1

T
∇ · je + ∇ ·

(
je
T

)
= je · ∇

(
1

T

)
, (49)

which we set positive definite via choosing Fourier heat conduction,

je = λ∇
(
1

T

)
, λ > 0. (50)

The conversion from state variables (T, ε) to the canonical state variables (e, ε) can be achieved by
expressing T from (44), and substituting it into the entropy, obtaining s(e, ε). Reversely, starting from the
canonical variables, temperature is accessed as

1

T
(e, ε) = ∂s

∂e

∣∣∣∣
ε

. (51)

Entropy is concave in the canonical variables [under the natural conditions T > 0, E > 0 and deth/dT > 0].
Having the initial system in the canonical variables, we are ready for extending it.

3.2 Introducing the internal variable

The extended thermodynamical state space is chosen to be spanned by the following variables: internal energy
e, strain ε and an internal variable ξ . This latter is taken as a second-order symmetric tensor, based on our
purpose to gain an extension of the mechanical aspects (the ‘material law’) of the initial system, to obtain
corrections to the relation between stress and strain, which quantities are both symmetric tensors.

We shift entropy by a concave nonequilibrium term depending—quadratically—on ξ only. According to
the Morse lemma, this new entropy term can be chosen as a pure square term, and hence, the extended entropy
function is

s̃(e, ε, ξ) = s(e, ε) − 1

2
tr
(
ξ2

)
. (52)

The Gibbs relation for the extended entropy is

ρds̃ = ρ

T
de − 1

T
tr(σdε) − ρ tr(ξdξ). (53)

To obtain some effect on the mechanical aspects, stress is also considered extended by a rheological
(nonequilibrium) term:

σ̃ = σ + σ̂ . (54)
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Consequently, the mechanical power (42), and correspondingly the energy balance, gets shifted as

ρė + ∇ · je = tr(σ̃ ε̇) = tr(σ ε̇) + tr(σ̂ ε̇). (55)

With the choice js̃ = je/T, and utilizing (53) and (55), the entropy production is found to be

πs̃ = ρ ˙̃s + ∇ · js̃ = ρ

T
ė − 1

T
tr(σ ε̇) − ρ tr

(
ξ ξ̇

) + ∇ ·
(
je
T

)

= − 1

T
∇ · je + 1

T
tr(σ̂ ε̇) − ρ tr

(
ξ ξ̇

) + ∇ ·
(
je
T

)

= je · ∇
(
1

T

)
+ 1

T
tr

(
σ̂
d
ε̇d

) + 1

T
tr

(
σ̂
s
ε̇s

) − ρ tr
(
ξd ξ̇d

) − ρ tr
(
ξ sξ̇ s

)
. (56)

In the rhs, vectors are present in the first term, scalars in the third and fifth one, and symmetric traceless
tensors in the second and fourth term. In an isotropic material, these three types of quantities cannot couple to
one another according to the Curie principle, the representation theorem of isotropic functions [29]. Therefore,
concerning the term containing vectors, we consider Fourier heat conduction, je = λ∇( 1

T

)
. For the remaining

two pairs of terms, the most general Onsagerian solution is

σ̂
d = ld11ε̇

d + ld12
(−ρT ξd

)
, σ̂

s = ls11ε̇
s + ls12

(−ρT ξ s
)
, (57)

ξ̇d = ld21ε̇
d + ld22

(−ρT ξd
)
, ξ̇ s = ls21ε̇

s + ls22
(−ρT ξ s

)
, (58)

or the corresponding version with md and ms, generalizing (30)–(31).
Hence, we can see that what we had in one dimension just gets doubled in three dimensions, the two

components being independent. The two terms with traceless symmetric tensors have to be positive definite
themselves, and the two terms with scalars have to be positive definite independently. The corresponding
conditions on the coefficients are the same as for the one-dimensional case.

Eliminating the internal variable in the constant temperature case also leads to two independent
(0, 1 � 0, 1, 2) models,

σ d + τ dσ̇ d = Ed
0ε

d + Ed
1 ε̇

d + Ed
2 ε̈

d, σ s + τ sσ̇ s = E s
0ε

s + E s
1ε̇

s + E s
2ε̈

s, (59)

with thermodynamics-originated inequalities for the altogether eight coefficients.
Remarkably, in a uniaxial process, both the deviatoric and the spherical rheologies are active, independently

of each other, and cause a rather complicated resultant uniaxial rheology—see Appendix A for the details.
We close this section with two notes. The first is that the presented thermodynamical approach involves a

potential (entropy, and free energy as a consequence); therefore, our treatment is hyperelastic—from the point of
view of the complete state space. On the other side, the stress–strain relation obtained by reduction/elimination
cannot be obtained from a potential.

The second remark is that more general methods of the exploitation of the entropy principle [56] result, in
this classical irreversible thermodynamical case, in the same structure as the simple approach of divergence
separation applied here.

4 Comparison of the approaches

Kluitenberg [12] has also obtained a result similar to ours, a pair of (0, 1 � 0, 1, 2) models, with assumptions
different from ours, and one can also derive the (0, 1 � 0, 1) Poynting–Thomson–Zener body in EIT [31].
These approaches and their different assumptions are discussed in the following section.
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4.1 Kluitenberg theory

We have seen that the presented thermodynamical framework distinguishes a particular combination of inertia,
relaxation and creep for dissipation, the (0, 1 � 0, 1, 2) model, as a basic rheological body. Nonequilibrium
thermodynamics with internal variables was first systematically applied to linear viscoelasticity byKluitenberg
[9–15], and he obtained also the (0, 1 � 0, 1, 2) body, as a fundamental building block of thermodynamical
modelling.

The Kluitenberg theory is different from our approach. The differences are the following:

1. In the Kluitenberg theory, the internal variable has a fixed physical meaning: it is interpreted as a direct—
called anelastic—contribution to the strain: [9]

ε = εel + εanel. (60)

According to our above approach, this interpretation is not necessary, the coupling of the dissipative terms
of the entropy production through linear relations with an arbitrary tensorial internal variable influences
the strain.

2. Kluitenberg assumes a relationship between anelastic and elastic stress, as a consequence of the strain
interpretation. In particular, for him, the elastic stress is equal to the anelastic one {[11], (4.4)}. He
assumes, in particular, that

∂ ŝ

∂εanel
(εel, εanel) = ∂s

∂εanel
(ε, εanel) − ∂s

∂ε
(ε, εanel) = 0. (61)

Here, ŝ(εel, εanel) = ŝ(ε − εanel, εanel) = s(ε, εanel) .

As we have found above, these assumptions are not necessary for thermodynamical consistency and lead to
a different analysis of the rheological coefficients. For example, in theKluitenberg representation, no restriction
is revealed on the sign of E1, the coefficient of the strain rate. Moreover, when elastic and anelastic strains of
Kluitenberg are quadratic in the entropy, one cannot derive the (0, 1 � 0, 1, 2) body but obtains the (0, 1 � 1, 2)
Jeffreys model, instead {[11], (4.25)–(4.26)}. However, the Jeffreys body is not a rheological solid (Jeffreys
model expresses a viscous fluid for slow processes), and hence, it is unsatisfactory in case of viscoelastic
solids. The real basic building block is the (0, 1 � 0, 1, 2) body.

Verhás introduced the procedure analogous to ours here, with a single internal variable, for fluids [29,40].
In addition, it was him who emphasized the relevance of the inertial element on thermodynamical grounds. To
reflect these precursors, hereafter we will call the (0, 1 � 0, 1, 2) rheological model the Kluitenberg–Verhás
body.

4.2 Extended Thermodynamics

In EIT, the dissipative fluxes are considered as state variables [57]. Therefore, the viscous or anelastic strain
σ̂ = σ̃ − σ is a thermodynamical state variable, instead of being a constitutive quantity (see, e.g., [31]). In
our approach, if l11 = 0, then the internal variable ξ is proportional to the dissipative stress σ̂ [see (29)], thus
a rescaling of ξ results in the representation and rheological equations of Extended Thermodynamics. The
rheological body obtained this way is the (0, 1 � 0, 1) Poynting–Thomson–Zener body, a subfamily of the
full (0, 1 � 0, 1, 2) range of possibilities. It is remarkable that the material parameter set to zero here, l11, is
the viscosity of the Kelvin body in the sense of (21), which is normally the main contribution to dissipation.
In this sense, the situation is similar to heat conduction, where the representation of the Fourier coefficient is
different in case of internal variables and in an Extended Thermodynamical treatment [35]. The extension of
the theory with higher order fluxes is different from the extension of an internal variable theory with further
internal variables.

5 Discussion

In this paper, we have analysed rheological properties of solids as a thermodynamical theory with internal vari-
ables. We have obtained a simple nonlinear viscoelastic theory. We have identified the basic thermorheological
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body and investigated its properties. The single internal thermodynamical state variable representation distin-
guishes the standard Poynting–Thomson–Zener body supplemented by an inertial element as the fundamental
building block of linear viscoelasticity.We have suggested to name this material model the Kluitenberg–Verhás
body.

On one hand, the simplest assumptions were introduced, when the internal variable is a single tensorial
dynamical degree of freedom, representing the deviation from the equilibrium state and is subject to thermo-
dynamical restrictions. On the other hand, we have allowed the most general linear Onsagerian equations. The
advantage of this is the obtainable universality, in the sense that, as long as the tensorial representation and
the second law are respected, any particular microscopic and mesoscopic mechanism must lead to the same
rheological model family in the linear regime.

After eliminating the internal variable, for isothermal processes, we could formulate and analyse the
consequences of the presence of rheology in measurable quantities, stress and strain.

In our approach, the internal variable is not necessarily anelastic strain like in the classical Kluitenberg
theory and is not necessarily the dissipative stress like in Extended Thermodynamics. The latter choice is
found to be a special case, a certain subfamily within our obtained family of models. The representation of
the internal variable as additive deviation from elastic strain would also require a deeper analysis from the
point of view of continuum kinematic quantities, including finite strain as well as the requirements of material
frame indifference. In this respect, it is remarkable that our recent frame free and objective approach [51],
which improves the classic framework of Noll [58,59], leads to an additive decomposition of the deformation
rate into an elastic and a plastic (permanent) part. Therefore, the basic question is the clear distinction of the
elastic, rheological (recoverable) and the plastic (permanent) parts of the deformation in experiments.

Another characteristic property of our treatment was that we have not assumed symmetry or antisymme-
try of the phenomenological coefficient matrix. There is no reason to assume Onsager–Casimir reciprocity
without any microscopic interpretation. Moreover, the detailed analysis of Sect. (2.4) has shown that the dif-
ferent possible circuit-like spring–dashpot-based representations are related to different either symmetric or
antisymmetric part dominated thermodynamical models. Thermodynamics requires non-negative dashpot and
spring coefficients of both representations, and the inertial element is also needed for the underdamped case.

Finally, we emphasize that all the found restrictive properties of our model and the differences from the
original Kluitenberg and Extended Thermodynamical approaches can be tested by experiments. The compari-
son of the coefficient restrictions of the Kluitenbergmodel with wave propagation experiments has been started
by Ciancio et al. in [60–62] with satisfactory results. Direct measurements of creep and relaxation require a
careful choice of isotropic materials with a single internal variable and also the separation of spherical and
deviatoric parts of the changes. Mixed loading conditions and effective models can be complicated, especially
if not only deviatoric but volumetric anelasticity also plays a role (see Appendix A). In this respect, the bore-
hole rock sample experiments of Lin et al. [36–38] support the relevance of both deviatoric and volumetric
Kluitenberg–Verhás bodies.

Appendix A: Uniaxial rheology derived from the deviatoric and spherical components

During uniaxial processes of solids, the stress and strain tensors are, in a suitable Cartesian coordinate system,
characterized by matrices

σ =
(

σ

0
0

)
, σ s = 1

3

(
σ

σ

σ

)
, σ d = 1

3

(
2σ

−σ

−σ

)
, (62)

ε =
(

ε

ε⊥
ε⊥

)
, εs = 1

3

(
ε +2ε⊥

ε +2ε⊥
ε +2ε⊥

)
, εd = 1

3

⎛
⎜⎝

2
(
ε −ε⊥)

−
(
ε −ε⊥)

−
(
ε −ε⊥)

⎞
⎟⎠, (63)

all omitted matrix elements being zero.
Let our solid obey the linear rheological laws

S d σ d = E d εd, (64)

S s σ s = E s εs, (65)
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where the differential operators S d, S s, E d, E s are polynomials of the time derivative operator d/dt , with
constant coefficients. For example, for (59),

S d = 1 + τ d
d

dt
, E d = Ed

0 + Ed
1
d

dt
+ Ed

2
d2

dt2
, (66)

S s = 1 + τ s
d

dt
, E s = E s

0 + E s
1
d

dt
+ E s

2
d2

dt2
. (67)

Then, for uniaxial processes, (64) simplifies to the scalar equation

S dσ = E d(ε − ε⊥)
, (68)

and (65) gives

S sσ = E s(ε + 2ε⊥)
. (69)

Our aim is to eliminate ε⊥ from this pair of equations. Let the operator 2E s act on (68), let E d act on (69), and
let us consider the sum of the two resulting equations. Observing that

E sE d = E dE s (70)

and, in general, that any two polynomials of d
dt commute, the obtained sum can be written as

(
S sE d + 2S dE s)σ = 3E dE sε . (71)

In the example of (66)–(67), (71) reads, after normalizing the coefficient of σ to 1,

σ + Ed
1 + 2E s

1 + τ sEd
0 + 2τ dE s

0

Ed
0 + 2E s

0

σ̇ + Ed
2 + 2E s

2 + τ sEd
1 + 2τ dE s

1

Ed
0 + 2E s

0

σ̈ + τ sEd
2 + 2τ dE s

2

Ed
0 + 2E s

0

...
σ

= 3E s
0E

d
0

Ed
0 + 2E s

0

ε + 3
(
E s
0E

d
1 + Ed

0 E
s
1

)
Ed
0 + 2E s

0

ε̇ + 3
(
Ed
0 E

s
2 + E s

1E
d
1 + E s

0E
d
2

)
Ed
0 + 2E s

0

ε̈

+3
(
Ed
1 E

s
2 + E s

1E
d
2

)
Ed
0 + 2E s

0

...
ε + 3E s

2E
d
2

Ed
0 + 2E s

0

....
ε . (72)

Apparently, the emerging uniaxial rheology is a (0, 1, 2, 3 � 0, 1, 2, 3, 4) model.
As a simple but remarkable special case, if we have a (0 � 0, 1) Kelvin–Voigt model deviatorically and

a (0 � 0) Hooke one spherically, the uniaxial rheology proves to be a Poynting–Thomson–Zener model,
exhibiting creep and relaxation. Consequently, deviatoric creep is enough to produce uniaxial relaxation.

Naturally, it is also possible to eliminate ε , in an analogous way, to obtain a formula containing σ and its
derivatives and ε⊥ and its derivatives. Or, σ can be eliminated in favour of ε , ε⊥ and derivatives. The former
formula can useful in a stress governed process to show how transversal strain behaves, and the latter to see
howmuch more intricate the relationship between ε⊥ and ε is than what the Hookean expectation of a constant
Poisson ratio would suggest.

The technique used here to derive the uniaxial resultant rheology is similar to how serial and parallel
arrangements of rheological models can be calculated [55]. In fact, this is more than a simple similarity: the
above steps are exactly those how one can determine the rheology of the arrangement

(D ∼ D∼ S) || (D ∼ D ∼ S) || (D ∼ D ∼ S), (73)

where D stands for the deviatoric model (62), S for the spherical one (65), and ∼ denotes the serial and || the
parallel connection. The uniaxial rheology is thus a certain serial-plus-parallel combination of the deviatoric
and the spherical rheology.
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Appendix B: Shifting internal energy

Here, another approach to introduce an internal variable for rheology is shown, which approach leads to the
same (0, 1 � 0, 1, 2) model, after elimination, for constant temperature processes. For simplicity, we exploit
only the one-dimensional version.

In this variant, we shift internal energy, rather than entropy, with a quadratic term (see also [11,12,15]) of
an internal variable ζ , which term preserves the convexity property:

ẽ = e + 1

2
ζ 2, (74)

which, in terms of the canonical variables, means the shifting of the internal energy variable in any constitutive
function like entropy:

s̃(ẽ, ε, ζ ) = s

(
ẽ − 1

2
ζ 2, ε

)
. (75)

As before [see Eq. (54)], the introduction of the internal variable is assumed to be accompanied by a new stress
term. Taking the time derivative of this s̃, the entropy production gets shifted now by

1

T

(
σ̂ ε̇ − ρζ ζ̇

)
. (76)

Consequently, apart from a factor T , the Onsagerian solution happens similarly as done previously. The
constant-T elimination of ζ also leads to the linear (0, 1 � 0, 1, 2) rheology, with the same conditions on the
coefficients.

What is remarkably different in the two approaches is the balance of internal energy, since now there is an
additional, potential-like, internal energy term 1

2ζ
2 so a part of the mechanical power (and of the incoming heat

flux) now changes this extra term and only the remaining part changes the specific heat related original internal
energy term eth and the elastic energy term eel. Correspondingly, temperature changes differently than in the
entropy shifting approach. This means an experimental possibility to distinguish between the two scenarios.

At last, it is possible to combine the two methodologies: we can permit a quadratic shift of both entropy
and internal energy. Then an extra coefficient must be allowed in at least one of the two quadratic expressions:
the general case can be written as

ẽ = e + a

2
ξ2, s̃(ẽ, ε, ξ) = s

(
ẽ − a

2
ξ2, ε

)
+ b

2
ξ2. (77)

The entropy production still gets shifted by a term proportional to −ξ ξ̇ , now with a coefficient that contains
both a and b. The Onsagerian solution also has the same form as in the two previous cases, and the elimination
also goes through analogously. The coefficients a, b are distinguished by their role in the balance of internal
energy, hence, in the rate equation for temperature. This can be the basis for determining them experimentally.
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ian) (2008)

56. Ván, P.:Weakly nonlocal irreversible thermodynamics. Annalen der Physik 12(3), 146–173 (2003); arXiv:cond-mat/0112214
57. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1992); 3rd revised edition

(2001)
58. Noll, W.: Space-time structures in classical mechanics. In: The Foundations of Mechanics and Thermodynamics (Selected

papers by Walter Noll), pp. 204–210. Springer, Berlin (1974). Originally: Delaware Seminar in the Foundations of Physics,
pp. 28–34. Springer, Berlin (1967)

59. Noll, W.: A frame free formulation of elasticity. J. Elast. 83, 291–307 (2006)
60. Ciancio, V., Bartolotta, A., Farsaci, F.: Experimental confirmations on a thermodynamical theory for viscoanelastic media

with memory. Phys. B 394(1), 8–13 (2007)
61. Ciancio, V.: Non equilibrium thermodynamics with internal variables in Kluitenberg’s theory. AAPP—Phys. Math. Nat. Sci.

86(S1), A1(1–14) (2008)
62. Ciancio, V., Ciancio, A., Farsaci, F.: On general properties of phenomenological and state coefficients for isotropic vis-

coanelastic media. Phys. B 403(18), 3221–3227 (2008)

http://arxiv.org/abs/1007.2892
http://arxiv.org/abs/cond-mat//0112214

	Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory
	Abstract
	1 Introduction
	2 The procedure in one spatial dimension
	2.1 The initial system
	2.2 Introducing the internal variable
	2.3 Eliminating the internal variable
	2.4 Special cases and analysis

	3 The procedure in three spatial dimensions
	3.1 The initial system
	3.2 Introducing the internal variable

	4 Comparison of the approaches
	4.1 Kluitenberg theory
	4.2 Extended Thermodynamics

	5 Discussion
	References




