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Abstract A semi-analytic solution for the elastic/plastic distribution of stress and strain in a spherical shell
subject to pressure over its inner and outer radii and subsequent unloading is presented. The Bauschinger
effect is taken into account. The flow theory of plasticity is adopted in conjunction with quite an arbitrary
yield criterion and its associated flow rule. The yield stress is an arbitrary function of the equivalent strain.
It is shown that the boundary value problem is significantly simplified if the equivalent strain is used as an
independent variable instead of the radial coordinate. In particular, numerical methods are only necessary to
evaluate ordinary integrals and solve simple transcendental equations. An illustrative example is provided to
demonstrate the distribution of residual stresses and strains.

Keywords Spherical shell · Bauschinger effect · Semi-analytic solution

1 Introduction

The expansion/contraction of a spherical shell is one of the classical problems of solid mechanics. In particular,
solutions for elastic perfectly/plastic shells at small strains can be found in many monographs on plasticity
theory, for example [1–3]. In general, solutions for strain-hardening material are outlined in [1,2]. However,
it has been mentioned that ‘The integration can only be effected by a small-arc process; no investigation of
this appears to have been published’ in [1] and ‘A complete solution can now be obtained by an iterative or
successive approximation method’ in [2]. It is shown in the present paper that a semi-analytic solution for a
spherical shell subject to internal and external pressure and subsequent unloading exists for any hardening law.
The flow theory of plasticity is adopted in conjunction with quite an arbitrary yield criterion and its associated
flow rule. Strains are supposed to be small. Numerical methods are only necessary to solve transcendental
equations and evaluate ordinary integrals. A similar boundary value problem for an elastic shell at large strains
has been solved in [4]. In this case, the solution is given in terms of special functions. A number of solutions
for elastic perfectly/plastic hollow spheres which can be considered as extensions of the solutions [1–3] are
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available. In particular, thick-walled spheres subject to thermal loading are studied in [5,6]. Functionally
graded spherical vessels subject to internal pressure and thermo-mechanical loading have been considered in
[7] and [8], respectively. Strain (or work)-hardening models have been adopted in [9–12]. An analytic solution
for the contraction of a hollow sphere of linear-hardening material has been found in [9]. However, elastic
compressibility has been neglected in this solution. Papers [10–12] deal with thermal loading. Numerical
methods are used in [10,11]. A semi-analytical solution for a deformation theory of plasticity based on a
modified Ramberg-Osgood stress–strain relation has been derived in [12]. An elegant rigid/plastic solution to
describe thermoplastic behavior of a thick-walled sphere has been given in [13]. A solution for strain-hardening
material at large strains has been provided in [14] for a fully plastic shell. Distinctive features of the present
solution are that the material is elastically compressible, the flow theory of plasticity is used, the solution is
valid for any hardening law and the Bauschinger effect is taken into account at the stage of unloading. At
the stage of loading, the general solution in the plastic zone can be derived from the solution given in [14]
assuming that strains are small.

A particular case of the problem considered in the present paper is the expansion of a spherical cavity in an
infinite medium. Available solutions to this problem are more advanced that those for a spherical shell. Most of
these solutions have been obtained at large strains and include inertia terms. A recent review of such solutions
is provided in [15]. Of particular interest for the present paper is the solution given in [16]. It has been shown
in this paper as well as in [14] that it is advantageous to use the equivalent stress as an independent variable in
the plastic zone. In the present paper, it is shown that it is advantageous to use the equivalent plastic strain to
find the solution for an elastic/plastic shell.

2 Statement of the problem

Consider a spherical shell of internal radius a0 and external radius b0 subject to pressure Pa > 0 over the
internal radius and pressure Pb > 0 over the external radius. Introduce a spherical coordinate system (r, θ, ϕ)
with its origin coinciding with the center of the shell. Let σr , σθ and σϕ be the normal stresses in this coordinate
system. Symmetry dictates that these stresses are the principal stresses and, moreover,

σθ = σϕ. (1)

The stress boundary conditions are written in the spherical coordinates as

σr = −Pa (2)

for r = a0 and

σr = −Pb (3)

for r = b0. Strains are supposed to be small. In plastic regions, the strain tensor is assumed to be the sum of
an elastic part and a plastic part. In particular, in the spherical coordinates

εr = εe
r + ε

p
r , εθ = εe

θ + ε
p
θ , εϕ = εe

ϕ + ε p
ϕ . (4)

Here εr , εθ and εϕ are the total normal strains, the superscript e denotes the elastic portion of the total strains
and the superscript p denotes the plastic portion of the total strains. The elastic strains are related by Hooke’s
law to the stresses. In particular, using (1)

Eεe
r = σr − 2νσθ , Eεe

θ = Eεe
ϕ = (1 − ν) σθ − νσr (5)

where E is Young’s modulus and ν is Poisson’s ratio. By virtue of the symmetry, it is not necessary to precisely
specify the yield criterion for plastically incompressible materials. In particular, any yield criterion for such
materials is represented by a curve in the plane � whose equation is σr + σθ + σϕ = 0 (Fig. 1). Equation (1)
requires that the state of stress in a plastic zone corresponds to point M (or N ) throughout the process of
deformation. The solution given in the present paper is valid for all yield loci satisfying the requirement that
the normal vector at point M (and N ) is parallel to the orthogonal projection of the axis σr on the plane �. A
consequence of this requirement and the associated flow rule is that

ε̇
p
r = −2ε̇

p
θ = −2ε̇ p

ϕ . (6)
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Fig. 1 Geometric representation of the yield criterion

Moreover, ε̇
p
r > 0 at point M and ε̇

p
r < 0 at point N . Here, the superimposed dot denotes the time derivative.

Equation (6) can be immediately integrated to give

ε
p
r = −2ε

p
θ = −2ε p

ϕ . (7)

It has been taken into account here that all plastic strains vanish simultaneously. The state of stress at points
M (or N ) satisfies the following equation

|σr − σθ | = σ0�
(
ε

p
eq

)
(8)

where σ0 is a reference stress, ε
p
eq is the equivalent plastic strain and �

(
ε

p
eq

)
is an arbitrary function of its

argument satisfying the conditions � (0) = 1 and �′ (ε p
eq

) ≡ d�/dε
p
eq ≥ 0 for all ε p

eq . Using (6) the equivalent
plastic strain rate is represented by the following equation

ε̇
p
eq =

√
2

3

√
ε̇2

r + ε̇2
θ + ε̇2

ϕ = |ε̇r | . (9)

The only non-trivial equilibrium equation is

∂σr

∂r
+ 2 (σr − σθ )

r
= 0. (10)

3 Solution at loading

The general elastic solution for stress is

σr

σ0
= A + B

ρ3 ,
σθ

σ0
= A − B

2ρ3 (11)

where A and B are constant and ρ = r/b0. It is evident from this solution that in the range a ≤ ρ ≤ 1 the
function |σr − σθ | attains its maximum at ρ = a where a = a0/b0. Therefore, according to (6) the plastic
zone starts to develop from the inner radius of the shell. In what follows, it is assumed that the plastic zone
exists and its radius increases. Let ρc be the dimensionless radius of the elastic/plastic boundary. The solution
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(11) is valid in the range ρc ≤ ρ ≤ 1. Then, combining the boundary condition (3) and the solution (11) yields
B = −A − pb and, therefore,

σr

σ0
= A

(
1 − ρ−3) − pbρ

−3,
σθ

σ0
= A

(
1 + 1

2ρ3

)
+ pb

2ρ3 (12)

in the range ρc ≤ ρ ≤ 1. Here pb = Pb/σ0 (pa will stand for Pa/σ0).
Consider the plastic zone. Let τr , τθ and τϕ be the deviatoric stress components. Since τr + τθ + τϕ ≡ 0

and τθ = τϕ according to (1), the state of stress corresponding to the points M and N is (Fig. 1)

τr

σ0
= −2m

3
�

(
ε

p
eq

)
,

τθ

σ0
= τϕ

σ0
= m

3
�

(
ε

p
eq

)
. (13)

Here m = +1 for expansion (point N ) and m = −1 for contraction (point M). Therefore, σ0 denotes the
initial yield stress in tension in the radial direction if m = −1 and the initial yield stress in compression in the
radial direction if m = 1. It is worthy of note that it is not required that these initial yield stresses are of the
same magnitude. Substituting (13) into (5) gives

k−1εe
r = (1 − 2ν)

σ

σ0
− 2m (1 + ν)

3
�

(
ε

p
eq

)
,

k−1εe
θ = k−1εe

ϕ = (1 − 2ν)
σ

σ0
+ m (1 + ν)

3
�

(
ε

p
eq

) (14)

where k = σ0/E . It follows from (4) and (14) that

k−1εr = k−1ε
p
r + (1 − 2ν)

σ

σ0
− 2m (1 + ν)

3
�

(
ε

p
eq

)
,

k−1εθ = k−1ε
p
θ + (1 − 2ν)

σ

σ0
+ m (1 + ν)

3
�

(
ε

p
eq

)
.

(15)

It follows from (6) and (9) that ε̇
p
eq = 2mε̇

p
θ = −mε̇

p
r . Integrating gives

ε
p
eq = 2mε

p
θ = −mε

p
r . (16)

It has been taken into account here that ε p
eq = ε

p
r = ε

p
θ = 0 at the elastic/plastic boundary. Using (16) equation

(15) is transformed to

k−1εr = −mk−1ε
p
eq + (1 − 2ν) σ

σ0
− 2m(1+ν)

3 �
(
ε

p
eq

)
,

k−1εθ = mk−1 ε
p
eq
2 + (1 − 2ν) σ

σ0
+ m(1+ν)

3 �
(
ε

p
eq

)
.

(17)

The equation of strain compatibility is εr = ∂ (rεθ )/∂r . Substituting (17) into this equation yields

m (1 − 2ν) k

σ0

ρ∂σ

∂ρ
+

[
1

2
+ k (1 + ν)

3
�′ (ε p

eq
)] ρ∂ε

p
eq

∂ρ
+ 3

2
ε

p
eq + k (1 + ν)�

(
ε

p
eq

) = 0. (18)

Substituting (13) into (10) gives

m
ρ

σ0

∂σ

∂ρ
= 2�

(
ε

p
eq

) + 2ρ

3
�′ (ε p

eq
) ∂ε

p
eq

∂ρ
. (19)

Eliminating the derivative ∂σ/∂ρ in (18) by means of (19) leads to

1

3

[
1 + 2k (1 − ν)�′ (ε p

eq
)]

ρ
∂ε

p
eq

∂ρ
+ ε

p
eq + 2k (1 − ν) �

(
ε

p
eq

) = 0. (20)

This equation can be in general derived from the solution given in [14]. Integrating (20) and using the condition
ε

p
eq = 0 at ρ = ρc result in

(
ρc

ρ

)3

= ε
p
eq + 2k (1 − ν)�

(
ε

p
eq

)

2k (1 − ν)
. (21)
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This equation determines ε
p
eq and a function of ρ in implicit form. Using (20) to eliminate the derivative

∂ε
p
eq/∂ρ in (19) and, then, using (20) again to replace differentiation with respect to ρ with differentiation with

respect to ε
p
eq yields

∂σ

σ0∂ε
p
eq

= −m
2

[
�

(
ε

p
eq

) − ε
p
eq�′ (ε p

eq
)]

3
[
ε

p
eq + 2k (1 − ν) �

(
ε

p
eq

)] . (22)

Let βσ0 be the value of σ at ρ = ρc. Since ε
p
eq = 0 at ρ = ρc, the solution of Eq. (22) satisfying this condition

is

σ

σ0
= −m

2

3

ε
p
eq∫

0

[
�(χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ + β (23)

where χ is a dummy variable of integration. The radial stress must be continuous across the elastic/plastic
boundary. The material just on the elastic side of the elastic/plastic boundary must satisfy the yield criterion
[1]. Therefore, the circumferential stress is also continuous across the elastic/plastic boundary. Using (12),
(13) and (23), these two conditions can be written as

A
(
1 − ρ−3

c

) − pbρ
−3
c = β − 2m

3
, A

(
1 + 1

2ρ3
c

)
+ pb

2ρ3
c

= β + m

3
. (24)

Solving these equations for A and β gives

A = 2m

3
ρ3

c − pb, β = 2m

3
ρ3

c − pb. (25)

Substituting (25) into (12), (13) and (23) leads to

σr

σ0
= 2m

3
ρ3

c

(
1 − ρ−3) − pb,

σθ

σ0
= 2m

3
ρ3

c

(
1 + 1

2ρ3

)
− pb (26)

in the range ρc ≤ ρ ≤ 1 and

σ

σ0
= −m

2

3

ε
p
eq∫

0

[
� (χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ + 2m

3
ρ3

c − pb (27)

in the range a ≤ ρ ≤ ρc. Let εa be the value of ε
p
eq at r = a0 (or ρ = a). Then, it follows from (21) that

(ρc

a

)3 = εa + 2k (1 − ν)� (εa)

2k (1 − ν)
. (28)

The range of validity of the present solution is restricted by the condition ρc = 1. Substituting this condition
into (28) gives the following equation for the maximum possible value of εa = εm

a3 [εm + 2k (1 − ν)� (εm)]

2k (1 − ν)
= 1. (29)

The value of the radial stress at ρ = a is determined from (13) and (27) at ε
p
eq = εa . Then, using the boundary

condition (2) results in

2m

3
� (εa) + m

2

3

εa∫

0

[
� (χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ − 2m

3
ρ3

c = pa − pb. (30)
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Eliminating here ρc by means of (28) leads to the following equation for εa

2

3
�(εa) + 2

3

εa∫

0

[
� (χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ − [εa + 2k (1 − ν) � (εa)] a3

3k (1 − ν)
= m (pa − pb). (31)

Once this equation has been solved, the dimensionless radius of the elastic/plastic boundary immediately
follows from (28). For any loading path, it is now possible to check whether this radius is an increasing
function of the time. The distribution of stresses is given by (26) in the elastic zone and by (13), (21) and (27)
in the plastic zone. The latter is in parametric form with ε

p
eq being the parameter whose range is 0 ≤ ε

p
eq ≤ εa .

Having determined the distribution of stresses, the distribution of strains in the elastic zone is found from (5).
The distribution of plastic strains in the plastic zone follows from (16) and (21). The distribution of total strains
in the plastic zone is found from (17), (21) and (27).

4 Residual stresses and strains

4.1 Purely elastic unloading

If the shell is unloaded from a partly plastic state, residual stresses and strains occur. If there is no reversed
plastic zone, then the solution for the increment of stress has the same form as the solution (12) in which pb
should be replaced with −pb. As a result,

�σr

σ0
= �A

(
1 − ρ−3) + pbρ

−3,
�σθ

σ0
= �A

(
1 + 1

2ρ3

)
− pb

2ρ3 (32)

where �A is constant. This solution should satisfy the condition �σr = Pa at ρ = a. Substituting this
condition into (32) gives

�A = a3 pa − pb

a3 − 1
. (33)

Eliminating �A in (32) by means of (33) yields

�σr

σ0
=

(
a3 pa − pb

) (
1 − ρ−3

)

(
a3 − 1

) + pbρ
−3,

�σθ

σ0
=

(
a3 pa − pb

) (
2 + ρ−3

)

2
(
a3 − 1

) − pb

2ρ3 ,

�τr

σ0
= (pa − pb) a3

(
1 − a3

)
ρ3

,
�τθ

σ0
= �τϕ

σ0
= − (pa − pb) a3

2
(
1 − a3

)
ρ3

,
�σ

σ0
= pb − paa3

1 − a3 .

(34)

Having this solution, the increment of strain is found from Hooke’s law. The distribution of residual stresses
and strains is obtained by adding the respective increments to the distribution of stresses and strains determined
in the previous section.

4.2 Initiation of reversed yielding

The Bauschinger effect in the boundary value problem under consideration can be described in the same
manner as in [17]. In particular, by analogy to (13), the state of stress in the reversed plastic zone is given by

τ res
r

σ0
= 2m

3
�

(
ε

p
eq

)
,

τ res
θ

σ0
= τ res

r

σ0
= −m

3
�

(
ε

p
eq

)
(35)

where ε
p
eq is the forward equivalent strain given by (21) and �

(
ε

p
eq

)
is an arbitrary function of its argument

satisfying the conditions � (0) = 1 and d�/dε
p
eq ≤ 0 for all ε

p
eq . This inequality accounts for a reduction in

flow stress accompanied a reversal to the plastic strain. Here and in what follows, the superscript res denotes
residual stresses and strains after unloading. The validity of the solution (34) is controlled by the condition
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m
(
τr + �τr − τ res

r

) ≤ 0. Substituting (13), (34) and (35) into this equation and then eliminating ρ3 by means
of (21) yield

�
(
ε

p
eq

) = −2

3

[
�

(
ε

p
eq

) + �
(
ε

p
eq

)] + m (pa − pb) a3
[
ε

p
eq + 2k (1 − ν) �

(
ε

p
eq

)]

2k (1 − ν)
(
1 − a3

)
ρ3

c
≤ 0 (36)

Differentiating (36) gives

d�

dε
p
eq

= −2

3

[
�′ (ε p

eq
) + �′ (ε p

eq
)] + m (pa − pb) a3

[
1 + 2k (1 − ν) �′ (ε p

eq
)]

2k (1 − ν)
(
1 − a3

)
ρ3

c
(37)

The product m (pa − pb) is always positive. Therefore, the second term on the right-hand side of (37) is
positive. The derivatives �′ (ε p

eq
)

and �′ (ε p
eq

)
have the opposite signs. For real metals

∣∣�′ (ε p
eq

)∣∣ > �′ (ε p
eq

)

and�′ (ε p
eq

)
< 0 [17]. Therefore, the first term on the right-hand side of (37) is also positive. Thus, d�/dε

p
eq > 0

in the range 0 ≤ ε
p
eq ≤ εa . Then, it follows from (36) that the reversed plastic zone starts to develop from the

inner surface of the shell where ε
p
eq attains its maximum magnitude. Let εcr be the corresponding value of εa .

The inequality (36) and Eq. (28) result in

2

3
[� (εcr ) + � (εcr )] − m (pa − pb)(

1 − a3
) = 0. (38)

Replacing εa with εcr in (31) and eliminating m (pa − pb) by means of (38) give the following equation for
εcr

εcr∫

0

[
� (χ) − χ�′ (χ)

]

[χ + 2k (1 − ν) � (χ)]
dχ − εcr a3

2k (1 − ν)
= (

1 − a3)� (εcr ) . (39)

Once this equation has been solved, the corresponding values of pa − pb and ρc can be found from (38) and
(28), respectively.

4.3 Elastic/plastic unloading

If εa > εcr , then it is necessary to consider the reversed plastic zone in the vicinity of the inner radius of the
shell. Let ρ = ρs be the outer radius of this zone. The present solution is restricted to the process of unloading
in which ρs does not decrease throughout the process. It follows from (21) and (28) that

(ρs

a

)3 = εa + 2k (1 − ν)� (εa)

εs + 2k (1 − ν)� (εs)
. (40)

The solution (32) is valid in the range ρs ≤ ρ ≤ 1. However, �A is not determined by (33). The distribution
of the stresses σ res and τ res

r in the range ρs ≤ ρ ≤ ρc follows from (13), (27) and (32) as

σ res

σ0
= −m

2

3

ε
p
eq∫

0

[
�(χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ + 2m

3
ρ3

c − pb + �A,

τ res
r

σ0
= −2m

3
�

(
ε

p
eq

) + (pb − �A)

ρ3 . (41)

Equation (19) in which �
(
ε

p
eq

)
is replaced with −�

(
ε

p
eq

)
and the hydrostatic stress with the residual hydrostatic

stress is valid in the range a ≤ ρ ≤ ρs . In particular,

m
ρ

σ0

∂σ res

∂ρ
= −2�

(
ε

p
eq

) − 2ρ

3
�′ (ε p

eq
) ∂ε

p
eq

∂ρ
. (42)
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Replacing in this equation the derivative ∂σ res/∂ρ with the derivative ∂σ res/∂ε
p
eq and then eliminating the

derivative ∂ε
p
eq/∂ρ by means of (20) result in

m

σ0

∂σ res

∂ε
p
eq

= 2

3

�
(
ε

p
eq

) [
1 + 2k (1 − ν)�′ (ε p

eq
)]

[
ε

p
eq + 2k (1 − ν)�

(
ε

p
eq

)] − 2

3
�′ (ε p

eq
)
. (43)

Integrating leads to

m

σ0
σ res = 2

3

ε
p
eq∫

εa

� (χ)
[
1 + 2k (1 − ν) �′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ − 2

3
�

(
ε

p
eq

)
. (44)

It has been taken into account here that σ res
r = σ res + τ res

r = 0 at ε
p
eq = εa and τ res

r is given by (35).
A requirement of equilibrium is that the radial stress is continuous across the elastic/plastic boundary. The
material just on the elastic side of the elastic/plastic boundary must satisfy the yield criterion [1]. In the problem
under consideration, these conditions are equivalent to the requirement that τ res

r and σ res are continuous across
the elastic/plastic boundary. Then, it follows from (28), (35), (40), (41) and (44) that

�A = pb − 2ma3

3

[εa + 2k (1 − ν)� (εa)] [� (εs) + � (εs)]

[εs + 2k (1 − ν) � (εs)]
,

εs∫

εa

� (χ)
[
1 + 2k (1 − ν)�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ +

εs∫

0

[
�(χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ (45)

= a3 [εa + 2k (1 − ν)� (εa)] [εs − 2k (1 − ν)� (εs)]

2k (1 − ν) [εs + 2k (1 − ν)� (εs)]
+ � (εs) .

Equation (45)2 should be solved numerically to find εs . Then, �A is immediately determined from (45)1.
Eliminating �A, ρ and ρc in (41) by means of (45)1, (21) and (28), respectively, gives

σ res

σ0
= −m

2

3

ε
p
eq∫

0

[
� (χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ + a3m [εa + 2k (1 − ν) � (εa)]

3k (1 − ν)

−2a3m

3
[� (εs) + � (εs)]

[
εa + 2k (1 − ν)� (εa)

εs + 2k (1 − ν)� (εs)

]
, (46)

τ res
r

σ0
= −2m

3
�

(
ε

p
eq

) + 2m

3
[� (εs) + � (εs)]

[
ε

p
eq + 2k (1 − ν) �

(
ε

p
eq

)

εs + 2k (1 − ν) � (εs)

]

in the range εs ≥ ε
p
eq ≥ 0 (or ρs ≤ ρ ≤ ρc). The distribution of the residual radial and circumferential stresses

is determined from (46) and

σ res
r

σ0
= σ res

σ0
+ τ res

r

σ0
,

σ res
θ

σ0
= σ res

σ0
− τ res

r

2σ0
. (47)

The distribution of the residual radial and circumferential stresses in the range εa ≥ ε
p
eq ≥ εs (or a ≤ ρ ≤ ρs)

follows from (35), (44) and (47). Substituting �A from (45) into (32) yields

�σr

σ0
= pb + 2ma3

3
[� (εs) + � (εs)]

[
εa + 2k (1 − ν)� (εa)

εs + 2k (1 − ν)� (εs)

] (
1

ρ3 − 1

)
,

�σθ

σ0
= pb − 2ma3

3
[� (εs) + � (εs)]

[
εa + 2k (1 − ν)� (εa)

εs + 2k (1 − ν)� (εs)

] (
1

2ρ3 + 1

)
. (48)
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The distribution of the residual radial and circumferential stresses in the range ρc ≤ ρ ≤ 1 is determined from
(26) and (48) as

σ res
r

σ0
= ma3 [εa + 2k (1 − ν)� (εa)]

3k (1 − ν)

{
1 − 2k (1 − ν) [� (εs) + �(εs)]

[εs + 2k (1 − ν)� (εs)]

} (
1 − 1

ρ3

)
,

σ res
θ

σ0
= ma3 [εa + 2k (1 − ν)� (εa)]

3k (1 − ν)

{
1 − 2k (1 − ν) [� (εs) + �(εs)]

[εs + 2k (1 − ν)� (εs)]

} (
1 + 1

2ρ3

)
. (49)

The increment of strain is determined from (32), (45)1 and Hooke’s law in the range ρs ≤ ρ ≤ 1. Then, the
distribution of residual strains is immediately found using the strain solution at the end of loading given in
the previous section. The increment of strain in the range a ≤ ρ ≤ ρs consists of elastic and plastic portions.
In order to find the elastic portion, it is necessary to determine the increment of stress. Using (13), (27), (28),
(35) and (44)

�τr

σ0
= 2m

3

[
�

(
ε

p
eq

) + �
(
ε

p
eq

)]
,

�σ

σ0
= 2m

3

ε
p
eq∫

εa

� (χ)
[
1 + 2k (1 − ν)�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ − 2m

3
�

(
ε

p
eq

)
(50)

+2m

3

ε
p
eq∫

0

[
�(χ) − χ�′ (χ)

]

[χ + 2k (1 − ν)� (χ)]
dχ − ma3 [εa + 2k (1 − ν) � (εa)]

3k (1 − ν)
+ pb.

It follows from Hooke’s law that the elastic portion of strain increments is

�εe
r

k
= (1 − 2ν)

�σ

σ0
+ (1 + ν)

�τr

σ0
,

�εe
θ

k
= �εe

ϕ

k
= (1 − 2ν)

�σ

σ0
− (1 + ν)

2

�τr

σ0
. (51)

By analogy to (7), the increments of plastic strain satisfy the equation

2
(
�ε

p
θ

) = −�ε
p
r . (52)

Then, using (4) the equation of strain compatibility, �εr = ∂ (ρ�εθ )/∂ρ, transforms to

ρ
∂ (�εθ )

∂ρ
+ 3�εθ = �εe

r + 2
(
�εe

θ

)
. (53)

The boundary condition to this equation is

�εθ = �εθs (54)

at ρ = ρs where �εθs is the increment of the strain εθ on the elastic side of the elastic/plastic boundary ρ = ρs .
Using (40), (48) and Hooke’s law yields

�εθs

k
= (1 − 2ν) pb − m

3
[� (εs) + �(εs)]

{
1 + ν + 2a3 (1 − 2ν)

[
εa + 2k (1 − ν)� (εa)

εs + 2k (1 − ν)� (εs)

]}
. (55)

The solution of Eq. (53) satisfying the boundary condition (54) is

�εθ = 1

ρ3

ρ∫

ρs

χ2 [
�εe

r (χ) + 2�εe
θ (χ)

]
dχ + �εθs

ρ3
s

ρ3 . (56)

Here �εe
θ and �εe

r are understood to be functions of ρ. These functions are readily determined from (21), (50)
and (51). Using (52) and (56), the increment of the radial strain is found as

�εr = 2
(
�εe

θ − �εθ

) + �εe
r . (57)

The distribution of residual strains in the range a ≤ ρ ≤ ρs is immediately determined using (55), (56), (57)
and the strain solution at the end of loading given in the previous section.
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5 Illustrative example

The case of linear hardening with different hardening rates under forward and reversed deformation is repre-
sented by �

(
ε

p
eq

) = 1 + C f ε
p
eq and �

(
ε

p
eq

) = 1 − Crε
p
eq where C f and Cr are constant. Assume that m = 1,

pb = 0, k = 10−3, C f = (9k)−1, Cr = 2C f , ν = 0.3 and a = 0.3. The solution of Eq. (39) is εcr ≈ 0.00146.
The distribution of residual stresses and strains has been found for several values of εa > εcr using the solution
given in Sect. 4.3. In particular, the distribution of the residual radial and circumferential stresses is depicted in
Figs. 2 and 3, respectively. The values of εa have been chosen such that ρc = 0.4, ρc = 0.5 and ρc = 0.6 at the
end of loading. It is seen from Fig. 2 that the qualitative behavior of the residual radial stress depends on this
value of ρc. In particular, this stress may be either positive or negative in the vicinity of the inner surface of the
shell. The distribution of the residual radial and circumferential strains is shown in Figs. 4 and 5, respectively,
at the same values of ρc at the end of loading. It is seen from Fig. 4 that the residual radial strain may attain a
local maximum within the reversed plastic zone.
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Fig. 2 Distribution of the residual radial stress at different values of ρc at the end of loading
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Fig. 3 Distribution of the residual circumferential stress at different values of ρc at the end of loading
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6 Conclusions

A semi-analytic solution for the expansion/contraction of an elastic/plastic hollow sphere of strain-hardening
material and subsequent unloading has been derived. The flow theory of plasticity has been adopted in con-
junction with quite an arbitrary yield criterion and its associated flow rule. The Bauschinger effect has been
taken into account. Numerical methods are necessary to evaluate ordinary integrals and solve transcendental
equations. Pressure release is purely elastic if εa < εcr where εcr is determined from (39). The value of εa
is related to the pressures applied by Eq. (31). A reversed plastic zone appears if εa > εcr . In this case, it is
convenient to distinguish three domains, namely (i) both loading and unloading are purely elastic in the range
ρc ≤ ρ ≤ 1, (ii) loading is plastic and unloading is elastic in the range ρs ≤ ρ ≤ ρc, (iii) both loading and
unloading are plastic in the range a ≤ ρ ≤ ρs . These three domains are clearly seen in Figs. 3 and 4. The
values of ρc and ρs are found from (28) and (40), respectively. The limitations of the solution given are that
both ρc and ρs are by assumption monotonically increasing functions of the time. In specific calculation, these
conditions can be verified by means of Eqs. (28) and (40).
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Fig. 4 Distribution of the residual radial strain at different values of ρc at the end of loading
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Fig. 5 Distribution of the residual circumferential strain at different values of ρc at the end of loading
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The key point of the approach developed is to use the equivalent plastic strain as an independent variable
instead of the radius. This approach is in line with that used in [14,16]. In these works, the equivalent stress
has been used as an independent variable.
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