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Abstract An analytical solution of the problem of the propagation of a Lüders band in an isotropic strain
gradient plasticity medium is provided based on a softening–hardening constitutive law. A detailed description
is given of the plastic strain distribution in the finite size band front. The solution is shown to be harmonic
in the band front and exponential in the band tail. Particular attention is paid to the conditions to be applied
at the interface between both regions. This solution is then used to validate finite element simulations of the
Lüders band formation and propagation in a plate in tension. The approach is shown to suppress the spurious
mesh dependence exhibited by conventional finite element simulations of the Lüders behavior and to provide
a finite width band front in agreement with the experimental observations from strain field measurements.

Keywords Lüders bands · Strain gradient plasticity · Finite element · Static strain ageing

1 Introduction

The well-known peak stress and Lüders plateau that occur during tensile tests on metallic materials at the
elastic to plastic transition have been experimentally evidenced in the nineteenth century by Piobert [52] and
Lüders [43]. This effect has been attributed by Cottrell [12] to the pinning of mobile dislocations by solute
atoms in metals and alloys. This interaction of dislocations with solute atoms is called strain aging. If an aging
treatment is carried out on a metallic specimen, solute atoms can diffuse close to dislocations. Compared to
a non-aged material, a higher stress level is required to trigger plastic deformation. When the peak stress is
overcome, the unpinning process of dislocations induces a softening of the material response followed by the
propagation of a band of plastic deformation all along the specimen [44]. The propagation of this band is
generally associated with a plateau at a constant stress level σp on the overall stress–strain curve. When the
band has propagated along the specimen, the plateau ends up and the whole specimen is then homogeneously
deformed, displaying conventional work-hardening. The strain corresponding to the end of the plateau regime
is called the Lüders strain pL . It is generally located at the intersection between the non-aged stress–strain
curve and the plateau stress level. The peak stress level is mainly controlled by the aging time and temperature
originally experienced by the material [4,5], while the Lüders strain can be affected by the grain size of the
metal [16,41]. The Lüders bands have been experimentally observed using various techniques including strain
field measurements [10,42,44]. The band front is generally found to be rather diffuse, involving a large number
of grains. In this front zone, the plastic strain varies from the value pL to zero.

The Lüders phenomenon can be simulated using various elastic–plastic models. The most simple approach
amounts to define a bilinear softening and then hardening function of the cumulative plastic strain for the
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evolution of stress in the plastic domain [37,56,57]. Finite element simulations carried out on meshes of the
full specimen show that the softening part that follows the yield point is responsible for strain localization in the
form of a shear band starting from an existing defect or from the sample fillets. Once the Lüders strain is reached
in the first localization zone, a band starts to propagate over the whole specimen. In the mean time, a stress
plateau is observed on the overall stress–strain curve. The same behavior has been observed in simulations
carried out using a nonlinear softening followed by hardening function that can be built from the sum of
exponential functions [5,44]. A more sophisticated model based on the physical mechanisms underlying strain
aging was proposed by McCormick, Kubin, Estrin [36,46,47]. This model is originally designed to simulate
the Portevin–Le Chatelier effect but is also suitable for Lüders phenomenon, at least if the initial value of
an additional internal variable called aging time is chosen suitably. The main advantage of this model is its
ability to satisfactorily describe complex tensile experiments including heat treatments prior to, during, or after
deformation, for instance to observe the influence of pre-straining on the stress peak level. This model has been
successfully used in finite element simulations of the Lüders phenomenon in steels [6,29,30,44,58,59]. More
elaborate constitutive equations are needed to better account for the coupling between aging phenomena and
dislocation multiplication and interaction, see [26,33,48,50]. They have not yet been considered for systematic
finite element simulations of sample behavior.

All these models induce strain localization when they are used in finite element simulations of metallic
plates under simple tension. It is well known that conventional strain localization simulations are associated
with spurious mesh dependence due to the loss of ellipticity of the set of partial differential equations [7].
Surprisingly, this fact has been overlooked in published results of simulations of the Lüders phenomenon. This
is due to the fact that the hardening behavior that follows the softening regime in the constitutive law accounting
for the Lüders effect restores the well posedness of the problem and that the mesh sensitivity is only transient.
However, it has been demonstrated in [5,44,46] that conventional simulations of Lüders band formation and
propagation are flawed by spurious mesh dependence, and that the plateau stress σp and Lüders strain pL
cannot be predicted accurately due to the presence of mesh-dependent oscillations on the overall curve. To
get rid of mesh dependence, a regularization method can be introduced based on the introduction of strain
gradient plasticity effects [1]. Motivations for such a regularization procedure originate from contributions in
[2,32,38,50], which advocate that strain gradient plasticity effects play a significant role in the propagation of
the Lüders band front.

In particular, the existing finite element simulations of Lüders behavior predict an abrupt drop of plastic
strain at the band front lying between the plastically deformed and underformed zones of the sample dur-
ing propagation. The band front thickness and shape are essentially controlled by mesh size [46] and mesh
orientation [5,44]. In contrast, recent strain field measurements and physical observations of plastic activity
suggest that the band front is a zone of finite size associated with inhomogeneous plastic deformation [42,44].
The band front extends over a significant number of grains, up to 100 [55]. The strain gradient plasticity
models contain an intrinsic length that accurately accounts for the finite width of strain localization bands [9].
They can thus serve the two objectives of Lüders band simulation, namely numerical accuracy by means of
mesh-independent results and physical relevance by means of a detailed description of the band front behavior.
However, the relationship between the internal length introduced to regularize the model and the band front
size observed in finite element simulation has never been derived for any of the models presented previously.

The aim of this article is to provide the framework for the accurate finite element simulation of Lüders
band initiation and propagation in isotropic metals and alloys. For that purpose, a new analytical solution of
the propagation of a Lüders band in an isotropic strain gradient continuum is derived. The solution provides
a detailed description of the plastic strain distribution in the band front. A direct relation is given between
the material parameters and the finite width of the band front, which has not been derived previously in the
literature in the context of Lüders band propagation. The stress plateau σp and corresponding Lüders strain
pL are also derived as functions of the material parameters. The obtained analytical solution is then used to
validate finite element simulations of the Lüders band initiation and propagation in a metallic plate in tension.

Section 2 is dedicated to the evidence of the strong mesh sensitivity of conventional simulations of the
Lüders behavior with special attention to the effect of element orientation with respect to the tensile direc-
tion. Mesh sensitivity is illustrated both for two-dimensional and three-dimensional implicit finite element
computations. For that purpose, a simple rate-independent elastoplasticity model based on von Mises criterion
is used, including a non-monotonic bilinear hardening law. The theoretical formulation of the strain gradient
plasticity model is given in Sect. 3. The Lüders band problem is then solved analytically based on this enhanced
constitutive model in Sect. 4. Finally, finite element simulations using the regularized model are presented in
Sect. 5 to outline the mesh objectivity of the results and to compare the results with the analytical solution.
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The following notations are used for the mathematical objects of the models. First-, second-, and fourth-
order tensors are, respectively, denoted by a , a∼, and a∼∼

. Simple and double contractions are written · and :

respectively. The gradient operator is ∇. The divergence of a second-order tensor is written div a∼ and its
Cartesian components are ai j, j with summation according to Einstein convention.

2 Evidence of mesh sensitivity in the simulation of Lüders band propagation

2.1 Material model

An elastoplastic material model is used in this work to model the Lüders band formation and propagation in
a flat specimen under simple tensile loading conditions. The model formulation is limited to the small strain
framework because it is suitable for the derivation of analytical solutions, as done in Sect. 4.

The strain rate ε̇∼ is split into elastic and plastic parts:

ε̇∼ = ε̇∼
e + ε̇∼

p (1)

The stress tensor is given by Hooke’s law involving the fourth-order tensor E∼∼
of elastic moduli:

σ∼ = E∼∼
: ε∼

e (2)

The yield function f (σ∼, R) involves the von Mises equivalent stress σeq:

f (σ∼, R) = σeq(σ∼)− σM − R, σeq =
√

3

2
s∼ : s∼ (3)

where s∼ is the deviatoric part of the stress tensor. The initial yield stress is σM and R accounts for work-
hardening. The plastic flow follows from the normality rule:

ε̇∼
p = ṗN∼ , N∼ = ∂ f

∂σ∼
= 3

2

s∼
σeq

(4)

where ṗ =
√

2
3 ε̇∼

p : ε̇∼
p is the plastic multiplier and p is the cumulative plastic strain. Isotropic hardening

is considered in the form of a function R(p). The consistency condition during plastic loading provides the
expression of the plastic multiplier in the form:

ṗ =
N∼ : E∼∼

: ε̇∼

N∼ : E∼∼
: N∼ + R′ (5)

where R′(p) is the derivative of the hardening function R(p) with respect to p.
In order to simulate the Lüders band propagation in a specimen, the hardening law R(p) must be a non-

monotonic function of p, first displaying a softening and then a hardening behavior, as proposed in [20,56].
A bilinear evolution of R(p) is chosen in this work:

R(p) = σm + H1(p − pm)− σM if 0 ≤ p ≤ pm (6)

R(p) = σm + H2(p − pm)− σM if p ≥ pm (7)

where H1 < 0 and H2 > 0 are the two hardening moduli and pm and σm are material parameters. The
condition R(p = 0) = 0 implies that H1 = (σm − σM )/pm so that the independent material parameters are
σM , σm, pm, H2 or, equivalently, σM , σm, H1, H2. The corresponding evolution is plotted in Fig. 1.

2.2 Mesh sensitivity for two-dimensional specimens

The material model defined in the previous part has been used to simulate the propagation of a Lüders band in a
L = 96 mm long and 12 mm large flat rectangular specimen. Simulations are carried out using the implicit finite
element software Zset [8]. A Newton algorithm is used to solve global equilibrium under static conditions, and
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Fig. 1 Bilinear hardening law σ = σM + R(p) used in the elastoplastic constitutive model
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Fig. 2 90◦ and 54.74◦ oriented meshes used in this work to simulate the Lüders band propagation. Band nucleation is triggered
by introducing a small geometrical imperfection denoted ∧ on each mesh [37]

an implicit θ -method is resorted to in order to solve the set of constitutive differential equations at the Gauss
point level [7].

The following illustrative material parameters have been used:

σm = 990 MPa, pm = 0.01, H1 = −1000 MPa, H2 = 1000 MPa

They are used here for the purpose of illustration and validation of the approach. More realistic parameters
corresponding to a C-Mn steel displaying the Lüders phenomenon can be found in [44].

Two different 2D meshes with practically the same number of degrees of freedom (DOF), defined as twice
the number of nodes in the mesh, have been investigated with two different element shapes and orientations.
The first one is a regular mesh with quadrangular elements oriented parallel to the tensile direction (7,346
DOF). The second one is a regular mesh made of distorted quadrangular elements with edges making a
constant angle of ±54.74◦ with respect to the tensile axis. It contains 5,342 DOF. The chosen orientation of the
lines of elements corresponds to the well-known orientation for plastic strain localization bands in isotropic
elastoplastic materials, see [7,54]. The two meshes are plotted in Fig. 2. The elements are quadratic (8 nodes)
with full integration. A small deformation plane stress formulation is used. All the simulations were carried
out prescribing the vertical displacement of the top surface (Xb = L), while the displacement of the bottom
surface (Xb = 0) is fixed to zero in the tensile direction (see Fig. 2).

The overall tensile response and the plastic strain field for the 90◦ oriented mesh are shown in Fig. 3. The
overall stress can also be defined as the resulting force applied on the top surface divided by the thickness of the
plate. The overall strain is taken as the total imposed relative displacement divided by the sample length. An
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Fig. 3 Global stress versus plastic strain curve for the 90◦ oriented mesh. Maps of the cumulative plastic strain for an overall
plastic strain equal to 0.004 (bullet), 0.008 (black square), and 0.012 (black diamond)

overall plastic strain can be defined after subtracting the overall stress divided by Young’s modulus from the
overall total strain. The overall curve displays an initial stress peak followed by an abrupt load drop, a plateau,
and then hardening takes place after about 0.017 overall plastic strain. The curve displays a well-defined
plateau stress called σp as observed in many experiments of the Lüders behavior [44]. The Lüders plateau is
experimentally found to be more or less flat depending on the material and specimen shape. The simulated
plateau stress value remains betweenσm andσM , and the minimum and maximum values reached by the volume
element behavior according to the hardening law of Fig. 1. The bumps at the end of the plateau correspond
to the contact of the band with one sample’s end. The fields of cumulative plastic strain p at different loading
steps in Fig. 3 show the clear spreading of a band-like deformation zone with two propagating fronts having
an orientation of about ±55◦ with respect to the tensile axis. Note also some crossing bands inside the plastic
zone. The plastic strain rate is significant only at the band front the width of which is about 1 to 3 elements
thick. The band front for this type of mesh is rather diffuse and can be shown to depend on the element size.

The results of the simulation carried out on the 54.74◦ oriented mesh show that the overall curve is strongly
oscillating and that no plateau stress can be defined, see Fig. 4. The stress level oscillates between σm and σM
during the whole propagation, even during band initiation at the early stage. During propagation, the plastic
strain increases abruptly in a row of element, while nothing happens elsewhere in the specimen. The band front is
then localized in a single row of element. The reason for such a difference in the finite element responses between
both oriented meshes is due to the fact that the 54.74◦ oriented edges allow for discontinuities of the strain tensor
as expected in a strain localization band. In contrast, for orientations different from 54.74◦, a strict discontinuity
of the strain is not possible, which results in a more diffuse band front. The severely oscillating behavior obtained
with 54.74◦ oriented elements strongly differs from the experimental results of Lüders band propagation.

Simulations on irregular meshes based on free Delaunay meshing of the plates performed in [44] show
results similar to that found for the 90◦ oriented mesh but, possibly, with slightly different values of σp.

As a result, the two-dimensional finite element simulations of the Lüders behavior are found to be strongly
mesh dependent. The band front width depends on the element size and orientation. The plateau stress level
depends on the element orientation. The 54.74◦ particular orientation leads to a spurious global stress–strain
curve compared to the experimental results.
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Fig. 4 Global stress versus plastic strain curve for the 54.74◦ oriented mesh. Maps of the cumulative plastic strain for a global
plastic strain equal to 0.004 (bullet), 0.008 (blacksquare), and 0.012 (black diamond)

2.3 3D simulations: influence of specimen thickness

The previous simulations have been carried out within the plane stress assumption. It is well known that this
type of simulation is more prone to strain localization than full 3D simulations [7]. Indeed, the sharp localization
phenomenon observed for the 54.74◦ oriented mesh can be limited by the out-of-plane incompatibility of the
strain jump in the thickness direction. In order to investigate the regularization that can be provided by this
three-dimensional effect, simulations of the Lüders band propagation with the model presented in Sect. 2.1
have been carried out on four 3D specimens with different thickness: 3, 1, 0.3, 0.1 mm. The 54.74◦ oriented
mesh has been extended in each case in the thickness direction with 3 layers of elements. The results of these
four 3D simulations are presented in Fig. 5. They can be compared to the corresponding plane stress simulations
presented in Fig. 4. For the thicker specimens (3 and 1 mm), the regularization due to geometrical effect is
efficient: the stress remains on a plateau and the band front is smooth. For the thinner ones (0.3, 0.1 mm),
results are close to the 2D plane stress simulations: the stress oscillates and the band front is sharp.

Accordingly, it can be said that spurious mesh dependence in the simulation of Lüders bands is observed
irrespective of the space dimension and types of element. In particular, the band front thickness and the predicted
plateau stress value are mesh dependent, which limits the confidence in the results of such simulations.

3 Strain gradient plasticity model

3.1 Motivation

The numerical results in Sect. 2 reveal a strong mesh dependence of the predicted plateau regime of the overall
loading curves. Oscillations of various amplitudes are obtained that culminate in the case of element edges
parallel to the band front. Such oscillations prevent us to determine a precise value of the plateau stress. On the
other hand, the standard model predicts a sharp transition from the Lüders band to the plastically undeformed
zone. This is in contradiction with strain field measurements indicating the existence of a smooth band front
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Fig. 5 Global stress versus plastic strain curves for a 3D 54.74◦ oriented mesh extended in the third direction. Maps of the local
cumulative plastic strain for a global plastic strain equal to 0.008. Thickness of specimens is equal to 3 mm (top left), 1 mm (top
right), 0.3 mm (bottom left), 0.1 mm (bottom right)

zone, typically corresponding to hundred times the grain size [10,42,44]. A smooth band front whose width
can be controlled from specific material parameters is needed.

Both numerical and physical limitations can be solved by resorting to a strain gradient plasticity model
as recommended in [2,32,50] for the simulation of the Lüders phenomenon. Strain gradient plasticity can
be regarded as a mathematical regularization method that restores the well posedness of the boundary value
problem in the presence of strain-softening effects [7,21]. On the other hand, it introduces an intrinsic length
in the mechanical model, which reflects some aspects to the underlying microstructure of the material, here
related to the cooperative deformation of grains of given size in a polycrystal.

The choice of the best-suited generalized continuum model for introducing a characteristic length in the
constitutive framework remains heuristic in the sense that no micromechanical derivation is presented here to
derive the appropriate continuum from microstructural considerations. The strain gradient theory introduced by
Toupin and Mindlin [13,14,27,49] is a natural extension of the Cauchy continuum. In the context of plasticity,
the microstructural effect can be limited to the plastic distortion, as done in [25,31] where the full gradient of
the plastic strain is introduced in the constitutive modeling. This theory however leads to a computationally
expensive model. In the isotropic case, it is sufficient to limit the strain gradient effect to the gradient of a
scalar quantity like the cumulative plastic strain [60].

3.2 Theory

The general strain gradient plasticity framework is presented first in terms of balance and constitutive equations
within the small strain framework. Special attention is given to the formulation of boundary and interface
conditions that will be used in the analytical solution derived in the next sections. The theory is then specialized
to the case of isotropic von Mises elastoplasticity.

3.2.1 Balance equations

The extension of the classical continuum plasticity framework is based on a generalization of the power density
of internal forces. The degrees of freedom of the material point of the considered enhanced continuum are the
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displacement vector u and the cumulative plastic strain p regarded as independent and controllable variables.
The theory then involves the gradient of the displacement field ∇u and the gradient of the cumulative plastic
strain ∇ p.

The virtual power of internal forces of a subdomain D ⊂ B of the body B is computed by means of a
density p(i) that is assumed to depend on all virtual variations of the model variables

P(i)(v ∗, ṗ∗) =
∫

D
p(i)(∇v ∗, ṗ∗,∇ ṗ∗) dV (8)

where v ∗ = u̇ ∗ is a virtual velocity field, and ṗ∗ a virtual plastic strain rate field. The virtual power density
of internal forces is taken as a linear form on the fields of virtual modeling variables

p(i)(∇v ∗, ṗ∗,∇ ṗ∗) = σ∼ : (∇v ∗)+ a ṗ∗ + b · ∇ ṗ∗ (9)

The conjugate quantities in the power density are the simple stress tensor σ∼ , and the generalized stresses a (unit
MPa) and b (unit MPa mm). The generalized stresses are also called microstress and microforce according to
[31]. The virtual power density of internal forces is invariant with respect to superimposed rigid body motion,
so that σ∼ is a symmetric second-order tensor [28].

The Gauss theorem is then applied to the power of internal forces
∫

D
p(i) dV =

∫

∂D
v ∗ · σ∼ · n dS +

∫

∂D
ṗ∗ b · n dS

−
∫

D
v ∗ · div σ∼ dV −

∫

D
ṗ∗ (div b − a) dV

The form of the previous boundary integral dictates the form of the power of contact forces acting on the
boundary ∂D of the subdomain D ⊂ B.

P(c)(v ∗, ṗ∗) =
∫

∂D
p(c)(v ∗, ṗ∗) dS (10)

p(c)(v ∗, ṗ∗) = t · v ∗ + ac ṗ∗ (11)

where the simple traction t (unit MPa) and double traction ac (unit MPa mm) are introduced as surface densities
of applied forces.

As a next step, the virtual power of external forces takes the form

P(e)(v ∗, ṗ∗) =
∫

D
p(e)(v ∗, ṗ∗) dV (12)

p(e)(v ∗, ṗ∗) = f · v ∗ + c∼ : (∇v ∗)+ ae ṗ∗ + b e · ∇ ṗ∗ (13)

which involves the simple body forces f (unit N mm−3), double body forces c∼ (N mm−2), the generalized

body forces ae (unit N mm−2) and b e (unit N mm−1). The expression of the virtual power of external forces
can be transformed into

P(e)(v ∗, ṗ∗) =
∫

∂D

(
v ∗ · c∼ · n + ṗ∗b e · n

)
dS

−
∫

D

(
v ∗ · (div c∼ − f ) dV + ṗ∗(div b e − ae)

)
dV (14)

In the static case, following [28], the principle of virtual power stipulates that

P(i)(v ∗, ṗ∗) = P(c)(v ∗, ṗ∗)+ P(e)(v ∗, ṗ∗), ∀v ∗,∀ ṗ∗,∀D ⊂ B (15)
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which leads to ∫

∂D
v ∗ · (t − (σ∼ − c ) · n )+ ṗ∗(ac − (b − b e) · n ) dS

+
∫

D
v ∗ · (div (σ∼ − c∼)+ f )+ ṗ∗(div (b − b e)− a + ae) dV = 0 (16)

The application of the principle of virtual power leads to the

– balance of momentum equation (static case)

div (σ∼ − c∼)+ f = 0, ∀x ∈ B (17)

– balance of generalized momentum equation (static case)

div (b − b e)− a + ae = 0, ∀x ∈ B (18)

– boundary conditions
(σ∼ − c∼) · n = t , (b − b e) · n = ac, ∀x ∈ ∂B (19)

In the analytical work of Sect. 4, the external forces f , c , ae, b e will be assumed to vanish. In that case, the
balance and boundary conditions take the simpler form:

div σ∼ = 0, div b − a = 0, ∀x ∈ B (20)

σ∼ · n = t , b · n = ac, ∀x ∈ ∂B (21)

Note that the form of the boundary conditions for strain gradient plasticity models is significantly less involved
that the corresponding ones in Mindlin’s strain gradient theory. This is due to the fact that the plastic strain
tensor is generally not a compatible field, in contrast to the strain tensor. As a consequence, simple Dirichlet
and Neumann conditions like (21) can be formulated that differ from the corresponding ones in the second
gradient model, which involve normal and tangential derivatives of the fields and surface curvature [14].

3.2.2 Constitutive equations

The displacement field u and the strain tensor are introduced. The latter is still decomposed into the elastic
and plastic parts:

v = u̇ , ε∼ = 1

2
(∇u + (∇u )T ), ε∼ = ε∼

e + ε∼
p (22)

The state variables of the isothermal constitutive model are the elastic strain ε∼
e, the cumulative plastic strain

p, its gradient, and possibly some internal variables α for the sake of generality. The free energy density ψ
and all stress tensors are assumed to be functions of the state variables:

ψ = ψ̂(ε∼
e, p, α,∇ p), σ∼ = σ̂∼(ε∼

e, p, α,∇ p)

a = â(ε∼
e, p, α,∇ p), b = b̂ (ε∼

e, p, α,∇ p)

where ψ̂, σ̂∼, â, and b̂ are constitutive functionals.
The local form of the entropy principle for isothermal strain gradient plasticity takes the form [23,25]:

−ψ̇ + p(i) ≥ 0 (23)

The isothermal Clausius–Duhem inequality is derived(
σ∼ − ∂ψ̂

∂ε∼
e

)
: ε̇∼

e +
(

a − ∂ψ̂

∂p

)
ṗ +

(
b − ∂ψ̂

∂∇ p

)
· ∇ ṗ + σ∼ : ε̇∼

p − ∂ψ̂

∂α
α̇ ≥ 0 (24)

The following state laws are adopted:

σ∼ = ∂ψ̂

∂ε∼
e
, b = ∂ψ̂

∂∇ p
(25)
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meaning that the generalized stress is assumed to be associated with a non-dissipative process. Dissipative
strain gradient contributions can be introduced but they are not necessary for the purpose of this work [21].
The thermodynamic forces associated with the internal variables α and to the degree of freedom p are

X = ∂ψ̂

∂α
, R = ∂ψ̂

∂p
(26)

The residual dissipation rate is then given by

Dres = σ∼ : ε̇∼
p + (a − R) ṗ − X α̇ ≥ 0 (27)

For the formulation of the yield criterion, an equivalent stress measure σeq is introduced such that

σ∼ : ε̇∼
p = σeq ṗ (28)

The residual dissipation can be rearranged into

Dres = (σeq + a − R) ṗ − X α̇ ≥ 0 (29)

At this stage, in the case of rate-independent plasticity, a yield function f (σ∼, R − a, X) is introduced. The
principle of maximum dissipation rate is adopted and exploited using the Lagrangian function:

�(σ∼, R − a, X) = Dres − λ f (σ∼, R − a, X) (30)

where λ is a Lagrange multiplier. The extremum of � under the constraint f = 0 leads to the normality rule
for plastic flow and to the hardening laws:

ε̇∼
p = λ

∂ f

∂σ∼
, ṗ = −λ ∂ f

∂(R − a)
, α̇ = −λ ∂ f

∂X
(31)

3.2.3 Isotropic gradient elastoplasticity

The specific constitutive equations used in this work are now specified. The free energy density is composed
of three terms: the stored elastic energy density, the stored energy due to hardening, called ψp(p), and the
energy density associated with the gradient of cumulative plastic strain. The first and last contributions are
assumed to be quadratic, which provides the most simple strain gradient plasticity model:

ψ(ε∼
e, p,∇ p) = 1

2
ε∼

e : E∼∼
: ε∼

e + ψp(p)+ 1

2
∇ p · A∼ · ∇ p (32)

The tensor of elastic moduli was introduced in Eq. (2). Higher-order moduli are introduced in the form of the
second-rank tensor A∼ (unit MPa mm2). The state laws follow from (25) and (26):

σ∼ = E∼∼
: ε∼

e, R(p) = ∂ψp

∂p
, b = A∼ · ∇ p (33)

The potentialψp is chosen such that its derivative provides the hardening law (6–7). For simplicity, no internal
variable α is used here. As a consequence, the balance of generalized momentum (20) provides the following
partial differential equation, after substitution of the state laws for a homogeneous material:

a = div b = div (A∼ · ∇ p) = A∼ : (∇ ⊗ ∇ p) = A∇2 p (34)

The higher-order modulus A is the single additional material parameter introduced by strain gradient plasticity
in the case of material isotropy, Ai j = Aδi j . The higher-order stress a is then linearly related to the Laplace
of cumulative plastic strain.

The yield function is chosen in the form:

f (σ∼, R − a, X) = σeq − σM − R(p)+ a (35)
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where σM is the initial yield stress and σeq is the same equivalent stress measure as in (3). The normality rule
(31) gives:

ṗ = λ, ε̇∼
p = ṗ

∂ f

∂σ∼
, σeq = σ∼ : ∂ f

∂σ∼
(36)

The yield condition f = 0

σeq = σM + R − a = σM + R(p)− A∇2 p (37)

shows that p is solution of a partial differential equation in the plastic domain [39,40]. So does the plastic
multiplier ṗ when the consistency condition ḟ = 0 is enforced. Equation (37) coincides with the well-known
Aifantis strain gradient plasticity model [1,2], derived here in the context of thermodynamically consistent
rate-independent elastoplasticity [22].

Solving the yield condition as a partial differential equation is a cumbersome numerical task, which requires
the tracking of the boundary of the spatial domain undergoing plastic loading [39]. An alternative method for
the numerical implementation of strain gradient plasticity is to resort to the micromorphic approach, which
introduces an additional degree of freedom constrained to be close to the cumulative plastic strain by means
of a penalty term in the free energy density, see [3,15,17,21,44,60]. The micromorphic model recalled in
appendix 6 was implemented in the finite element code Zset using an implicit Newton global algorithm and
an implicit θ -method for the integration of differential equations at each Gauss point [44,46].

4 Analytical solution for Lüders band propagation

An analytical solution for the propagation of a Lüders band is derived in this section using the strain gradient
plasticity model presented in Sect. 3.2. The boundary value problem is formulated in the first subsection,
special attention being paid to boundary conditions and interface conditions at the band front. Then, Eq. (37) is
solved successively in the band front and in the band tail to compute the spatial distribution of the cumulative
plastic strain p. Analytical expressions of the band front size and of the Lüders plateau stress are provided.
Finally, the rate form of Eq. (37) is investigated in order to compute the analytical spatial distribution of the
plastic strain rate ṗ.

4.1 Boundary value problem and interface conditions

A single Lüders band propagating under tensile loading in an infinite solid is investigated in this section, see
Fig. 6. Far from sample boundaries, a band front zone can be defined as a material strip bounded, on one side,
by a planar interface with normal vector n separating the plastically undeformed part of the sample from the
plastically deformed one and, on the other side, by a planar interface separating the band front zone from the
band tail, which is the zone where plastic flow already occurred but is not significant any more. The finite
thickness Y f of this band front zone will be determined from the analysis. The specimen coordinate frame
(a, b) is oriented along and perpendicular to the tensile axis. A new local frame (O, X,Y) is introduced and
related to the band geometry, with X parallel to the band front. This moving coordinate frame is such that:

1. The cumulative plastic strain p does not depend on the coordinate X :

p(X, Y ) = p(Y ) (38)

∇2 p = ∂2 p

∂X2 + ∂2 p

∂Y 2 = d2 p

dY 2 = p′′ (39)

2. The plane Y = 0 is at each time located at the interface between the band front and the band tail.

The orientation n of the band is known from the standard bifurcation analysis corresponding to the prediction
of shear banding for isotropic plasticity [7]. The vector n is oriented at 35.26◦ from the tensile axis. This
analysis is still valid in the context of strain gradient plasticity.
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Fig. 6 Propagation of a single Lüders band in an infinite solid. Definition of the coordinate frame associated with the band
propagation

4.2 Analytical solution for the distribution of plastic strain p

In the coordinate frame (O, X, Y ), assuming plastic loading, Eq. (37) becomes:

σeq = σm + Hi (p − pm)− Ap′′ = σp (40)

where σp is the plateau stress level defined in Fig. 1. The modulus Hi can take the values H1 or H2 depending on
whether the material point is in the softening or hardening regime of Fig. 1. This equation is solved separately
in the three different regions illustrated in Fig. 6: the band tail, the band front, and the elastic domain.

In the band tail, i.e., for Y ≤ 0, the material points are in the hardening regime p ≥ pm . Then, Hi = H2
is positive and the solution of Eq. (40) is exponential. When Y → −∞, the cumulative plastic strain p tends
to a limit value pL , the Lüders strain defined in Fig. 1.

In the band front, i.e., for 0 ≤ Y ≤ Y f , Y f being the band front thickness, the material points experience
softening, i.e., 0 ≤ p ≤ pm . Then, Hi = H1 is negative and the solution of Eq. (40) is harmonic. The
cumulative plastic strain p and its gradient p′ remain continuous at Y = 0. We have p(0) = pm since Hi
switches from H2 in Y < 0 to H1 for 0 < Y ≤ Y f .

The continuity of p′ at the interface originates from the fact that the generalized traction ac = b ·n = Ap′,
according to (21) and (25), is transmitted at any interface, as the usual traction t does.

In the elastic domain, i.e., for Y ≥ Y f , there is no plastic deformation and p = p′ = 0. The cumulative
plastic strain p and its gradient p′ are continuous at Y = Y f , so that p(Y f ) = 0 and p′(Y f ) = 0.

A schematic representation of solution p(Y ) is drawn in Fig. 7. The six boundary and interface conditions
provide the complete solution in each domain, the expression of the uniform tensile stress σp, and the band
thickness Y f as functions of material parameters σm, pm, H1, H2, and A.

Solution in the band tail

In the band tail, the Eq. (40) becomes:

σeq = σm + H2(p − pm)− Ap′′ = σp (41)

which provides the differential equation:

p′′ − w2
2 p = −w2

2 pL , with w2 =
√

H2

A
(42)
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Fig. 7 Schematic representation of the solution p(Y ) of equation (40) and boundary conditions used to solve this equation. An
exponential branch in the band tail is connected to a sinus branch in the band front

ω2 being the inverse of a characteristic length of the model. The general form of the solution of this equation
is

p(Y ) = α2 exp(w2Y )+ β2 exp(−w2Y )+ pL (43)

The integration constantsα2 andβ2 are determined after considering the limit at −∞ and the interface condition
at Y = 0:

p remains finite for Y → −∞ ⇒ β2 = 0 (44)

p(0) = pm ⇒ α2 = pm − pL (45)

The complete solution then is

p(Y ) = (pm − pL) exp

(√
H2

A
Y

)
+ pL (46)

Solution in the band front

In the band front, Eq. (40) becomes

σeq = σm + H1(p − pm)− Ap′′ = σp (47)

which provides the differential equation:

p′′ + w2
1 p = w2

1 pR with w1 =
√

− H1

A
(48)

The general form of the solution of this equation is

p(Y ) = α1 cos(w1Y )+ β1 sin(w1Y )+ pR (49)

where pR is defined in Fig. 1. The integration constants α1 and β1 are determined by means of the interface
equations at Y = 0:

continuity of p ⇒ α1 = pm − pR (50)

continuity of p′ ⇒ β1 = w2

w1
(pm − pL) (51)

The complete solution then is

p(Y ) = (pm − pR) cos(w1Y )+ w2

w1
(pm − pL) sin(w1Y )+ pR (52)
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The interface conditions at Y = Y f provide the expressions of the band front thickness Y f and the plateau
stress σp:

p(Y f ) = 0 ⇒ Y f =
√

− A

H1

(
π − arctan

(√
− H1

H2

))
(53)

p′(Y f ) = 0 ⇒ pL = pR

(
1 +

√
1 − H1

H2

)
(54)

σp =
(σm − H1 pm)− (σm − H2 pm)

(
1 −

√
1 − H1

H2

)
)

√
1 − H1

H2

(55)

As expected, the band front thickness Y f is a function of the higher-order modulus A. Using the values of
material parameters values from Sect. 2, the analytical value of the plateau stress is σp = 994 MPa.

4.3 Relation to Maxwell’s rule

Maxwell’s equal area rule is widely used for thermodynamical applications [45]. In some physical situations,
the isothermal evolution in the pressure–volume phase diagram of a fluid can be non-monotonic displaying
a S-shape, similarly to Fig. 1, the decreasing–increasing part actually being unstable. The non-monotonic
material response is then replaced by an horizontal line at an equilibrium pressure level defined by the Maxwell
equal area rule. The same construction can be applied to solids undergoing phase transformation or localized
deformation due to the existence of non-convex potentials as shown in [34,38].

We show in this part that the analytical Lüders plateau stress evaluated from Eq. (55) also follows from such
a Maxwell construction. The strain values pR and pL are, respectively, defined as the plastic strains for which
the function σM + R(p) intersects the Lüders plateau in the softening and hardening regimes, respectively:

σp − σm = H1(pR − pm) = H2(pL − pm) �⇒ pR = pm + H2

H1
(pL − pm) (56)

Combining this relation linking pR to pL with Eq. (54), an expression of pL as a function of the material
parameters is obtained:

pL = pm

√
1 − H1

H2
(57)

Combining then Eqs. (55) and (57), the following decomposition is derived:

pL(σp − σm)︸ ︷︷ ︸
ALud

= pm(σM − σm)

2︸ ︷︷ ︸
A1

Loc

+ (pL − pm)(σp − σm)

2︸ ︷︷ ︸
A2

Loc

(58)

The left-hand side represents the part of the total plastic work in excess to σm pL . The Fig. 8 illustrates this
relation and shows that the first term in the right-hand side corresponds to the plastic work below the softening
branch of the function R(p), whereas the second term denotes the plastic work in the hardening regime until
the plastic strain pL is reached. The relation (58) therefore means that the total plastic work per unit volume
experienced by the whole sample (overall response with a plateau) is equal to the plastic work experienced
by each individual material point after the passage of the band. This is strictly equivalent to the Maxwell
construction presented above.

4.4 Analytical solution for plastic strain rate ṗ

In order to compare the results with finite element solutions, Eq. (37) is differentiated with respect to time to
obtain its rate form. The evolution of the cumulative plastic strain rate is computed in the band front and band
tail, and at the interface Y = 0.
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Fig. 8 Representation of the relationship between the constitutive hardening law and Lüders plateau provided by Eq. (58). This
relation is equivalent to Maxwell’s equal area rule

Fig. 9 Overall stress versus plastic strain curve for the 90◦ oriented mesh using the strain gradient plasticity model. Maps of the
local cumulative plastic strain for a global plastic strain equal to 0.004 (bullet), 0.008 (black square), and 0.012 (black diamond)

Solution in the band tail

The problem is similar to the one investigated in Sect. 4.2. In the band tail, the rate form of Eq. (40) becomes:

ṗ′′ − w2
2 ṗ = 0 �⇒ ṗ(Y ) = ṗ0 exp(w2Y ) (59)

where ṗ0 = ṗ(0) is the plastic strain rate at the interface Y = 0. This value ṗ0 depends on the overall
prescribed plastic strain rate ε̇ p and will be calculated hereafter.

Solution in the band front

In the band front, the rate form of Eq. (40) becomes

ṗ′′ + w2
1 ṗ = 0 �⇒ ṗ(Y ) = ṗ0(cos(w1Y )+ w2

w1
sin(w1Y )) (60)
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after making use of the continuity condition of ṗ and ṗ′ at Y = 0. Moreover, it can be checked that
ṗ(Y f ) = 0.

Evaluation of ṗ0

The cumulative plastic strain rate at the interface between band front and band tail can be evaluated using the
global prescribed plastic strain rate ε̇ p. The displacement rate u̇ of a specimen of length L can be computed
as the sum of local plastic strain rate contributions (the elastic strain rate contribution vanishes as long as
σ = σp):

u̇ = L ε̇ p
22 =

+∞∫
−∞

ṗ dY (61)

from which we obtain, taking the previously derived distribution of ṗ:

ṗ0 = L ε̇ p

Leq
b

(62)

with

Leq
b =

√
− A

H1

(√
− H2

H1
+

√
− H1

H2

) ⎛
⎜⎜⎝1 + 1√

1 − H1

H2

⎞
⎟⎟⎠ (63)

This equivalent width Leq
b represents the width of a band that would carry all the plastic strain rate at a constant

level equal to ṗ0.

Fig. 10 Global stress versus plastic strain curve for the 54.74◦ oriented mesh using the regularized model. Maps of the local
cumulative plastic strain for a global plastic strain equal to 0.004 (bullet), 0.008 (black square), and 0.012 (black diamond)
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5 Comparison with finite element simulations

The derived analytical solution for a single propagating band in an elastoplastic strain gradient medium can
now be used to validate the regularization method proposed in Sect. 3 for the finite element simulation of
Lüders band formation and propagation in a metal plate, as done in Sect. 2.

The strain gradient plasticity model is used with the following value of the additional material parameter

A = 1000 MPa mm2

With this value, and those of the plastic moduli H1 = −1,000 MPa, and H2 = 1,000 MPa, the band front
thickness is

Y f = 2.35 mm

and the equivalent band width is Leq
b = 3.41 mm. These values are small compared to the specimen size (96 mm

length, 12 mm width) but large compared to the element size (1 mm, 9 integration points in each quadratic
element).

The simulation on the 90◦ oriented 2D mesh using the regularized model is presented in Fig. 9. The
overall curve is close to the one obtained using conventional plasticity, see Fig. 3. The plateau level is around
σp = 994 MPa close to the analytical value calculated using Eq. (55).

The simulation on the 54.74◦ oriented 2D mesh using the regularized model is presented in Fig. 10. Results
strongly differ from that obtained with conventional plasticity, see Fig. 4. The overall stress does not oscillate
and follows a plateau at the same level as obtained for the 90◦ oriented mesh (∼ 994 MPa). The maps of
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Fig. 11 Analytical and numerical evolutions of the cumulative plastic strain p and strain rate ṗ along a line parallel to the tensile
direction, as a function of the coordinate Y in the local frame associated with the band
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cumulative plastic strain at three different levels are the same for both meshes. Complementing computations
provided in [44] show that the results do not depend on mesh either and that convergence is reached when at
least 5 elements lie in the band front. The strain gradient plasticity model therefore provides mesh-independent
simulations of the Lüders band propagation. It can also be noted that the crossing of multiple bands that were
observed in the simulations based on classical elastoplasticity, see Fig. 3, does not occur in the regularized
simulations. Instead, a single band is traveling through the sample. Multiple bands can also be observed in
some simulations but the finite extent of the band front limits the number of bands.

The profiles of the cumulative plastic strain p and strain rate ṗ have been extracted along a line parallel to
the tensile direction at the middle of the specimen from the simulation on the 54.74◦ oriented 2D mesh using the
regularized model for a global plastic strain equal to 0.008. The comparison with analytical results is plotted in
Fig. 11(top) for the profile of plastic strain. The numerical results are in perfect agreement with the analytical
solution. The band front width Y f and the plastic strain far behind the band front pL are correctly described.
The same comparison is drawn for the plastic strain rate profile in Fig. 11(bottom). Excellent agreement is
reached again. Slight differences are observed due to the fact that the strain rate is extremely sensitive to the
exact scenario of localization along the X direction. Better agreement is found for even finer meshes.

6 Conclusions

A simple strain gradient plasticity framework was proposed that is appropriate for the simulation of Lüders band
initiation and propagation in isotropic metals. A detailed analysis of the plastic strain distribution developing
in a finite width band front and behind was given both theoretically and numerically. Exact expressions of the
plateau stress, the Lüders stress, and the band front width allow for a direct identification of material parameters
from the overall curves from which σp and pL are deduced and from strain field measurements with sufficient
resolution for the determination of the band front behavior. The proposed elastoplastic regularized model has 5
independent parameters: σM , σm, H1, H2, A. The experimental peak stress value is used to identify parameter
σM . The hardening behavior beyond Lüders plateau provides the complete information on the hardening part
of the local law (H2 and indirectly σm). The Lüders plateau stress level and the experimental band front size are
then used to identify H1 and A using the analytical expressions proposed in this work. The set of parameters
is then unique and easy to obtain. This identification method can even be extended to nonlinear hardening
or viscoplastic behavior as done in [44]. The analytical solution presented in this work then provides useful
estimations of the material parameters that have to be used in the more sophisticated model from [44] or related
ones.

The mesh sensitivity of conventional finite element simulations of the Lüders behavior has often been
overlooked in the literature. The strong dependence on the relative orientation between element edges and
loading direction has been evidenced and suppressed by means of the strain gradient plasticity approach. The
mesh sensitivity is much more pronounced for plane stress finite element simulations than for 3D specimens
but the effect is still present in the latter case especially for thin specimens. Some first results of 3D simulations
based on the strain gradient plasticity model for the propagation of Lüders bands in cylindrical specimens are
given in [44].

The propagation of strain localization bands is an ubiquitous phenomenon in plasticity of complex materials
and soils. In metallic foams for instance, crushing bands form due to the collapse of one cell row and propagate
due to the densification-induced hardening inside the band. A plateau regime is also observed on the overall
curve. The strain gradient plasticity approach can be extended to pressure-dependent plasticity as done for
instance in [24,61] for aluminum foams. More generally, boundary layers develop in microstructured solids
like foams or textile materials, as shown in [19] where a micromorphic model was used to account for shear
boundary layers.

Another perspective of the present work is a better understanding of the deformation processes at work
in the band front for instance by means of a microstructure-based description of localization. What is the
link between macroscopic localization and plastic slip processes at work inside the grains. Coupling crystal
plasticity and strain aging was considered in [35]. Such an approach could be extended to Lüders behavior and
strain gradient crystal plasticity [11].
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Appendix: Micromorphic plasticity model

The objective of this Appendix is to provide the micromorphic plasticity model implemented in the finite
element code Zset and used for the simulations of Lüders band propagation presented in this work. It is shown
that the strain gradient plasticity model detailed in Sect. 3 arises as a special limiting case of the micromorphic
model.

The starting point is the classical elastoplastic non-regularized model described in Sect. 2.1. In the micro-
morphic extension of this classical model, a new degree of freedom, pχ , is introduced, which has the physical
meaning of a plastic microdeformation (see [21,22] for a more detailed presentation of the micromorphic
approach to gradient plasticity). This additional DOF pχ is to be compared to the cumulative plastic strain
p. Under homogeneous loading conditions, we will have pχ = p, whereas the plastic microdeformation can
differ from p in the presence of strong strain gradients. The mechanical power density of internal forces is
extended in the form

p(i)(ε̇∼, ṗχ ) = σ∼ : ε̇∼ + a ṗχ + b · ∇ ṗχ (64)

where generalized stresses a and b are introduced, which are similar to the microforces and microstresses in
Gurtin’s theory [31]. The free energy density function is assumed to depend on the elastic strain, the cumulative
plastic strain, the plastic microdeformation, and its gradient in the form:

ψ(ε∼e
, p, pχ ,∇ pχ ) = 1

2
ε∼

e : E∼∼
: ε∼

e + ψp(p)+ ψχ(p, pχ ,∇ pχ ) (65)

where ψp is the classical stored energy by means of dislocations related to p and ψχ is the additional micro-
morphic contribution. A simple quadratic potential is adopted for the latter:

ψχ(p, pχ ,∇ pχ ) = Hχ (p − pχ )
2 + 1

2
∇ pχ · A∼ · ∇ pχ (66)

where the generalized moduli Hχ (unit MPa) and A∼ (unit MPa.mm2) are new material parameters.
The state laws are obtained after differentiating the free energy potential:

σ∼ = ∂ψ

∂ε∼
e

= E∼∼
: ε∼

e (67)

R = ∂ψ

∂p
= ∂ψp

∂p
+ Hχ (p − pχ ) (68)

a = ∂ψ

∂pχ
= −Hχ (p − pχ ) (69)

b∼ = ∂ψ

∂∇ pχ
= A∼ .∇ pχ (70)

The variable R represents the hardening function. It is composed of a first part ∂ψp/∂p, which is taken identical
to R(p) given by Eqs. (6) and (7), and an additional part involving the new degree of freedom and its gradient.

The classical and generalized stress tensors must fulfill two balance equations [21]:

div σ∼ = 0, div b − a = 0 (71)

in the absence of body forces and in the static case. The balance equations must be complemented by traction
conditions in the form

σ∼ · n = t , b · n = ac (72)

for all points lying at the boundary of the body with normal vector n . The traction vector t is the surface
density of applied forces and ac is a generalized traction associated with the additional degree of freedom.

When inserted in the additional balance equation linking a and b , the state laws (67) to (70) lead to the
following partial differential equation

pχ − 1

Hχ
div(A∼ .∇ pχ ) = p (73)
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This equation is now specialized to the case of isotropic materials, for which the second-order tensor of
micromorphic stiffness reduces to A∼ = A1∼, which involves a single additional material parameter. Equation
(73) then becomes

pχ − l2
c ∇2 pχ = p, with l2

c = A

Hχ
(74)

where lc is a characteristic length of the model. This diffusive partial differential equation is the same as the
one proposed in [18,51,53] for the regularization of softening plasticity or damage phenomena.

As a result, the hardening function can also be written

R = R(p)− A∇2 pχ (75)

The material parameter Hχ can also be seen as a penalty coefficient that forces the relative plastic strain
e = p − pχ to remain small. It can be shown that a high value of Hχ keeps e close to zero. In that case, the
plastic microdeformation pχ in the hardening law (75) can be replaced by p itself:

R = R(p)− A∇2 p (76)

which is exactly Aifantis strain gradient plasticity model [1]. In that case, there is one single new material
parameter, namely A. In the case of the elastoplastic material model presented in Sect. 2.1, plastic yielding
occurs when the yield criterion is reached and then

σeq = σM + R(p)− A∇2 p (77)

which is the same as (37).
The numerical implementation of this model follows the standard of conventional nonlinear mechanical

models. Quadratic elements are used with three degrees of freedom per node (u1, u2, pχ ). Global equilibrium
is solved using an implicit Newton algorithm, and the differential constitutive equations at Gauss points are
integrated by means of an implicit θ -method [7].
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