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Abstract An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible
dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces
and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux rela-
tions. On the one hand, quasi-linear relations are employed, which are based on the physics of transport
processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics,
North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lif-
shitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations
are also often represented in potential form with the help of a dissipation potential (Šilhavý in The mechanics
and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these
two approaches are related. The main result of this presentation states that the class of models formulated
by quasi-linear relations is larger than what can be described in a potential-based formulation. While the
relation between the two methods is shown in general terms, it is demonstrated also with the help of three
examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also
has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC:
e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium
thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and
used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997,
Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dis-
sipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech
165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the
irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear
representation encompasses a wider class of phenomena as compared to the dissipation-based formulation.
Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does
for the underlying force–flux relations.
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1 Introduction

Over the years, a number of approaches to the thermodynamic formulation of models for material behavior
have been developed. In the phenomenological realm, one of the most common of these is continuum thermo-
dynamics (e.g., [1]) as based on the Clausius–Duhem inequality and Coleman–Noll dissipation principle (e.g.,
[2,3]). Another is based on the entropy inequality of Müller–Liu (e.g., [4,5]). Classically, such approaches
have been based on the assumption of local thermodynamic equilibrium to formulate models for thermoelastic
materials with heat conduction and viscosity. More general approaches such as extended thermodynamics (e.g.,
[6]) or extended linear irreversible thermodynamics (e.g., [7]) relax this assumption and model the approach
of the system to thermodynamic equilibrium. Alternatively, for the case of history-dependent, and in particular
inelastic, materials, such models have generally been based on the concepts of strong fading memory and
internal variables (e.g., [8]). This concept also lies at the heart of so-called generalized standard or standard
dissipative materials (e.g., [9,10]). From the point of view of irreversible thermodynamics, the goal of such
formulations is to model the approach of non-equilibrium systems to thermodynamic equilibrium (if it exists)
(e.g., [11]). Perhaps the most prominent example of such models is offered by the Ginzburg-Landau equation
as based on the free energy.

More recently, an alternative approach to the thermodynamics of solids has been developed as an applica-
tion of the so-called general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g.,
[12–16]). Originally developed for (complex) fluids, this formalism has been applied to derive models for
anisotropic elastic and elasto-(visco)plastic solids in an Eulerian setting [17,18]. An alternative approach to
the formulation of GENERIC-based models for inelastic solids was pursued in [19,20], who considered ther-
moelastic solids with heat conduction and viscosity, as well as the case of viscoplasticity, in a Lagrangian
setting. Yet another GENERIC-based approach to formulate models for inelastic materials (e.g., viscoelastic,
elastoplastic) has been discussed in [21].

A cornerstone of both continuum thermodynamics and the GENERIC is the modeling of irreversible pro-
cesses and entropy production via thermodynamic flux–force relations. Via the physics of transport processes
(e.g., [11,22]), such relations are derived from fluctuation–dissipation and coarse-graining considerations,
resulting in their dependence on transport properties and a mathematical form quasi-linear in the forces. In
some cases, such flux–force relations may also be representable in potential form with the help of a dissipation
potential (e.g., Chapter 12 in [1]). Formally speaking, such a representation is analogous to that of evolu-
tion-constitutive relations for internal variables based on such a potential [23–28] when the internal variable
rates involved are interpreted as thermodynamic fluxes. A formulation of the GENERIC based on a dissipation
potential has also been advocated in [15,16] and more recently in [21]. On the other hand, it is not clear whether
all flux–force relations derived from transport theory are representable in potential form.

One purpose of the current work is to formulate conditions which flux–force relations must satisfy in order
for a potential representation of these to exist. A second is the investigation of the connections between the
potential representation of flux–force relations and that of the GENERIC for irreversible processes. Among
other things, we show that the GENERIC-based model for irreversible processes can be represented in potential
form if and only if such a potential form exists for the underlying thermodynamic flux–force relations. To
explore the implications of these basic results in more detail, we consider three examples: (i) heat conduction
in anisotropic solids, (ii) slippage in complex fluids (Gordon–Schowalter derivative), and (iii) homogeneous
chemical reactions. As shown by the application of the general results, the models of (i) and (iii) can be for-
mulated in terms of a dissipation potential under certain conditions. On the other hand, since the irreversible
process of slippage is dissipation-free, the dissipation potential for the model of (ii) is identically zero, and
hence, the concept of the dissipation potential is inappropriate for its description.

For the purposes of the current work, it is sufficient to work with the purely local form of the GENERIC
(Chapters 2 and 3 in [14]) in terms of differential operators rather than generalized functions and integration.
As well, this involves working with the energy and entropy densities. Before we begin, a word on notation. For
clarity and ease of understanding for continuum mechanicians and physicists alike, a number of results in this
work will be expressed in both direct (i.e., symbolic) and (Cartesian) component notation. To this latter end,
let upper latin indices K , L , M, . . . = 1, 2, 3, represent Cartesian components of referential or Lagrangian
tensors. The summation convention on repeated such indices will be used throughout. Likewise, we use the
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notation ∇Lϕ = ∂ϕ/∂rL for the components of the gradient of any field ϕ defined with respect to the reference
configuration of the material in three-dimensional Euclidean point space E3 with translation vector space V 3.
These are functions of referential position r = o + rK iK ∈ E3 with respect to the Cartesian basis vectors
i1, i2, i3 ∈ V 3 and origin o ∈ E3. As is common in solid mechanics for large deformation, all model relations
to follow are represented in referential or Lagrangian form relative to some reference configuration. Finally,
for a tensor A of arbitrary rank and two vectors a and b, the notation ∂aA b implies a differentiation of A and
subsequent contraction between the two vectors a and b.

The paper is organized as follows. In Sect. 2, force–flux relations are discussed, and their quasi-linear and
dissipation potential–based formulations are compared. The analogous comparison is made in Sect. 3 for the
GENERIC framework, where also both types of formulations exist. The finding that the cases of force–flux
relations and the GENERIC are closely related is examined in Sect. 4 in more detail. To illustrate the abstract
results, examples are studied in Sect. 5. We close with a discussion in Sect. 6.

2 Flux–force relations

2.1 Basic considerations

For simplicity, attention is restricted in this work to continuous thermodynamic systems containing no discon-
tinuities (e.g., singular surface). In this context, consider the local or “strong” form

η̇ = π − div φ (1)

of referential entropy balance for supply-free processes (e.g., Chapters 3 and 9 in [1]). Here, η represents the
referential entropy density, φ is the referential entropy flux density, and π is the referential entropy production
rate density. In particular, φ represents the (net) flux of entropy per unit area from the environment into the
system, and π is the entropy production rate in the system per unit volume. In the current context, the second
law is expressed in the local form

π � 0 (2)

relative to π . Given Gibbs relation and the assumption of local equilibrium (e.g., [1,11,14]), the well-known
constitutive form

π = j · f (3)

for π follows in terms of thermodynamic fluxes j (e.g., heat flux) and forces f (e.g., gradient of reciprocal
temperature). Constitutive relations between j and f are generally formulated in the form

j = j(. . . , f ), (4)

where . . . indicate a possible dependence on additional quantities besides f . For simplicity, these will be sup-
pressed in the notation and we will just write j(f ) for this relation for the time being; this applies as well to all
related forms of this relation to be considered in what follows.

2.2 Quasi-linear transport relation

In the common context of transport theory (e.g., [11,14,22]), for example, the constitutive form

j(f ) = L(f ) f (5)

quasi-linear in f is obtained. In particular, in the classical special case of linear irreversible thermodynamics
for systems “near” equilibrium, the transport operator L(f ) is independent of f . In what follows, it will be
useful to work with the split

L = Lsym + Lskw

= sym(L) + skw(L)

= 1

2
(L + LT) + 1

2
(L − LT) (6)

of L into symmetric Lsym and skew-symmetric Lskw parts. This induces the corresponding split
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j = jsym + jskw = Lsym f + Lskw f (7)

of j into dissipative jsym and non-dissipative jskw parts. Indeed, since

jskw · f = Lskw f · f = 0 (8)

follows via the skew symmetry of Lskw, substitution of (7) into (3) yields

π = j · f = jsym · f = Lsym f · f . (9)

In the context of (5) and (6), then, clearly only the symmetric part Lsym of L contributes to π . On this basis,
non-negative entropy production (2) is satisfied sufficiently by requiring Lsym(f ) to be non-negative definite;
if Lsym is in fact independent of f (i.e., linear irreversible special case), non-negative-definiteness of Lsym is
also necessary for a potential representation to exist.

2.3 Potential-based transport relation

Assume now that a particular form of the flux–force constitutive relation j(f ), for example, the transport form
(5), has been derived via physical considerations and is known. As discussed elsewhere [1,29], any varia-
tional formulation of the corresponding initial-boundary-value problem is then contingent on whether or not
a potential representation for j(f ) can be found. Specifically, this means that the force–flux relation can be
written in the form

j(f) = ∂f p(f) (10)

in terms of the so-called dissipation potential p. In order to ensure a non-negative rate of entropy production,
(2), it is sufficient to require that the dissipation potential is non-negative and convex. In this case, one obtains

π = f · ∂f p � p � 0 (11)

as required.
Whether or not a potential representation for j(f ) can indeed be found is basically a mathematical problem

(e.g., integrability) for which there may be in general no solution. If the mathematical form of j(f ) satisfies
certain conditions, however, then such a potential representation can be found. One possibility in this regard
can be formulated with the help of a generalization of the Helmholtz theorem1 due to [26] (see also [1,31]).
To this end, assume that the domain of the flux–force relation j(f ) is convex or “star-shaped.” In particular,
this implies that there exists a path cf (s) = s f (0 � s � 1) in the space of all forces connecting equilibrium
cf (0) = 0 with any f , that is, cf (1) = f . On this basis, one can introduce for j(f ) the unique (via linearity and
orthogonality) additive split into symmetric and skew-symmetric parts

j(f ) = ∂f pj(f ) + sj(f ), (12)

in terms of the scalar-valued non-negative function

pj(f ) =
1∫

0

j(cf (s)) · f ds (13)

(assuming pj(0) = 0 for simplicity without loss of physical generality) and the vector-valued function

sj(f ) =
1∫

0

2 skw(∂cf (s ) j(cf (s))) cf (s) ds (14)

which is non-dissipative, that is, sj(f ) · f = 0. One thus obtains

1 Related to the de Rham decomposition in differential geometry as based on the Poincaré theorem (e.g., [30]).
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π (f ) = ∂f pj(f ) · f = pj(f ) +
1∫

0

f · s sym(∂cf (s ) j(cf (s))) f ds , (15)

where (13) has been employed to derive the second equality. In this form, it is evident that if sym(∂f j(f )) is
non-negative definite, the integral in this last relation is non-negative, and

π (f ) = ∂f pj(f ) · f � pj(f ) � 0, (16)

is obtained, that is, pj(f ) as given by (13) is convex. If ∂f j(f ) is in fact symmetric, sj(f ) vanishes identically,
and pj(f ) is a potential for j(f ). Conversely, if a potential for j(f ) exists, skw(∂f j(f )) vanishes identically (i.e.,
via Euler’s theorem: [30]).

In the context of (12), then, the deviation sj(f ) of j(f ) from being potential results in no entropy pro-
duction. Indeed, (12) splits j(f ) into dissipative ∂f pj(f ) and non-dissipative sj(f ) parts. As we saw in the
previous section, the split (6) of the transport operator induces an analogous split (7) of j(f ) into dissipative
jsym(f ) = Lsym(f ) f and non-dissipative jskw(f ) = Lskw(f ) f parts. To look into this more closely, consider
now the representation of (5) via (12). One obtains

pL(f ) =
1∫

0

f · s Lsym(s f ) f ds (17)

and

a · sL(f ) = a · Lskw(f ) f

+
1∫

0

s2 a · (∂cf (s )Lsym(cf (s)) f ) f ds

−
1∫

0

s2 f · (∂cf (s )Lsym(cf (s)) a) f ds (18)

for all vectors a via the skew symmetry of Lskw. In particular, this latter result for sL(f ) implies that, even if Lskw
is identically zero, assuming non-negative definiteness of Lsym(f ) is necessary, but generally not sufficient,
for the transport form (5) of j(f ) to be represented solely by pL(f ). Indeed, the additional condition

a · (∂f Lsym(f ) f ) f = f · (∂f Lsym(f ) a) f (19)

on the functional form of Lsym(f ) must hold, in which case ∂f jsym(f ) is symmetric. Clearly, this represents an
additional constitutive restriction on the form of Lsym(f ) going beyond those of Onsager–Casimir symmetry
and non-negative definiteness. It also has implications for approaches to the formulation of models for non-
equilibrium systems which are based on thermodynamic flux–force relations j(f ). This includes, for example,
the case of the GENERIC, to which we turn in Sect. 3.

2.4 Potential-based representations in quasi-linear form

In the previous section, we have shown that not every quasi-linear force–flux relation can be cast into potential
form, but that conditions on L apply, namely Lskw = 0 and the conditions (19). In this section, we prove that
in turn any potential-based force–flux relation can be written in quasi-linear form. This implies that the class
of constitutive relations from potential-based formulations is a subset of the models captured by quasi-linear
relations.

Close to equilibrium, the dissipation potential can be approximated to be quadratic in the force [32,33],

p = 1

2
f · (∂f∂f p|0

)
f, (20)
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because at f = 0 the general properties of p require p(0) = 0 and ∂f p = 0. Since p is convex, ∂f∂f p|0 is not
only symmetric but also non-negative definite. A straightforward calculation leads to the force–flux relation
(5) with the constant matrix

L = Lsym = ∂f∂f p|0 . (21)

Therefore, any constitutive relation close to equilibrium can both be derived from the dissipation potential and
be written in the (quasi-)linear form.

For the general case beyond the proximity to equilibrium, however, the situation requires a more careful
discussion. Let us assume that a constitutive relation is written in the form with a dissipation potential p. Then,
that same constitutive rule can also be written in the quasi-linear form (5) with the special choice

L = Lsym = 1

π
j ⊗ j = 1

π
∂f p ⊗ ∂f p, (22)

with the entropy production rate density π defined above. By construction, L is not only symmetric, but also
non-negative by virtue of the non-negative rate of entropy production (2). The only possible caveat is that (22)
may be ill defined mathematically for π = 0. While the (close to) equilibrium case (with π → 0) has already
been covered in (21), we need to discuss the possibility of a vanishing dissipation rate out of equilibrium, that
is, π = j · f = 0 for a certain value of the driving force vector f� �= 0. If such a non-vanishing driving force
really exists, then the dissipation potential assumes its minimum value p(f�) = pmin = 0, since p is bracketed
between π and 0 according to (11). However, because p is minimal, one obtains j� ≡ j(f�) = ∂f p|f=f� = 0.
In other words, π = 0 for a finite f� requires j� = 0, rather than j� ⊥ f� for finite j�. Analyzing (22) upon
j → 0, one finds the well-defined limit L� = 0 at f�. In summary, any constitutive relation written in terms of
the dissipation potential can also be written in the quasi-linear form (5). This is also true in the context of the
GENERIC (see below), that is, any potential form for the irreversible part of the GENERIC can be expressed
in quasi-linear form as well.

For completeness, we point out that the rank of L in tensor product form (22) is unity. Often, the rank of L is
related on physical grounds to the number of independent irreversible processes that are at play simultaneously.
However, such an argument is foreign to a dissipation potential formulation from the start. Since the main goal
of this section was to demonstrate the existence of a quasi-linear formulation for any potential form, we do
not go into further details about the number of independent processes. We just mention that, using physical
arguments, the relation (22) can be generalized to a form with rank larger than unity, that is, with multiple
processes.

3 GENERIC-based formulation for irreversible processes

3.1 Basics

In the context of the GENERIC, the total energy E and total entropy S are modeled as functionals of a set
of variables (i.e., fields) x (e.g., temperature) characterizing the system under consideration. Let A represent
either E or S , and let a be the density of A. In the current work, attention will be focused on the class of
models given by the form

A(x) =
∫

a(x,∇x) dv (23)

of this functional in which a depends on both x and (one or more of) their spatial gradients ∇x. In all what
follows, boundary terms are neglected for simplicity which is appropriate if either the boundary conditions
are chosen appropriately or the fields vanish at the (infinitely remote) boundary. Since A is a functional of
time-dependent fields x,

Ȧ =
∫ (

∂xa · ẋ + ∂∇xa · ∇ ẋ
)

dv

=
∫

ax · ẋ dv (24)
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follows for its time rate-of-change via the divergence theorem and neglect of boundary effects as just discussed
above, where

ax ≡ ∂xa − div ∂∇xa (25)

represents the first-order variational derivative of a .
As they embody the physics of transport processes, flux–force relations like (4) lie at the heart of many

approaches to the modeling of non-equilibrium systems such as the GENERIC [12–14]. In the spirit of the
Ginzburg-Landau equation, this is a model for the evolution of system variables x (e.g., temperature) in
non-equilibrium toward equilibrium. In the context of the GENERIC, the evolution relation

ẋ = ẋrev + ẋirr (26)

for x splits into reversible ẋrev and irreversible ẋirr parts. In turn, (26) induces the split

Ȧ = Ȧrev + Ȧirr

=
∫

ax · ẋrev dv +
∫

ax · ẋirr dv (27)

of Ȧ from (24). In the current work, attention is focused in particular on ẋirr and the corresponding part Ȧirr
of Ȧ for the cases of total energy (A = E , a = e) and entropy (A = S , a = η). Analogous to the flux–force
relation j(. . . , f ) from (4), a formulation based on the GENERIC works with the constitutive form

ẋirr = ẋirr(. . . , ηx) (28)

for ẋirr; as above in the case of the flux–force relation (4), the dots . . . indicate a possible dependence on
additional quantities (e.g., x) besides the entropy gradient ηx. For simplicity, these will be suppressed in the
notation and we will just write ẋirr(ηx) for this relation for the time being; this applies as well to all related
forms of this relation to be considered in what follows.

3.2 Quasi-linear relation

In one version of the GENERIC, advocated by Öttinger [13,14], the irreversible evolution (28) for ẋirr is
modeled via the transport-theoretic form

ẋirr(ηx) = M(ηx) ηx (29)

quasi-linear in the GENERIC-based derivative ηx of the entropy density η with respect to x. Here, M represents
the so-called friction operator. Analogous to the case of the flux–force relation (5) above, besides on ηx, ẋirr
and related quantities like M depend in general on additional fields like x. Because they play no direct role
in the following, however, we dispense with them in the notation for simplicity. It should be noted that in the
“phase-field-like” case, η is a constitutive function of x and its spatial gradient ∇x, for example, and thus
ηx = ∂xη − div ∂∇xη cannot be simply recast in terms of the local fields x alone. Therefore, x and ηx are in
general distinct quantities, of which ηx is of prime importance for the relation to the force–flux relations.

The correspondence of the form of (29) with that (5) for transport-based thermodynamic flux–force rela-
tions is no coincidence, as will be discussed in more detail below. In the context of the dissipation bracket

[A, B ] :=
∫

ax · M bx dv (30)

on functionals A, B of the form (23) induced by (29), consider the split

M = Msym + Mskw

= sym(M) + skw(M)

= 1

2
(M + MT) + 1

2
(M − MT) (31)
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of M into symmetric and skew-symmetric parts, formally analogous to that (6) of the transport operator L
above. In this context, the GENERIC-based form2

Ṡirr =
∫

π dv =
∫

ηx · ẋirr dv =
∫

ηx · Msym(ηx) ηx dv (32)

of the entropy production rate is obtained which depends only on Msym. This is analogous to the reduced form
(9) of π following from split (6) of L analogous to that (31) of M just discussed. Note that a non-negative rate
of entropy production (32) can be achieved by requiring that Msym be positive semi-definite.

3.3 Potential-based formulation

Another form of the GENERIC, alternative to (29), is advocated by Grmela [12,15,16]. It is based on assuming
that there exists a potential representation for ẋirr(ηx) a priori, that is, from the start. For later convenience,
we write this form of the GENERIC as

ẋirr(ηx) = ∂ηx
pirr(ηx) + sirr(ηx), (33)

where Grmela considers sirr(ηx) = 0. Such a potential-based formulation of the irreversible part of the
GENERIC has been studied from a mathematical perspective in [21].

To compare (29) and (33) in more detail, we could proceed analogously to the discussion about the
force–flux relations, Sects. 2.3 and 2.4. One would then find that (i) sirr(ηx) is skew-symmetric and thus dissi-
pation-less, analogous to (14), and that (ii) a potential representation exists only for a certain class of relations
ẋirr(ηx). An alternative route, demonstrated in the following (Sect. 4), consists in relating the quasi-linear
and dissipation potential formulations of the GENERIC to the corresponding formulations of the force–flux
relations.

4 Connection between flux–force relations and the GENERIC

The parallels between the formulation of thermodynamic flux–force relations j(f ) in Sect. 2 and the GENERIC-
based relation ẋirr(ηx) in Sect. 3 alluded to, and clearly evident, in the development up to this point are no
coincidence. Indeed, from a physical point of view, the form of the flux–force relation j(f ) determines that
of ẋirr(ηx). In particular, this is the case for the transport-theoretic forms (5) and (29) of these relations. The
purpose of the current section is to delve into this in more detail.

To begin, note that any connection between j(f ) and ẋirr(ηx) clearly involves in particular relations between
ηx, f , j, and ẋirr. Consider, for example, the case of heat conduction in which the internal energy density ε

is chosen as an element of x. In this case, the GENERIC-based entropy “gradient” ηε ≡ ∂εη = θ−1 in (29)

is the reciprocal temperature, and its spatial gradient fθ ≡ ∇θ−1 is the thermodynamic force driving heat
conduction. Consequently, ηε is “mapped” into fθ via the gradient operator ∇ . More generally, assume that
there exists an operator C (e.g., Chapters 2 and 3 in [14,34]) independent of ηx such that3

f (ηx) = CTηx (34)

holds. Since C is independent of ηx, f (ηx) is linear in ηx. In terms of operator transposition
∫

Cj · ax dv :=
∫

j · CT ax dv, (35)

the common relation

Ṡirr =
∫

π dv =
∫

j · f dv =
∫

ẋirr · ηx dv (36)

2 By orthogonality of reversible and irreversible processes, ηx annihilates the reversible part ẋrev of ẋ in the context of the
GENERIC [12–14].

3 Using the opposite sign convention to Öttinger (Section 3.1.1 in [14]).
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for the entropy production rate density from (3) and (32) induces the basic connection

ẋirr(ηx) = C j(f (ηx)) = C j(CTηx) (37)

between ẋirr and j via C.
For quasi-linear force–flux relations (5), the basic connections (34) and (37) imply via the quasi-linear

GENERIC (29) the form

M(ηx) = C L(f (ηx)) CT (38)

for the friction operator M in terms of the transport operator L [14,34–37]. As such, the functional form of
M(ηx) is clearly induced by that of L(f ).

For force–flux relations of the form (12), (34) and (37) imply the connections

∂ηx
pirr(ηx) = C ∂f (ηx) pj(f (ηx)),

sirr(ηx) = C sj(f (ηx)),
(39)

via the GENERIC (33). On the basis of this last result, one can conclude that, for general C, sirr(ηx) vanishes
iff sj(f ) does. As such, a potential form for ẋirr(ηx) exists iff one for j(f ) does. In particular, this then applies
to the transport-based forms (5) and (29), respectively, of these relations.

Specific expressions for CT can be determined in view of the relation (34) between the entropy gradient
ηx and the thermodynamic force f . For completeness, we mention that an additional condition on CT emerges
from the GENERIC requirement of the conservation of energy. Specifically, since Ėrev = 0 is determined by
Hamiltonian dynamics and vanishes identically in the context of the GENERIC,

Ė = Ėirr =
∫

ẋirr · ex dv =
∫

j · CTex dv (40)

follows from (37) as well. Consequently, conservation of energy Ė = 0 is ensured identically if

CTex = 0 (41)

holds identically [14,34]. Note that this induces a dependence of C on the components of the GENERIC-based
energy gradient ex.

5 Examples

In the following, examples are given to study possible formulations in quasi-linear or potential-based forms.
It has been demonstrated above that the GENERIC approach is closely related to the force–flux relations,
specifically also with respect to the (non-)existence of a potential representation. Therefore, we concentrate
in the following only on the underlying force–flux relations and possible potential representations thereof.

5.1 Example: anisotropic rigid heat conductor

Although not terribly realistic, an anisotropic rigid heat conductor represents perhaps the simplest example of
non-isothermal solid behavior. As such, it is ideal for the purpose of illustrating the derivation of specific forms
of the general results obtained in the last two sections. As is well known, such a solid deforms via translation
and rotation alone; stretch, strain, thermal expansion, and so on are excluded. In this case, the material behavior
depends solely on heat conduction, that is, on the temperature θ and its gradient ∇θ .

As a model for heat conduction, consider the transport-based generalized Fourier relation

q = −K (θ , ∇θ ) ∇θ = θ2 K (θ , ∇θ−1)∇θ−1 (42)

for the heat flux q quasi-linear in the gradient of the (reciprocal) temperature. Since this is the only flux–force
relation for the current material class, we have

j = (jθ ) := (q ), L = [Lθθ ] := [θ2 K ], f = (fθ ) := (∇θ−1). (43)
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To discuss the issue of possible potential representations, we proceed as follows. Since Lθθ = θ2 K is sym-
metric and non-negative definite, Lskw vanishes identically, and L = Lsym is symmetric and non-negative
definite. On this basis, the general requirement (19) for sL(f ) ≡ sK (fθ ) to vanish reduces to

a · (∂fθ
Lθθ (fθ ) fθ ) b = fθ · (∂fθ

Lθθ (fθ ) a) b (44)

for all a, b. As discussed above, this is clearly a condition going beyond symmetry and non-negative definite-
ness. For example, viewing J = ∂fθ

Lθθ as a third-order tensor-valued quantity J = JK L M iK ⊗ iL ⊗ iM , the

symmetry of Lθθ = θ2 K implies JK L M = JL K M , whereas sK (fθ ) will vanish if JK L M = JM L K holds. This
is trivially satisfied of course by the standard Fourier form K (θ ) = k(θ ) I for K independent of ∇θ−1 in
terms of the coefficient of thermal conductivity k(θ ). In the Fourier case, then,

pL(f ) = fθ ·
1∫

0

s Lθθ fθ ds = 1

2
∇θ−1 · θ2 K ∇θ−1 = 1

2
∇θ · K ∇θ (45)

follows from (17) with pL(0) ≡ 0.

5.2 Example: slippage in complex fluids

Complex fluids consist of discrete constituents (e.g., macromolecules) which can move relative to each other.
If one imagines, for example, ellipsoids immersed in a fluid, then this means that their motion is not determined
in an affine (i.e., homogeneous) fashion by the (Eulerian) velocity field v of the surrounding fluid. Rather,
they may slip relative to one another (e.g., [38–40]). Such slippage is characterized constitutively by a slip
parameter ξ which is related to the aspect ratio of ellipsoids. Slippage is also relevant to the modeling of
polymeric fluids (e.g., [35,41]). As it turns out, slippage is an irreversible process resulting in no dissipation.
In other words, the skew-symmetric part Lskw of L does not vanish in this case.

The Eulerian or spatial formulation of complex fluids with slippage (e.g., Section 4.2.1 in [14]) involves
the velocity field v or the spatial momentum density m = 
v , respectively, with 
 the spatial mass density.
In addition, the spatial conformation tensor4 C is a measure of the (internal) deformation state of the fluid
(microstructure) relative to the continuum as a whole. Recall that the time-dependent deformation or flow x =
χ (r , t ) of the material determines the deformation gradient F(r , t ) = ∇χ (r , t ), the material velocity field
χ̇ (r , t ) = ∂t χ (r , t ) = v(χ (r , t ), t ) = v(x , t ), and the material velocity gradient Ḟ(r , t ) = L(r , t ) F(r , t )
via the chain rule, with L(x , t ) = ∇v(x , t ). In what follows, the usual split L = D +W of L into its symmet-
ric D = 1

2 (L + LT) and skew-symmetric W = 1
2 (L − LT) parts is utilized. In particular, this latter quantity

is known in general continuum mechanics and in solid mechanics as the spin tensor, and as the vorticity tensor
in fluid mechanics.

Let A be a time-dependent spatial second-order tensor field associated with the material. If the evolution
of any such tensor is determined solely by the motion or flow of the material as a whole, then its pullback
F−1 A F−T to the reference configuration is constant. In the language of rheology due to Oldroyd, such behav-
ior is referred to as upper convected. In this case, Ȧ = L A + ALT holds, with Ȧ the material-time derivative.
For example, the left Cauchy-Green deformation tensor B = F FT from solid mechanics is such a tensor,
that is, Ḃ = L B + B LT. Due to slippage, however, the conformation tensor C deviates from being upper
convected in this sense. Indeed, the more general evolution relation

Ċ = L C + C LT − ξ (DC + C D) (46)

holds in terms of the so-called slippage parameter ξ [14,35,41]. The time derivative in (46) depending in
particular on ξ is known as the Gordon–Schowalter derivative [42,43]. As discussed by Beris and Edwards
[44] and later by Öttinger [14], only in the case of ξ = 0 (upper-convected behavior) or ξ = 2 (i.e., lower-
convected behavior: FTC F constant) is the slippage process reversible or controllable. Specifically, they have
shown that any other value of ξ is inconsistent with the Poisson structure of reversible dynamics because the
so-called Jacobi identity is violated. So in general, slippage involves irreversible dynamics. On the other hand,

4 Not to be confused with the right Cauchy-Green deformation C = FT F .
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since it does not result in an increase of entropy, slippage is not dissipative; for the full details, the reader is
referred to [35]. As will be seen in what follows, in the context of the transport-based form (5) of the flux–force
relation and (6), this implies that the skew-symmetric part Lskw of the transport operator L is non-zero.

The explicit form of Lskw is discussed in the following. The full Gordon–Schowalter derivative can be split
into two contributions,

Ċrev = L C + C LT,

Ċirr = −ξ (DC + C D) =: −X ∇v,
(47)

and so Ċ = Ċrev + Ċirr, where the last equality in (47) defines the tensor X. For simplicity, all viscous effects,
thermal conduction, and diffusion effects will be ignored here and attention will be focused solely on slippage.
Since the slippage involves both the conformation tensor C and the momentum density m (or velocity field),
there are also force and flux contributions corresponding to these variables. Specifically, one can make the
following identifications for the forces and fluxes (see also §4.2.1 in [14]),

f =
(

fm
fC

)
=

(
θ−1 ∇v

∂Cη

)
,

j =
(

jm
jC

)
=

(
θX ∂Cη

−X ∇v

)
= Lf .

(48)

with the entropy density η. From this, one obtains

L =
[

0 θX
−θX 0

]
, (49)

which is indeed skew-symmetric.
Given these results, we can now address the issue of a possible potential representation for slippage in

complex fluids. Since L = Lskw is skew-symmetric, Lsym is identically zero, according to (17). In this case,
pL(f ) = pL(0) ≡ 0 follows from (17), and sL(f ) = L f from (18). In conclusion, then, no dissipation potential
exists for the force–flux relation representative of the Gordon–Schowalter derivative of a complex fluid with
slippage.

5.3 Example: chemical reactions

Our final example represents the prototype of models for non-linear dynamics, namely homogeneous chemi-
cal reactions. In particular, we consider a system consisting of n species; for our purposes, it suffices in this
context to restrict attention to a single reaction in this system including both forward and reverse reaction.
Generalization to multiple reactions is straightforward but lends no new insight into the possible potential
representation of the model.

From chemical kinetics (e.g., Chapter 4 in [45]), one has the basic evolution relation

Ṅi = νi ξ̇i (50)

for Ni in terms of the corresponding extent of reaction ξi and stoichiometric coefficient νi = ∂ξi
Ni . In par-

ticular, νi = βi − αi is the difference between the stoichiometric coefficients βi and αi of the product and
reactant species, respectively, during forward reaction. Again, for simplicity, assume that ξi ≡ ξ is the same
for all i = 1, . . . , n. Neglecting further changes in the total volume, this system implies the interpretations of

J = ξ̇ ,
F = kB A,

(51)

for the thermodynamic flux and force, respectively. The symbol A denotes the system chemical affinity in
terms of the species chemical potential μi ,

A = Aα + Aβ,

Aα = 1
kBθ

N∑
i=1

αiμi ,

Aβ = − 1
kBθ

N∑
i=1

βiμi ,

(52)
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where Aα and Aβ denote the affinities of the reactant and product species, respectively. The absolute tem-
perature is denoted by θ , and kB is Boltzmann’s constant. Lastly, the quasi-linear flux–force relation (5) then
reduces to the scalar relation

J (F ) = L (F ) F . (53)

On this basis, the potential representation (17) reduces to

PL(F ) = F

1∫

0

s L (s F ) F ds , (54)

assuming PL(0) = 0, and (18) to SL(F ) = 0 identically. Any form for L (F ) satisfying the conditions of the
representation induces PL(F ) in this fashion. One possibility in this regard is that

L (x, F ) = kB R(x) e−Aβ F−1(eF /kB − 1) = R(x) A−1 (eAα − e−Aβ ) (55)

in terms of any non-negative function R(x) of the state variables x. Further,

PL(F ) = kB R e−Aβ

{
kB(eF /kB − 1) − F

}
(56)

then follows from (54). Assuming that the chemical potentials μi depend on Ni as an ideal gas, the mass action
law is recovered.

Conversely, Grmela [15] works from the start with a potential of the form

Φ(x, F ) = W (x)
{

eF /2kB + e−F /2kB − 2
}

. (57)

The flux derived from this dissipation potential is

J = ∂FΦ = W

2 kB

(
eF /2kB − e−F /2kB

)
= W

2 kB
e−Aα/2 e−Aβ/2

(
eF /kB − 1

)
. (58)

This will be compatible with (55) when

W

2 kB
e−Aα/2 e−Aβ/2 = kB R e−Aβ (59)

holds.
In summary, we observe that highly non-linear chemical reactions can be described equally well both by the

quasi-linear flux–force relation (5) and also in terms of the dissipation potential. In the quasi-linear approach,
the reaction rate L , (55), has been adjusted by an appropriate function in terms of the state variables x, in order
to arrive at the usual form of the reaction equations. Analogously, in the case of the dissipation potential, the
function W needed to be chosen appropriately as a function of the state variables x, (59). We close by noting
that in the example of chemical reactions, the distinction between a dependence on the state variables x and
the driving force F is blurred, because the latter is only a non-linear function of the former, and hence both
potentials, PL(F) in (56) and Φ(F) in (57), are equally admissible.

6 Discussion

The relation (37) documents clearly the dependence of the irreversible part (29) of a GENERIC on the transport
relation (5). Related to this is the basic dependence (38) of the friction operator M on the transport “coefficient”
L (e.g., [14]). As also seen in the examples discussed in this work, in particular, this dependence implies that
M(ηx) depends on the entropy gradient ηx if and only if L(f ) depends on the thermodynamic force f . In
addition, this state of affairs carries over to the case of a potential representation; indeed, as demonstrated
by (39), such a representation exists for the GENERIC if and only if one does for the underlying flux–force
relations.
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The extension of the basic representation (12) for general flux–force relations j(f ) on star-shaped regions
in force space to deal with the possibility of non-symmetric transport coefficients L(f ) facilitated the treatment
of a broader class of physical models. In particular, these include models for dissipation-free irreversible pro-
cesses such as the case of slippage in complex fluids, for which the dissipation potential is identically zero (i.e.,
no dissipation). In the more general case of irreversible and dissipative processes, the existence of a potential
representation pL(f ) is contingent on the satisfaction of the higher-order symmetry restrictions (19) on the
functional form of Lsym(f ). Again, in the context of (39), (19) are then also necessary for the existence of the
analogous potential representation for the irreversible part of the GENERIC. It is worth emphasizing that this
represents a mathematical problem which one has to solve if one is interested in deriving such a potential rep-
resentation for the purpose of a variational formulation of the corresponding initial-boundary-value problem.
Indeed, no new physics is involved.

Perhaps not surprisingly, it has been clearly demonstrated above that the class of constitutive relations
based on a potential is a subset of the models captured by quasi-linear relations. In other words, by using a
potential-based formulation, one uses a more restricted setup as compared to a quasi-linear setting. As stated
by Grmela [46], one may deliberately choose to employ the more restrictive procedure, in a similar spirit as
one also employs the Hamiltonian structure with the restrictive Jacobi identity [12,13,47] for formulating the
reversible dynamics. On the one hand, it should be mentioned that the dissipation potential plays an important
role in the formulation of out-of-equilibrium dynamics in the context of differential geometry and so-called
“Legendre time evolution” [15]. Furthermore, it has recently been suggested [48] that the potential form of
GENERIC emerges from an optimization principle. On the other hand, we point out that the quasi-linear form
is a result of projection-operator techniques and of systematically accounting for the separation of timescales
[14,49,50], and thus has a firm statistical basis. In addition, the quasi-linear form is closer to experimental
procedures than is the potential-based form, as mentioned above. For example, the dynamic behavior of mate-
rials is often described in terms of their transport coefficients, that is, in terms of L(f). In the non-linear case,
L(f) plays no direct role in the dissipation potential, and hence, it is difficult to formalize L(f) in a dissipation
potential. Particularly, the potential p′ = (1/2)f · L(f)f eventually results in a matrix of transport coefficients
different from L.

Acknowledgments We gratefully acknowledge stimulating discussions with Miroslav Grmela on the issue of dissipation
potentials.
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