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Abstract An enhanced rheological network is presented for the material modeling of thermoviscoplasticity.
By introducing new basic elements, nonlinear isotropic and kinematic hardening may be depicted as well as an
improved description of energy storage and dissipation during plastic deformations. Satisfying the thermome-
chanical consistency, the yield function and the flow rule are directly deduced from the stress equilibrium and
the kinematics of the rheological network by means of simple algebraic calculations. Novel approaches are
proposed to account for a process-dependent energy storage also for the case of ideal plasticity. The resulting
energy storage behavior is investigated and validated by means of the simulation of tension test data.

Keywords Rheological models · Thermoviscoplasticity · Novel ideal bodies · Representation of energy
storage/dissipation
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1 Introduction

Material modeling by means of rheological networks offers a very simple and straight forward approach for
the characterization and description of complex material behavior. Within the concept of rheological models,
basic bodies are defined for particular aspects of the real constitutive behavior, like the Hooke body (ideal
elastic), the St.-Venant element (ideal plastic) or the Newton fluid (ideal viscous), which are represented
visually by simple icons like the spring, the friction element (block with dry friction) or the dashpot [31]. By
assembling networks of the basic elements in series or in parallel arrangement, more complicated ideal bodies
may be generated, for which the complex constitutive equations arise from the elementary material relations of
the single bodies by means of simple algebraic calculations. Rheological models provide a physically plausible
constitutive approach, which is detached from the actual processes and activities acting on the microscopic
level of the material. However, the real material behavior may be approximated reliably, if the free material
parameters are adjusted well to the experimental test data.

In the book of Reiner [31], one of the pioneers in rheological modeling, the basic elements, mentioned
afore, are given and various models of viscoelasticity and viscoplasticity are assembled. Krawietz [19] specifies
a new element for the description of plastic behavior without an elastic range (endochronic plasticity—see
[40]). This element is also applied for the modeling of nonlinear kinematic hardening with saturation. Addi-
tionally, in Krawietz [19], a separate rheological body is introduced to represent thermal strains. Both of these
elements are applied in the work of Lion [22,24] for constructing a viscoplastic model without a yield surface
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for the constitutive representation of filled rubber as well as for a second strain rate-dependent model of metal
plasticity with a yield surface in [23,25]. The rheological model of Lion [23] is adopted, for example, in [34]
in the context of plastic forming under consideration of thermal effects. Also, in [18,32], the material modeling
is based on rheological networks with endochronic elements for the description of thermoplastic sealings and
fiber glass reinforced thermoplastics. Moreover, in [33], even distortional hardening is represented by means
of two-dimensional rheological networks. In numerous other publications of material theory, rheological mod-
els are taken into account, see e.g., [1,9–11,26,36,41,42]. The procedure of material modeling by means of
rheological networks is common especially in the field of viscoelasticity, for example, in the case of the three
parameter model of the standard linear solid or the generalized Maxwell or Kelvin bodies—see also [8,39].
However, in the framework of plasticity, the rheological networks are often used as a motivation or as the
underlying structure of the final material model—see [9,10], but the constitutive equations are not deduced
from the rheological network itself as it is usually done for models of viscoelasticity.

In the context of thermomechanical modeling for metals, the appropriate function for the free energy and
especially for its plastic part is difficult to establish such that a physically reasonable material theory reproduces
the hardening behavior as well as the energy storage and the dissipation during plastic deformations as mea-
sured in the experiment. Different models for the plastic part of the free energy, proposed in [5,6,12–15,17],
already allow for a better representation of the energy transformation. In a recent work, Shutov and Ihlemann
[34] propose a novel approach to improve the energy storage and dissipation behavior in metal plasticity based
on an additional fraction of the free energy function—denoted as “detached energy,” which is detached from
the storage process of energy due to the hardening of the material model. However, the key questions are still
open: Which structure should the free energy have, on which internal variables should the free energy depend
on and how do they evolve during a given mechanical process? The answer thereon is quite simple from the
point of view of rheological models: The free energy of the material model follows directly and necessarily
from the energy, stored in all elements, introduced into the network. However, until now, there is for instance
no basic element for representing isotropic hardening. Usually, this type of hardening is only accounted for
in the rheological model by means of a process-dependent yield stress in the friction element, which does
not contribute to the free energy. Such an approach might be completely sufficient, as far as only mechanical
aspects of the material model are of interest. Otherwise, a contribution of isotropic hardening may only be
postulated physically plausible to the free energy according to the present state of the art.

In the paper at hand, the procedure of material modeling by means of rheological networks is enhanced,
allowing for a better representation of complex thermoviscoplasticity. A new element is introduced for the
description of isotropic hardening, and some already known basic elements are modified or specified more
precisely. Moreover, the proposed model is focused also on the representation of energy storage and dissipation
during plastic flow of metals. Based on the work of Helm [13,14] and Chaboche [5], where also ideal plasticity
is related to energy storage, it is assumed that plastic work in the friction element is gathered completely
as free energy in order to improve the description of energy transformation. However, in order to avoid an
overestimation of energy storage through this assumption, the friction element is put in series with a novel
dissipative strain element, which limits the resulting strain and, therefore, the work spent on the friction body.
Evaluating the second law of thermodynamics, the constitutive relations of the thermoviscoplastic model are
directly deduced from the definitions of the basic elements as well as the decompositions of stress and strain,
which hold true for the rheological network. By this way of proceeding, the thermomechanical consistency
of the enhanced model can be easily proven and, moreover, the well-known yield function and the flow rule
result most naturally.

In order to clarify the main ideas of the paper, the modeling approaches are restricted for one spatial
dimension only. A generalization of the proposed concept of enhanced rheological modeling for small defor-
mations representing three-dimensional tensor valued quantities turns out in a completely analogous proce-
dure as in the uniaxial case, which will be published in a forthcoming paper. Moreover, also the extension
of the model for large deformations seems to be straight forward, for example, according to the procedure in
[23].

In the second chapter of the paper, the mechanical dissipation and the equation of heat conduction are
provided in a general form. In Sect. 3, the known ideal bodies are introduced and new, respectively, modified
ones are defined. An enhanced rheological model of thermoviscoplasticity is assembled in Sect. 4 and its
constitutive equations are deduced. In the following chapter, the material model is validated with regard to
the energy transformation during plastic flow. Section 6 presents some studies concerning the energy storage
behavior. In the last chapter, further approaches, accounting for a process-dependent energy storage for ideal
plasticity, are proposed and validated on the basis of simulations and test data.
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2 Dissipation, equation of heat conduction and energy transformation

2.1 Mechanical dissipation

The internal dissipation δ follows from the balance equations for energy and entropy in combination with the
second law of thermodynamics—see [10]:

δ = −ψ̇ + 1

ρ
σ ε̇ − θ̇s − 1

ρ θ
q g ≥ 0, (1)

where ψ is the free energy (Helmholtz free energy). Furthermore, ρ is the mass density, σ the stress, θ the
temperature, s the entropy, q the heat flux and g = ∂θ/∂x the temperature gradient. An additive decomposition
of the strain1 is assumed according to

ε = εel + εi + εth (2)

into a purely elastic part εel, a purely inelastic one εi as well as a purely thermal contribution εth, which shall
evolve proportionally to the temperature change

ε̇th = α θ̇ (3)

with α as the thermal expansion coefficient. The free energy ψ may be initially arranged in general form as
a function of the elastic strain εel, the temperature θ , the temperature gradient2 g, as well as further internal
variables a1, . . . , an of the strain type, such as inelastic “back strains” of kinematic hardening or other internal
(hardening) variables, for example, dislocation densities, phase transition values and others:

ψ = ψ(εel, θ, g, a1, . . . , an) = ψ te(εel, θ, g)+ ψ i(θ, g, a1, . . . , an). (4)

Note that the free energy may be also split into a thermoelastic and an inelastic partψ te andψ i as often assumed
in the literature. Using the time derivative of the free energy (4) and the strain decomposition (2) with (3), the
dissipation inequality (1) can be rearranged as

δ =
(

1

ρ
σ − ∂ψ

∂εel

)
ε̇el −

(
∂ψ

∂θ
− 1

ρ
σα + s

)
θ̇ − ∂ψ

∂g
ġ + 1

ρ
σ ε̇i −

n∑
j=1

∂ψ

∂a j
ȧ j − 1

ρ θ
q g ≥ 0. (5)

To satisfy the condition of δ ≥ 0 for all possible thermomechanical processes, the prefactors in front of the
time derivatives of the elastic strain, the temperature and the temperature gradient ε̇el, θ̇ and ġ have to vanish.
Hence, potential relations result for the stress and the entropy according to

σ = ρ
∂ψ

∂εel
(6)

and

s = 1

ρ
σ α − ∂ψ

∂θ
= α

∂ψ

∂εel
− ∂ψ

∂θ
(7)

as well as the term

∂ψ

∂g
= 0. (8)

Equation (8) states that the free energy (4) has to be independent of the temperature gradient g:

ψ = ψ(εel, θ, a1, . . . , an) = ψ te(εel, θ)+ ψ i(θ, a1, . . . , an). (9)

1 In the literature, the strain is usually separated into an elastic and an inelastic part, only. The strain decomposition (2) has
already been used, for example, by Lion and Sedlan [23,25]. In Appendix A.6, a comparison is shown between the representations
of thermoelasticity associated with both alternative approaches of strain decompositions.

2 Since the heat flux q has to be a function of the temperature gradient g, this variable is usually added to the list of arguments
of the free energy—see e.g., [10].
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Moreover, the remaining three summands of the internal dissipation (5) may be split up according to

δ = δth + δM ≥ 0 (10)

into the thermal δth and the mechanical contribution δM, which both have to be nonnegative in any case. The
condition for the thermal dissipation3

δth := − 1

ρ θ
q g ≥ 0 (11)

is satisfied by assuming that the heat flux q is proportional to the negative temperature gradient −g, leading
directly to Fourier’s model of heat conduction

q = −k g, (12)

where k is the thermal conductivity of the material. Therefore, only the inequality for the mechanical dissipation

δM := 1

ρ
σ ε̇i︸ ︷︷ ︸
pp

−
n∑

j=1

∂ψ

∂a j
ȧ j

︸ ︷︷ ︸
ps

≥ 0 (13)

is left from the expression for the internal dissipation in (5). The first term pp in (13) comprises the total inelastic
stress power. The second term ps encloses the entire power of all conjugated internal forces A j = ρ ∂ψ/∂a j
at the internal strain rates ȧ j , stored in the material. In the case of thermoplasticity of metals, this power is
required to change the materials microstructure during plastic flow, for example, due to the formation of new
dislocations, the motion of dislocations along grain boundaries or the blocking of slip planes at obstacles and so
on. These processes induce local internal stress fields, causing macroscopic hardening of the material. Hence,
not the entire (plastic) stress power pp is dissipated and converted into heat, but the power ps is stored in the
material. Thus, only the difference

pd := pp − ps = δM (14)

contributes to the dissipative heating of the inelastic material. The energy, stored in the material during plastic
deformation, is also called “stored energy of cold work” [3]. First investigations into this matter have been
made by Taylor and Quinney [37].

2.2 Equation of heat conduction

The equation of heat conduction is deduced from the local energy balance—see [10]:

ė = 1

ρ
σ ε̇ − 1

ρ
div q + b. (15)

Besides the above mentioned variables, here e specifies the internal energy and b is an internal volumetric heat
source. The free energy ψ can be related to the internal energy e by means of the Legendre transformation
with respect to entropy s and temperature θ according to

ψ = e − θs. (16)

The local energy balance (15) is transferred with Fourier’s model of heat conduction (12) and the derivatives
of the free energy (16) and (9) with respect to time as well as with the potential relations for the stress (6) and
the entropy (7) into the form

θ ṡ = 1

ρ
k div(g)+ b + δM. (17)

3 The symbol “:=” in (11) represents the defining equal sign.
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By means of the time derivative of the entropy (7) for the general approach of the free energy (9), and the
definition of the heat capacity at constant deformation—see [10]—according to

cdef := θ
∂ s(εel, θ, a1, . . . , an)

∂θ
, (18)

the equation of heat conduction is obtained from (17) in a general, material independent formulation4:

cdef θ̇ = − θ ∂s

∂εel
ε̇el︸ ︷︷ ︸

−pe

+ 1

ρ
k div(g)+ b

︸ ︷︷ ︸
pQ

+ δM︸︷︷︸
pd

− θ
n∑

j=1

∂s

∂a j
ȧ j

︸ ︷︷ ︸
−pi

. (19)

The thermoelastic coupling term pe, also called piezocaloric coupling term, represents a power in the elastic
strain rate ε̇el, which, however, is not related to the elastic stress power 1/ρ σ ε̇el. Instead, pe causes cooling
of the body due to expansion and heating in the case of compression of the material. The first summand in
pQ describes the heat conduction process in the body at hand, whereas the second summand includes the
specific volumetric heat source b in the material, as they may occur, for example, due to inductive heating
or radioactive decay. The last term pi describes a thermoinelastic coupling, which stands in analogy to its
thermoelastic counterpart pe and provides a positive or negative heat contribution depending on the evolution
of the internal strains a j . Recall, the dissipative power term pd, given in (14), has been already discussed.

2.3 Energy transformation behavior of metals

In order to quantify roughly the dissipative nature of metals during plastic flow, the energy transformation ratio
ϕ is often used and defined as the quotient

ϕ := ψ i

wp
(20)

of the plastic stored energy ψ i—cf. (9)—divided by the entire plastic work

wp =
t∫

0

pp(τ ) dτ (21)

—see [6,7]. This energy ratio shows its maximum at the beginning of plastic loading and reduces afterwards—
see [7,13,28,29].

In commercial FE-tools like LS-DYNA5 or ABAQUS6 as well as often in scientific publications, for exam-
ple, in [35], the dissipation power pd in the equation of heat conduction is assessed as a part of the plastic
stress power pp by introducing the Taylor-Quinney coefficient γ [37]:

pd := γ pp = γ
1

ρ
σ ε̇p. (22)

Here, the multiplier γ is a constant factor less than one. Typically, values of γ = 0.85, . . . , 0.95 are selected
for steel sorts—see also [35], resulting with regard to (20) in a constant energy transformation ratio

ϕ = 1 − γ (23)

throughout the entire process of plastic flow, which, however, clearly contradicts recent experimental obser-
vations [7,13,28,29]. Depending on the current state of plastic deformation of a special process and the
value chosen for the Taylor-Quinney coefficient γ , the dissipation power pd is obviously either over- or
underestimated.

4 Generally, the heat capacity cdef in (19) depends particularly on the temperature θ as well as on other internal variables
according to (18) and, in special cases, may be assumed approximately as constant in the course of linearization.

5 Hallquist, J.O.: LS-DYNA Theory Manual, Version November 2005. Livermore Software Technology Corporation (LSTC),
Livermore, California (2005).

6 Abaqus Theory Manual, Version 6.7. Simulia, Providence, Rhode Island, USA (2007).
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Fig. 1 Overview of different behavior of materials and model types according to Haupt [10]

3 Material modeling based on rheological networks

Figure 1 gives an overview of the most common classes of material models for solids7 and their characteristic
stress-strain diagrams according to Haupt [10]. While the elasticity and viscoelasticity models are applied
mostly in the context of elastomeric or duromeric plastics, the inelastic material models of plasticity and
viscoplasticity are used especially to describe the mechanical behavior of metals subjected to large irrevers-
ible deformations. The viscoelastic and viscoplastic models show different stress-strain behavior for varying
loading rates, whereas the stress response in the case of elasticity or plasticity theory is always identical for
any loading rate.

Preliminary remarks

The “arclength” ā of a variable a is a functional and may be defined as the time integral of the time rate of its
absolute value according to

ā :=
t∫

0

|ȧ(τ )| dτ =
t∫

0

˙̄a(τ ) dτ (24)

with

˙̄a := |ȧ|. (25)

The variable a = |a| sgn(a) can be split into its absolute value and its algebraic sign8. Hence, using (25), the
rate ȧ can be decomposed into the product

ȧ = |ȧ| sgn(ȧ) = ˙̄a sgn(ȧ), (26)

where the algebraic sign sgn(ȧ) can be interpreted as the “direction of evolution” of the rate ȧ, that is, sgn(ȧ)
indicates whether a growth or decrease in a occurs.

7 Figure 2 shows simple possibilities to realize these types of material behavior by means of rheological networks.

8 The signum function is defined as: sgn(a) =
{ +1 for a > 0

0 for a = 0
−1 for a < 0

.
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Table 1 Well-known basic elements with stress relation and stored free energy ψ

Linear elastic spring Linear viscous dashpot Friction elementa

(Hooke’s body “H”) (Newton’s body “N”) (St.-Venant’s body “ST.-V.”)

σ = E ε σ = ηε̇ σ = κ0 sgn(ε̇) for ε̇ �= 0

|σ | < κ0 for ε̇ = 0

ψ = 1
2ρ Eε2 ψ = 0 ψ = 0

a See also supplemental remark in Appendix A.1

Table 2 Strain and stress relations of series (left) and parallel connection (right) of two basic elements E1 and E2 including
structural formula (see Appendix A.2) for resulting substitute element E3

Series connection Parallel connection

ε = ε1 + ε2 ε = ε1 = ε2

σ = σ1 = σ2 σ = σ1 + σ2

E3 := E1 — E2 E3 := E1| E2

The specific mechanical work, applied to the basic elements, according to

w = 1

ρ

t∫
0

σ ε̇ dτ, (27)

is either stored as free energy ψ in a particular component or dissipated as heat.

3.1 Classical rheological bodies and element assemblages

In Table 1, the well-known rheological elements according to Reiner [31] are recalled including the associated
stress relations and the specific free energy ψ stored in the ideal bodies. New ideal bodies with more complex
properties can be generated by assemblages in series and parallel of the basic elements as summarized in
Table 2.

3.2 Examples of rheological models for various classes of material behavior

Figure 2 shows simple rheological networks to describe the fundamental material behavior of the model classes,
presented in Fig. 1. Elasticity is represented by a linear spring. To illustrate viscoelasticity, a linear spring is
combined with a Kelvin element (parallel connection of linear dashpot and linear spring), leading to the
three-parameter model of the standard linear solid.

A simple rheological model of elastoplasticity results from the standard linear solid body by replacing
the linear dashpot with a friction element. The friction body affects the initial yield stress and may represent
isotropic hardening as well, while the spring with stiffness Eξ allows for modeling of kinematic hardening.
Furthermore, a rheological network of elastoviscoplasticity is generated by adding a linear dashpot to the model
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Fig. 2 Rheological models for material behavior specified in Fig. 1

Fig. 3 Nonlinear viscous dashpot with parameters η,m, d0 (left), modified friction element with energy storage and yield stress
κ0 (center), hardening element with stiffness Eκ (right)

of elastoplasticity, as shown in Fig. 2. Further rheological bodies, found in the literature, are summarized in
Appendix A.2.

3.3 Introduction of new or modified rheological elements

3.3.1 Nonlinear viscous dashpot

The stress in the nonlinear viscous dashpot (Fig. 3, left) is initially defined in a general form as

σ := d( ˙̄ε) sgn(ε̇) , (28)

where d( ˙̄ε) stands for the absolute value of the dashpot stress as a function of the rate of the arclength ε̄ in this
element. In the next step, the function d( ˙̄ε) is specified as

d( ˙̄ε) := (η |ε̇|)1/m d0, (29)

where the parameter η is a positive strain rate scaling factor with the dimension of time. The exponent 1/m
causes nonlinear rate dependency. However, the additional positive material parameter d0 introduces stress
units, since the term in brackets in (29) is dimensionless. The total work in the nonlinear dashpot is completely
dissipated as heat.

3.3.2 Modified friction element with energy storage

The entire mechanical work, spent on the modified friction element, is stored as free energy, which, however,
stands in contrast to the classical approach, where a purely dissipative behavior is assigned to this rheological
component. With the stress definition for the friction body in Table 1, the associated stored free energy ψ
results from (27) with (26) and (24) as proportional to the arclength ε̄ of the strain in this element:

ψ = 1

ρ

t∫
0

κ0 sgn(ε̇) ε̇ dτ = 1

ρ
κ0 ε̄. (30)
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Fig. 4 Dissipative strain element with material parameters ci (left), thermal strain element with expansion coefficient α (right)

In the graphical representations, for example, in Fig. 3 (center), the rectangle of the modified friction body9

remains transparent to differ it from its dissipative counterpart, specified in Table 1.

3.3.3 Hardening element

The novel element for modeling isotropic hardening (Fig. 3, right) has to respond to the strain process with
an increasing resistance to plastic flow, however, without reducing its new gained strength after load reversal,
as occurring in models of kinematic hardening by means of a simple spring. Following this aspect, a linear
relationship

|σ | := Eκ εκ (31)

is most obvious, where Eκ is a stiffness-like parameter and εκ specifies a monotonously growing internal
variable of strain type, determined by the evolution equation

ε̇κ := |ε̇|. (32)

By using the definition (24), the time integration of (32) yields the absolute value of the stress (31) as

|σ | = Eκ ε̄ (33)

with the arclength ε̄ of the strain ε. During the loading process ε̇ �= 0, the algebraic sign of the stress σ has to
correspond to the strain rate ε̇ in the hardening body:

sgn(σ ) = sgn(ε̇). (34)

However, as long as the absolute value of the stress σ in the element is less than its actual strength Eκ ε̄, no
strains may evolve in this rheological component. Hence, the total stress of the hardening element reads as

σ = Eκ ε̄ sgn(ε̇) for ε̇ �= 0
|σ | < Eκ ε̄ for ε̇ = 0 (35)

with a case distinction similar to the one of the friction body in Table 1.
It is postulated that all work, applied to the hardening element, is stored as free energy. Thus, (27) leads to

the free energy term

ψ = 1

ρ

t∫
0

Eκ ε̄ sgn(ε̇) ε̇ dτ = 1

ρ

ε̄∫
0

Eκ ˜̄ε d ˜̄ε = 1

2ρ
Eκ ε̄

2, (36)

exhibiting a structure very similar to the corresponding expression of the stored energy in a linear elastic spring
as given in Table 1.

9 Subsequently, the term friction element always refers to the modified type introduced here, unless indicated differently.
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3.3.4 Dissipative strain element

The dissipative strain element10 (Fig. 4, left) is used to limit the strain part and, thus, the stored free energy
evolving in other ideal bodies such as the hardening elements embedded in the rheological network. The work,
applied in this process to the dissipative strain element, is completely transferred into heat. The stress σ in
this ideal dissipation body shall not depend on its actual strain value ε, since this rheological component only
transfers the external stress σ . However, the strain, emerging in the dissipative strain element, is controlled
solely by an evolution equation

ε̇ := ζ(ε, σ, a j , . . .), (37)

which may be introduced as a function of the strain ε, the stress σ and further internal or external variables
a j as well as the associated material parameters ci . Later on when the material model is set up, a reasonable
definition must be given to the evolution equation (37) in each application of the dissipative strain element.

3.3.5 Thermal strain element

The thermal strain element (Fig. 4, right) responds like a rigid body to every mechanical loading due to external
forces or displacements. However, under temperature changes with respect to the reference level θ0, a thermal
strain εth develops in the element according to

εth = α(θ − θ0), (38)

that is, the thermal strain rate is recovered as assumed in (3). The free energy, specified for the thermal strain
element—see Appendix A.3, is given by

ψ = − 1

2θ0
cdef(θ − θ0)

2. (39)

4 Enhanced rheological model of thermoviscoplasticity

The enhanced rheological model of thermoviscoplasticity (Fig. 5) consists of two parts: the thermoelastic
contribution on the left-hand side, comprising a thermal strain element and a linear spring, as well as the con-
siderably more complex viscoplastic model composition on the right. This assemblage consists of four chains
arranged in parallel, each one representing a specific phenomenon of the entire elastoviscoplastic material
response.

The first branch on top with the nonlinear dashpot is for the representation of the velocity-related overstress
effect [20] in the material model. In the second chain of the parallel network assemblage, a friction body and
a dissipative strain element are arranged in series to account for elastoplastic behavior with the initial yield
stress and to improve the energy transformation characteristic of the resulting material model during plastic
flow. In the third chain, a hardening element is connected in series to a dissipative strain element for realizing
nonlinear isotropic hardening and energy diffusion. The fourth chain of the rheological model finally includes
a linear spring with a dissipative strain element for describing nonlinear kinematic hardening11.

The difference between dissipative and energy storing components is marked graphically in the rheologi-
cal network: The gray colored areas indicate the dissipative character of the dashpot and the dissipative strain
bodies. In all other elements, solely energy storage takes place.

10 A kind of dissipative strain element—however, not denoted with this expression—was introduced firstly by Krawietz [19]
as part of a rheological model to describe endochronic plasticity. In the following this rheological component is generalized into
a dissipative strain element.

11 A simplified version of the rheological model with linear hardening is briefly discussed in [4], comprising a dissipative
friction body but none dissipative strain elements.
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Fig. 5 Enhanced rheological model of thermoviscoplasticity with nonlinear isotropic and kinematic hardening and improved
description of energy storage and dissipation

4.1 Kinematics, internal stresses and free energy

The kinematics of the rheological model in Fig. 5 results from the network rules for the basic elements in
series and parallel connection in Table 2. It gives the relation between the total strain ε and the thermal, the
elastic, and the viscoplastic strain fractions:

ε = εth + εel + εvp. (40)

A further additive decomposition of the viscoplastic strain and its rate follows from the four chains in the
viscoplastic part of the model according to

εvp = he + hd = re + rd = ye + yd (41)

and

ε̇vp = ḣe + ḣd = ṙe + ṙd = ẏe + ẏd. (42)

The indices “e” and “d” denote the elastic or energy storing and the dissipative character of the internal strain
variables.

Moreover, the rheological model provides an additive decomposition of the total stress into the partial
stresses in the parallel chains for viscoplasticity:

σ = ση + σκ0 + σκ + σξ , (43)

which stem from the corresponding definitions of the basic elements in (28), (35) as well as in table 1 and are
given by the following material equations:

ση = d( ˙̄εvp) sgn
(
ε̇vp

)
nonlinear viscous dashpot (44)

σκ0 = κ0 sgn
(
ḣe

)
for ḣe �= 0 (45)

|σκ0 | < κ0 for ḣe = 0
friction element

(46)

σκ = Eκ r̄e sgn(ṙ e) =: κ sgn(ṙe) for ṙe �= 0 (47)

|σκ | < Eκ r̄ e = κ for ṙe = 0
hardening element

(48)

σξ = Eξ ye =: ξ spring of kin. hardening (49)

The quantity κ = Eκ r̄ e represents the stress of isotropic hardening and ξ is the kinematic hardening variable
of stress type.



760 C. Bröcker, A. Matzenmiller

The free energyψ of the rheological model follows from all basic elements contributing to energy storage:

ψ = ψ th + ψel + ψκ0 + ψκ + ψξ , (50)

that is, from the energy contributions of the thermal strain element ψ th and the linear spring ψel in the ther-
moelastic part according to the definitions in (39) and Table 1 as well as from the friction element ψκ0 , the
hardening element ψκ , and the spring ψξ for kinematic hardening in the viscoplastic part according to (30,
36) and Table 1. It may be summarized as

ψ = ψ(εel, θ, h̄e, r̄ e, ye) = 1

ρ

[
1

2
Eεel

2 − 1

2θ0
ρcdef(θ − θ0)

2 + κ0h̄e + 1

2
Eκ r̄ e

2 + 1

2
Eξ ye

2
]
. (51)

4.2 Implications from mechanical dissipation

With the free energy ψ as in (51)1, the inequality of the mechanical dissipation (13) becomes

δM = 1

ρ
σ ε̇vp − ∂ψ

∂ h̄e

˙̄he − ∂ψ

∂ r̄ e

˙̄re − ∂ψ

∂ye
ẏe ≥ 0. (52)

By substituting the kinematical assumption (42) and the balance equation of stresses (43) into the first term of
(52), the viscoplastic stress power is decomposed similarly as in [23] into the contributions of the individual
elements:

1

ρ
σ ε̇vp = 1

ρ

[
ση ε̇vp + σκ0

(
ḣe + ḣd

) + σκ (ṙ e + ṙd)+ σξ (ẏe + ẏd)
]
. (53)

In order to evaluate the expression in (53), the component stresses (44, 45, 47) and (49) of the basic elements
are inserted into the viscoplastic stress power12:

1

ρ
σ ε̇vp = 1

ρ

[
d( ˙̄εvp) sgn

(
ε̇vp

)
ε̇vp + κ0 sgn

(
ḣe

) (
ḣe + ḣd

) + κ sgn(ṙ e) (ṙ e + ṙd)+ ξ(ẏe + ẏd)
]
. (54)

Applying the identity (26) for the first, second and third summand in (54) as well as the rule sgn(a)· sgn(a) = 1
yields the following:

1

ρ
σ ε̇vp = 1

ρ

(
d( ˙̄εvp) ˙̄εvp + κ0

˙̄he + κ0 sgn
(
ḣe

)
ḣd + κ ˙̄re + κ sgn(ṙ e) ṙd + ξ ẏe + ξ ẏd

)
. (55)

Thus, by using the decomposition (55), the dissipation inequality (52) generates the intermediate result:

δM = 1

ρ

[
d( ˙̄εvp) ˙̄εvp +

(
κ0 − ρ

∂ψ

∂ h̄e

)
˙̄he +

(
κ − ρ

∂ψ

∂ r̄ e

)
˙̄re +

(
ξ − ρ

∂ψ

∂ye

)
ẏe

+ κ0 sgn
(
ḣe

)
ḣd + κ sgn(ṙe) ṙd + ξ ẏd

]
≥ 0. (56)

Each summand in (56) is inspected separately, starting with the rate terms of the internal strain variables ˙̄he,
˙̄re and ẏe. The rate ẏe can be positive, zero or negative, whereas the rates ˙̄he and ˙̄re are always semipositive.
However, the absolute values of all these rates may tend toward infinity, while the associated factors within
the round brackets in (56) may be negative as well. Semipositivity of the mechanical dissipation (56) may

only be guaranteed for all conceivable states of the internal strain rates, if both prefactors of the rates ˙̄he and˙̄re are at least semipositive and, furthermore, the factor ahead of the rate ẏe vanishes identically. Hence, it is
more strictly demanded as only sufficient conditions that all three terms in round brackets in (56) have to be
identical zero at all points in time during the entire strain process. Assuring that the prefactors of the internal

12 In fact, the component stresses of the friction and the hardening element (45) to (48) require the investigation of four different
cases. However, exclusively, the case with the relations (45) and (47) is considered subsequently, that is, ḣe �= 0 and ṙe �= 0 hold
for the following steps.
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strain rates itself are independent of ˙̄he, ˙̄re and ẏe, three additional potential relations of the free energy result
for the internal stress variables as sufficient but not necessary conditions:

κ0 = ρ
∂ψ

∂ h̄e
, (57)

κ = ρ
∂ψ

∂ r̄ e
, (58)

ξ = ρ
∂ψ

∂ye
, (59)

leaving the reduced mechanical dissipation as the remaining inequality according to

δM = 1

ρ

(
d( ˙̄εvp) ˙̄εvp + κ0 sgn

(
ḣe

)
ḣd + κ sgn(ṙe) ṙd + ξ ẏd

)
≥ 0. (60)

In accordance with the second law of thermomechanics, the stricter requirement is posed onto the inequality
(60) that each summand by itself has to be nonnegative. As a consequence of the definitions for the dashpot
stress (28) and the arclength (25), the first summand in (60) is positive in any case. The remaining three terms
in (60) provide the following conclusions for the evolution equations of the internal strain variables

sgn
(
ḣd

) = sgn
(
ḣe

)
or ḣd = 0 ⇒ ḣe = ε̇vp, (61)

sgn(ṙd) = sgn(ṙ e) or ṙd = 0 ⇒ ṙ e = ε̇vp, (62)

sgn(ẏd) = sgn(ξ) or ẏd = 0 ⇒ ẏe = ε̇vp (63)

as sufficient condition to assure semipositivity of the mechanical dissipation and to satisfy (42)1 to (42)3.
However, the latter relations of (61) to (63) specify trivial cases of the rheological network, in which no strains
may evolve in the dissipative strain elements. For this reason, these cases are not investigated any further. With
the relation (26)2, it follows from the decomposition of the viscoplastic strain rate ε̇vp according to (42)1 and
(42)2 as well as from (61)1 and (62)1 that

ε̇vp = ˙̄εvp sgn
(
ε̇vp

) = ˙̄he sgn
(
ḣe

) + ˙̄hd sgn
(
ḣd

) =
( ˙̄he + ˙̄hd

)
sgn

(
ḣd

) = ( ˙̄re + ˙̄rd
)

sgn(ṙd) (64)

holds. Hence, the internal strains in the chains of the friction and hardening element develop in the same
direction as the viscoplastic strain rate does:

sgn
(
ε̇vp

) = sgn
(
ḣd

) = sgn
(
ḣe

) = sgn(ṙd) = sgn(ṙe) �= 0. (65)

Note that the unequal sign results at the end of (65) since (54) is valid only for ḣe �= 0 and ṙe �= 0—see
footnote 12. Moreover, according to (64), the rate of the viscoplastic strain functional ε̄vp decomposes into the
parts of the friction or hardening body and the dissipative strain elements attached:

˙̄εvp = ˙̄he + ˙̄hd = ˙̄re + ˙̄rd. (66)

As a further consequence of (66) and the definition (24)2, the viscoplastic arclength ε̄vp boils down according
to

ε̄vp =
t∫

0

˙̄εvp(τ ) dτ =
t∫

0

( ˙̄he(τ )+ ˙̄hd(τ )
)

dτ =
t∫

0

˙̄he(τ ) dτ +
t∫

0

˙̄hd(τ ) dτ = h̄e + h̄d (67)

into the fractions of the partial strains

ε̄vp = h̄e + h̄d = r̄e + r̄d, (68)
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which is equivalent to the decomposition in (66). Finally, the mechanical dissipation (60) is transferred with the
equalities (61)1, (62)1 and (63)1 as well as the relation (26)2 for the strain rates ḣd and ṙd into the semipositive
expression

δM = 1

ρ

(
d( ˙̄εvp) ˙̄εvp + κ0

˙̄hd + κ ˙̄rd + |ξ | ˙̄yd

)
. (69)

Its four summands can be directly assigned to the dissipative components in the rheological model of Fig. 5.
The first term comprises the stress power, dissipated in the dashpot. The other three contributions correspond to
the stress power of the dissipative strain elements, connected in series to the friction and the isotropic hardening
body as well as to the spring of kinematic hardening.

4.3 Evolution equation of dissipative strain element

4.3.1 Evolution of internal strain hd

The sign of the internal strain rate ḣd in the dissipative strain element has already been discussed in (65), but

a suitable equation for the rate of the arclength ˙̄hd is provided next. According to (51) and (66), the energy
storing rate in the friction body becomes

ψ̇κ0 = 1

ρ
κ0

˙̄he = 1

ρ
κ0

( ˙̄εvp − ˙̄hd

)
. (70)

As found by experimental investigations [7,13,28,29], the rate of energy storage in the friction element ψ̇κ0 has
to be large in the beginning of the plastic process. But as plastification increases, the energy storing rate ψ̇κ0 has
to reduce and should finally tend to zero. With respect to the kinematics of the rheological model this means:
Initially, mainly the strain he in the friction body develops, causing energy storage, whereas the strain hd in
the dissipative strain component remains small. However, in the course of plastic loading, the development
of he diminishes in favor of larger strain rates ḣd, until finally the evolution of he reaches a state of complete
saturation, that is, the rate in the dissipative strain element is approximately equal to the viscoplastic strain rate
ḣd ≈ ε̇vp, whereas the strain rate ḣe in the friction body tends to zero with time.

A suitable evolution equation for the internal variable hd, allowing for the afore outlined properties, is
proposed as a function of the monotonically increasing viscoplastic arclength ε̄vp and with respect to the
constraint (65) according to

ḣd =
(

1 − β1e−β2 ε̄vp
)
ε̇vp (71)

with the parameters 0 ≤ β1 ≤ 1 and β2 ≥ 0. The initial and long-term rates of energy storage in the friction
body are given by ψ̇κ0(ε̄vp = 0) = 1

ρ
κ0 ˙̄εvp β1 and ψ̇κ0(ε̄vp → ∞) = 0. Choosing β2 = 0 results in a

constant energy storing rate in the friction element, which corresponds to the approach of Helm [13,14] for
ideal plasticity and to the one of Chaboche [6], denoted as “saturated isotropic hardening.”

4.3.2 Evolution of internal strain rd and isotropic hardening stress κ

The rheological model at hand shall represent nonlinear isotropic hardening. According to the material equa-
tion for the stress in the hardening element (47), the related internal variable κ of stress type is linear in the
arclength r̄e. Thus, as in the friction body, mainly the internal strain re has to grow at the beginning of plastic
loading. But with increasing strength κ , the strain rate ṙ e in the hardening body has to diminish during plastic
flow in favor of a larger rate ṙd in the associated dissipative strain component until saturation of the isotropic
hardening variable κ is finally approached, that is, ṙd ≈ ε̇vp holds. Ensuring the validity of the constraint (65),
an evolution equation for rd is set as linear in the product of the viscoplastic strain rate and the internal stress
variable κ:

ṙd = κ

κ∞ ε̇vp, (72)
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where the positive material parameter κ∞ corresponds to the saturation value of the isotropic hardening stress.
With (47) and (66) as well as (72), the evolution equation of the isotropic hardening variable κ follows as

κ̇ = Eκ ( ˙̄εvp − ˙̄rd) = Eκ
(

1 − κ

κ∞
) ˙̄εvp. (73)

Linear isotropic hardening is recovered for the internal variable ṙd ≡ 0 as a special case.

4.3.3 Evolution of internal strain yd and kinematic hardening stress ξ

During monotonic loading, the kinematical requirements on the internal strains ye and yd for nonlinear kine-
matic hardening are similar to their counterparts re and rd for the increase of isotropic strength κ discussed
above. However, in contrast to κ , the kinematic hardening variable ξ = Eξ ye has to diminish rapidly in the
case of load reversal, and after passing through zero, it has to develop with the opposite algebraic sign up to
the point of saturation in the opposed direction. Searching for a suitable evolution equation for the internal
strain yd, which allows for the outlined hardening behavior, the constraint (63)1 already governs the direction
of evolution and, thus, motivates a linear relationship, similar to (72), in terms of the internal stress variable ξ :

ẏd = ξ

ξ∞ ˙̄εvp, (74)

where the positive material parameter ξ∞ corresponds to the absolute value of the kinematic hardening stress ξ
at the state of complete saturation. By using (42), the rate of the internal strain ye, inducing the stress ξ = Eξ ye
due to the kinematic hardening, results as

ẏe = ε̇vp − ẏd = ε̇vp − ξ

ξ∞ ˙̄εvp =
(

1 − |ξ |
ξ∞ sgn(ξ) sgn

(
ε̇vp

))
ε̇vp. (75)

During monotonic tensile loading, the qualitative evolution of both internal strain rates ẏe and ẏd is identical
as for the rates ṙe and ṙd of isotropic hardening before. However, in the case of load reversal, the term in
the brackets of (75)3 has an initial value of 2—that is, the rate of the internal strain ye is initially twice as
high as the viscoplastic strain rate ε̇vp itself, which at first causes a very strong reduction in the kinematic
hardening variable ξ and, hence, also the decrease in the rate of strain yd in the dissipation element. However,
according to (74), the strain yd still augments with the identical algebraic sign as before the change of the
loading direction as long as the hardening stress ξ is positive. When the internal strain ye and the kinematic
hardening variable ξ become negative for the first time, also the algebraic sign of the rate ẏd in (74) inverts, and
hence, the development of the strain ye and the kinematic hardening variable ξ slows down. In the following,
the ratio ξ/ξ∞ tends to −1 and the internal strain ye saturates in the negative range of values13.

Equation (49) with (75) finally leads to the evolution equation of nonlinear kinematic hardening according
to

ξ̇ = Eξ ẏe = Eξ

(
ε̇vp − ξ

ξ∞ ˙̄εvp

)
(76)

and, thus, corresponds to the approach of Armstrong and Frederick [2]. In the special case ẏd ≡ 0 of the
vanishing internal strain variable yd, the kinematic hardening is only linear.

4.4 Yield condition and flow rule

The balance equation of stresses (43) is transformed by means of the component stresses (44, 45, 47) and (49)
as well as by the relation of the evolution directions (65) into14

σ = d( ˙̄εvp) sgn
(
ε̇vp

) + κ0 sgn
(
ε̇vp

) + κ sgn
(
ε̇vp

) + ξ. (77)

13 If another load reversal is applied, then the development of the internal strains repeats in an analogous way as discussed
above, but each one with its opposite algebraic sign.

14 It is assumed temporarily for the stress balance (43) that the stress relations (45) and (47) of the friction and the hardening
body are valid in any case, which, in consequence of (65), is equivalent to the tentative hypothesis: Only elastoviscoplastic states
are possible in the rheological network, that is, ε̇vp �= 0 and sgn

(
ε̇vp

) = sgn
(
ḣe

) = sgn(ṙe) �= 0 hold for any time and no
purely elastic domain exists. However, this assumption causes a mathematical contradiction as soon as purely elastic behavior
occurs. In this manner, the condition emerges to distinguish between the elastic and plastic state of the model.
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Rewriting of (77) leads to

σ − ξ = |σ − ξ | sgn(σ − ξ) =
(

d
( ˙̄εvp

) + κ0 + κ
)

sgn
(
ε̇vp

)
. (78)

According to the defining relations for the dashpot (29) and the friction element (Table 1) as well as to the one
for the internal stress κ in (47), all summands in the bracket on the right-hand side of (78) are strictly positive.
As the algebraic signs of the terms sgn(σ − ξ) = sgn

(
ε̇vp

)
must be equal, (78) provides the constitutive

relation for the absolute value of the overstress in the dashpot

d
( ˙̄εvp

) = |σ − ξ | − (κ0 + κ). (79)

By introducing the function f := |σ − ξ | − (κ0 + κ) into (79), it follows

d( ˙̄εvp) = f. (80)

The equal sign in (80) can only be valid, if the function f is semipositive. However, dependent on the actual
state of the total and the internal stress variables σ , ξ , κ and κ0, the function f can have negative values as
well. The mathematical contradiction in (80) in the case of f < 0 indicates that no plastic loading is possible
in the rheological model for all states f < 0—see also footnote 14. Instead, a purely thermoelastic step takes
place, that is, ε̇vp = 0 holds. Moreover, in the case of f < 0, the stress relations (46) and (48) of the friction
and the hardening body are valid in lieu of (45) and (47). Thus, the well-known yield function

f = |σ − ξ | − (κ0 + κ) (81)

with the case distinctions

f =
{≤ 0 elastic domain
> 0 viscoplastic domain (82)

arises naturally from the rheological network. Indeed, (77) to (80) are valid only for states f ≥ 0 of total and
internal stresses σ , κ0, κ and ξ . Hence, solely values with f ≥ 0 must be allowed for in (80), which may be
mathematically realized by means of the Macauley bracket 〈x〉 := (x + |x |)/2. Thus, (80) is transferred with
the definition of the dashpot stress (29) into

d
( ˙̄εvp

) = (
η|ε̇vp|

)1/m
d0 = 〈 f 〉. (83)

If f is negative, then the right-hand side of (83) is zero, which directly leads to |ε̇vp| = 0 and, thus, reveals that
viscoplastic strains εvp do not evolve in the rheological network for nonpositive values f ≤ 0. That means,
the thermoelastic part of the model is active only. Inelastic strains, however, only develop in case f > 0.
Rearranging (83) brings the absolute value of the viscoplastic strain rate into the form

|ε̇vp| = 1

η

〈
f

d0

〉m

=: λ, (84)

which is equal to the plastic multiplier λ according to the approach of Perżyna [30]. After use is made of (84)
and the algebraic sign from (78), the flow rule of the viscoplastic strain reads15

ε̇vp = 1

η

〈
f

d0

〉m
σ − ξ

|σ − ξ | . (85)

15 The sign of the viscoplastic strain rate, as given by (78), corresponds to the known normal direction of the associated theory
of rate-independent plasticity: sgn

(
ε̇vp

) ≡ ∂ f /∂σ .
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4.5 Equation of heat conduction

According to the potential relations (6) and (7), the stress and entropy follow from the free energy (51)2 as

σ = Eεel, s = 1

ρ
Eαεel + 1

θ0
cdef(θ − θ0), (86)

and the derivatives of the entropy with respect to the elastic and internal strains in the equation of heat
conduction (19) read as

∂s

∂εel
= 1

ρ
Eα,

∂s

∂a j
= 0. (87)

Hence, the thermoviscoplastic coupling term pi in (19) vanishes as a consequence of the free energy expression
in (51)2. The mechanical dissipation (69) follows with the help of the evolution equations (71, 72) and (74)
for the internal strains hd, rd and yd as well as with (83) as16

δM = 1

ρ

[
f + κ0

(
1 − β1e−β2 ε̄vp

)
+ κ2

κ∞ + ξ2

ξ∞

]
˙̄εvp ≥ 0. (88)

The mechanical dissipation (88) is semipositive as required to assure the thermomechanical consistency of the
material model17. Finally, the equation of heat conduction (19) reduces with (87) to

cdef θ̇ = − 1

ρ
Eα θε̇el + 1

ρ
k div(g)+ b + δM. (89)

Remarks

– The rheological network in Fig. 5 may be reduced to the special cases of rate-independent thermoplasticity
as well as to thermoviscoelasticity as discussed in Appendix A.5.

– An additional Appendix A.6 shows the comparison of the energy representation from the rheological model
(51)2 to the classical proposal for the Helmholtz free energy in the theory of thermoelasticity.

5 Model validation for energy transformation

The material model of Sect. 4 is implemented into a one-dimensional truss element of the FE-program FEAP18.
Since the purely mechanical contribution of the constitutive model is quite well-known in the framework of the
theory of metal plasticity, less attention is paid in this work to the validation of the mechanical model response
and the related identification procedure of the material parameters. Instead, simulations with four different
variants of energy storage models are performed—see Table 3—in order to validate the energy transformation
characteristic of the material model by means of experimental data in [13]. In this test, a cylindrical specimen,
made of AlMgSil, is loaded in tension up to the strain limit ε = 4 %, with a strain rate kept constant at
ε̇ = 0.004 s−1. The stress history is measured and the change of the surface temperature is recorded in the
mid-point of the sample. Based on this temperature data, the energy transformation ratio ϕ (also denoted as
ETR) according to (20) is given in [13].

According to the experiment, isothermal boundary conditions are applied in the simulations at both ends of
the specimen. The mechanical and thermal material parameters are adopted from the experimental data and the
identification of Helm [13] as given in Tables 3 and 4. Kinematic hardening is excluded in these calculations.

The simulated stress response is identical for all models (a–d) and agrees well with the experimental data
except toward the end of the test at time t > 7s—see Fig. 6, left picture. However, the calculated ratios of
the energy transformation ϕ clearly differ from each other (Fig. 7) and, thus, also the calculated temperature
histories—see Fig. 6, right picture. The cooling phase with temperature drop at the beginning of the five plots
for the temperature history can be attributed to the thermoelastic coupling effect.

16 Since the factor ˙̄εvp in (88) is identically zero all over in the elastic range—see (25) and (84), the Macauley bracket of the
yield function f from (83) may be omitted in the first summand of (88).

17 Two further formulations of the mechanical dissipation δM are discussed in Appendix A.4.
18 Taylor, R.L.: FEAP—A Finite Element Analysis Program, Version 7.5, Theory Manual. University of California at Berkeley,

Berkeley, USA, www.ce.berkeley.edu/feap (2003).

www.ce.berkeley.edu/feap
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Table 3 Parameters of energy storage models

Model Parameter Model type

a γ = 0.9 Constant ETR as in (23)
b β1 = 0.0, β2 = 0.0 Energy storage due to hardening onlya

c β1 = 0.4, β2 = 0.0 Model of Helm [13]
d β1 = 0.75, β2 = 60.0 New proposal according to (71)

a This model type corresponds formally to a rheological network similar to Fig. 5, which has a purely dissipative friction body,
however, without a dissipative strain element, arranged in series

Table 4 Further material parameters

Parameter type Symbol Value Symbol Value Symbol Value

Thermoelastic E 60,759.5 N/mm2 ρ 2,900.0 kg/m3 α 2.15 × 10−5 1/K
k 210.0 W/(m K) cdef 940.0 J/(kg K)

Viscoplastic d0 1.0 N/mm2 η 1.0 s m 1.0
κ0 60.0 N/mm2 Eκ 5,250.0 N/mm2 κ∞ 61.8 N/mm2
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Fig. 6 Stress-time history (left) and temperature development (right) of experiment [13] and simulation
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Fig. 7 Energy transformation ratio ϕ (ETR) of experiment [13] and simulation as a function of plastic work (left) and time (right)

The energy transformation ratios (ETR) of models (a) and (b) lie closely together, but both graphs are much
to low compared to the experimental data—see Fig. 7, left picture. Hence, the energy storage capability of
these models is too low. Accordingly, the simulated temperature curves are much higher than the experimental
measurements—see Fig. 6, right picture. In the case of continuing plastic deformation, the ETR of model (b)
would decrease further and soon tend to zero. On the other hand, the ETR for approach (a) remains constant.

Model (c) according to Helm [13] already shows a significantly improved agreement of the energy trans-
formation ratio ϕ and the temperature development—see Fig. 6 (right) and 7 (left). However, initially the
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Fig. 8 Visualization of energy distribution with stored and dissipated parts

simulated ratio ϕ is still too low—but at the end of the calculation, it exceeds the curve determined from the
experiment. In the case of continuously increasing equivalent plastic strain, the ETR, predicted by model (c),
converges toward the value ϕ∞ = β1

κ0
κ0+κ∞ ≈ 0.2. Thus, the energy storage is overestimated at further plastic

loading and, hence, too low temperature values are predicted in the following course.
According to the experimental observations [3,7,13,28,29], the ETR of the enhanced energy storage model

(d) follows a continuously falling trend and, thus, shows qualitatively and quantitatively good agreement with
the test data—see Fig. 7 (left). Correspondingly, the differences between the simulated temperature course of
approach (d) and the measured one are smallest (Fig. 6, right).

6 Studies of energy transformation behavior

6.1 Visualization of energy distribution

The energy partitioning under monotonic loading is presented for the special case of elastoplastic material
behavior with pure isotropic hardening by means of the stress-strain diagrams in Fig. 8. In the left sketch, the
stress is plotted versus the total strain. Hence, the area below the stress graph represents the entire mechanical
work applied. At the left and the right hand side of this graph, the elastic fraction of the mechanical work is
indicated. The area in between corresponds to the total plastic work, which is divided again into two frac-
tions—namely the energy spent on the friction body (lower part) and the one applied to the hardening element
(upper one).

The right diagram in Fig. 8 shows the stress plotted versus the plastic strain only. The area below the graph
represents the total plastic work, decomposed again into the parts of the friction (below the stress κ0) and the
hardening body (above κ0). In addition, stored and dissipated energy contributions are separated. The energy
fraction ψκ = 1

2κ re = 1
2 Eκre

2, stored due to isotropic hardening, is identified as the triangular area marked
in the diagram to the right analogously to the elastic work in the left one. The rate of the energy storage in the
friction element, however, exhibits an exponentially decaying behavior as the plastic arclength augments—see
(70) and (71). Thus, also its stored energy appears as a monotonically decreasing exponential function in the
hardening diagram as visualized. Finally, the corresponding energy partitions are indicated in the right diagram
at a previous state of plastic loading by means of the dashed lines.

6.2 Energy transformation in cyclic loading

For pure isotropic hardening, the increase in stored energy continues under cyclic loading until saturation of
hardening is reached. In contrast to isotropic hardening, at the beginning of every load reversal, the entire
energy, stored due to kinematic hardening, is released and dissipated as heat—but subsequently, the same
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Fig. 9 Strain process of cyclic loading

Table 5 Hardening behavior and material parameters

Hardening type Parameter Label

Isotropic Eκ = 5,250.0 N/mm2, κ∞ = 61.8 N/mm2 iso
Isotropic / kinematic Eκ = Eξ = 2,625.0 N/mm2, κ∞ = ξ∞ = 30.9 N/mm2 iso/kin
Kinematic Eξ = 5,250.0 N/mm2, ξ∞ = 61.8 N/mm2 kin
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Fig. 10 Stress-strain diagram of cyclic loading

amount of energy is stored in every half-cycle of loading. In the case of ongoing cyclic loading, the total plastic
work is continuously rising, and thus, the ETR of both, pure isotropic and kinematic hardening, tends to zero.

In the following study, the energy storage models as mentioned in Table 3 are subjected to the load path
specified in Fig. 9. The new model (d) is applied with various hardening assumptions—see Table 5. However,
only kinematic hardening is used for the approaches (a–c). In order to achieve a better quantification of the
thermomechanical coupling effects, the following calculations are carried out under adiabatic conditions only.
The parameters of the hardening models are summarized in Table 5, whereas the remaining ones are taken
from Tables 3 and 4.

The isotropic hardening model converges comparatively fast toward its saturation limit for the set of param-
eters used—see Fig. 10. In the case of identical mechanical behavior with kinematic hardening, the four energy
storage models (a–d) show the same stress response. As expected, the stress-strain diagram of the combined
isotropic / kinematic hardening model is located between the adjacent stress curves.

The calculations with model (d) show the differences of the ETR between the isotropic and kinematic
hardening approaches as well as the combined hardening model (Fig. 11, left). For the parameters chosen, the
computed stress values are equal for all applied hardening types as the saturation limit is reached. Hence, at the
end of every half-cycle of loading, nearly the same amount of energy is stored in all three hardening models,
and thus, the ETR graphs calculated are nearly congruent to each other. Differences occur only directly after
the points of load reversal, where energy is released initially in the case of kinematic hardening.

However, comparatively large differences exist between the simulated temperature courses (Fig. 11, right).
One reason for this is: Directly after load reversal, the purely elastic domain of kinematic hardening is less
than the one of isotropic hardening. Hence, thermoelastic heating or cooling—see (19) or (89)—is noticeably
stronger for isotropic hardening (see Fig. 11, right). Another reason is that in the case of isotropic hardening, a
higher stress level already exists at the beginning of the plastic domain after the points of load reversal. Thus,
slightly more plastic work is spent afterwards than in the case of kinematic hardening. Accordingly, also the
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Fig. 11 Energy transformation ratio ϕ (ETR) and temperature development (adiabatic) in cyclic loading

Table 6 Parameter list for study of energy transformation in friction element

Set #1 #2 #3 #4 #5 #6

β1 0.0 0.2 0.4 0.75 0.75 0.75
β2 0.0 0.0 0.0 10.0 60.0 400.0
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Fig. 12 Energy transformation ratio ϕ (ETR) and temperature development (adiabatic) of parameter study

dissipation of energy is slightly larger, which causes the somewhat higher temperature values in the analysis
with isotropic hardening—see Fig. 11 (right).

In the calculations (a), (b) and (d), the total fraction of dissipated energy is higher or equal to 90 %, since the
ETR at the end of the simulations is less or equal to 0.1 (see Fig. 11, left). The ETR of model (c) is considerably
higher than in all other graphs, that is, a larger portion of plastic work is stored in the material—about 30 %
in the calculation at hand. Thus, the resulting temperature is considerably lower than for the other models
(Fig. 11, right). In contrast, model (b) does not store energy in the friction element and, hence, shows the
lowest ETR diagram (Fig. 11, left). The associated course of temperature lies above the graph of model (d)
with pure kinematic hardening (Fig. 11, right).

6.3 Parameter study of energy transformation in friction element

The study of approach (71), summarized in Table 6, is performed under cyclic loading with adiabatic conditions
and combined isotropic / kinematic hardening. The remaining parameters are given in Table 4 and 5.

For the parameter sets #1 to #3, the associated graph of the energy transformation ratio moves upwards
with a growing value β1, while the distance between these three curves remains nearly constant—see Fig. 12
(left). Thus, the differences between the related graphs of the temperature history continuously increase in the
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Fig. 13 Rheological model with modified energy storage in friction element

course of loading—see Fig. 12 (right). In all calculations for sets #4 to #6, the exponent β2 is varied, while
β1 remains constant. Thus, the decay characteristic of the energy transformation ratio can be controlled: The
smaller the parameter value β2 is, the larger becomes the energy storage in the friction body—see Fig. 12
(left). For large values of β2, the graph of the ETR quickly converges toward curve #1, which neglects energy
storage in the friction element.

7 Alternative models of energy storage

Approach 1

As demonstrated before, the approach in (71)—subsequently denoted as approach 1—is suitable to capture
well the experimental energy storage behavior of metals, but requires the identification of both parameters
β1 and β2 by means of the energy storage ratio obtained from experimental data or at least on the basis of a
measured temperature history. However, if such data are not available, the usage of approach 1 is difficult. At
the best, the user may choose appropriate parameter values due to his expert knowledge—or, again, it has to be
resorted to the empirical estimate of the dissipation by means of the Taylor-Quinney coefficient—cf. (22).

For this reason, three alternative variants of approach 1 are proposed to control the energy storage in the
friction element, which only need one or even not any additional material parameter. The modified constitutive
model is implemented into the program MATLAB19 and validated by means of a comparison between the
experimental data [13] and adiabatic calculations for a material point using the parameters as given in Tables 3
and 4 (line d).

Approach 2

The explanations concerning the kinematical requirements for the evolution equations of the internal strains
hd and rd in Sect. 4.3 give reason to approach 2, where the evolution equation of hd is chosen as equal to the
one of rd:

ḣd := ṙd = κ

κ∞ ε̇vp. (90)

It corresponds to a rheological model with an assembly in parallel of a hardening and a friction body, arranged
in series with only one shared dissipative strain element—see Fig. 13 and in comparison also Fig. 5. Hence,
the energy storage behavior of the friction body is controlled in a natural way by the evolution of isotropic
hardening, that is, energy storage occurs in the friction element only as long as the isotropic hardening variable
enlarges. Thus, no additional material parameter is necessary in approach 2 to account for the storage of energy
in the friction body.

19 MATLAB R2007a User Guides. Mathworks, 3 Apple Hill Drive, Natick, Massachusetts, USA.
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Fig. 14 Stress–strain diagram and temperature development (adiabatic) from alternative models of energy storage (exp. data
of [13])
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of [13])

At the beginning, the ETR of approach 2 shows a higher energy storage than model 1, adapted to the
experimental data—see Fig. 15 (left). However, the differences between the associated curves 1 and 2 of the
plastic stored energy are quite low—see Fig. 15 (right). In the course of plastic loading, the ETR curves 1 and
2 approach each other as well as the related graphs 1 and 2 of the plastic stored energy.

Approach 3

Since at the beginning, the energy storage ratio is too high in ansatz 2, the evolution equation of the internal
strain rd is modified in approach 3 as

ḣd = ṙd :=
(
κ0 + κ

κ0 + κ∞

)n

ε̇vp. (91)

Obviously, approach 3 requires the determination of an additional material parameter n, which, however, is
related to the constitutive approach with isotropic hardening and, thus, is identified by means of the experi-
mental stress-strain history. Note, with (91) as well as (47) and (66), a slightly different evolution equation of
the isotropic hardening variable κ results compared to the previous one in (73).

Ansatz 3 exhibits a similar decay characteristic of the ETR as model 2, if the isotropic hardening is increas-
ing. However, the initial value ṙd(κ = 0) results from the parameters κ0, κ∞ as well as n and is larger than zero
in any case. Hence, in contrast to approach 2, the initial value of the energy transformation ratio of ansatz 3 is
always less than one. With an exponent of n = 2.3, model 3 yields to a nearly identical stress-strain response
as approaches 1 and 2—see Fig. 14 (left)—and the related course of the ETR and the plastic stored energy are
very similar to ansatz 1 (Fig. 15).
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Table 7 Comparison of energy storage models

Approach Evolution equation ḣd Resulting evolution equation ḣe

1 ḣd := (1 − β1e−β2 ε̄vp )ε̇vp ḣe = β1e−β2 ε̄vp ε̇vp

2 ḣd := ṙd = κ
κ∞ ε̇vp ḣe = (

1 − κ
κ∞

)
ε̇vp = e−Eκ /κ∞ ε̄vp ε̇vp

3 ḣd := ṙd :=
(
κ0+κ
κ0+κ∞

)nκ
ε̇vp ḣe =

[
1 −

(
κ0+κ
κ0+κ∞

)nκ ]
ε̇vp

4 ḣd := [
1 − β

(
1 − κ

κ∞
)]
ε̇vp ḣe = β ṙe = β e−Eκ /κ∞ ε̄vp ε̇vp

Approach 4

Combining version 1 and 2 of the evolution equations of ḣd, a further model variant (approach 4) is generated
according to

ḣd :=
[
1 − β

(
1 − κ

κ∞
)]
ε̇vp. (92)

Ansatz 4 corresponds to the rheological network represented in Fig. 5 with three dissipative strain elements.
In contrast to approach 1, model 4 has merely one material parameter β, which must be identified by means
of experimental data of the energy transformation behavior or by temperature measurements, respectively.
However, the parameter β may also be estimated by an experienced user with expert knowledge, since β
controls the initial value of the ETR course only, that is, it is always in the range between zero and one.

With a parameter value of β = 0.8, approach 4 yields to an ETR similar to the experiment—see Fig. 15.
However, with increasing plastic deformation, the fraction of the plastic stored energy and, hence, the ETR
are somewhat underestimated.

Comparison of alternative models of energy storage

The solution of the differential equation of isotropic hardening (73) for the initial condition κ(0) = 0 reads

κ = κ∞
(

1 − e−Eκ /κ∞ ε̄vp

)
, which may be used to transform the evolution equation ḣe of the approaches 2

and 4 as given in Table 7. Thus, both proposals 2 and 4 turn out for the values β2 = Eκ/κ∞, β1 = 1 or β1 = β,
respectively, as special cases of the energy storage approach 1.

8 Conclusions

An enhanced concept of rheological modeling is introduced, which enables a clearer representation of thermo-
viscoplastic material behavior with nonlinear isotropic and kinematic hardening, strain rate sensitivity as well
as energy storage and dissipation during plastic deformation. In the framework of the balance equations of
thermomechanics, a novel strategy is presented for deducing the constitutive relations of complex rheological
models of thermoviscoplasticity by utilizing the network rules for serial and parallel assemblages as well as
the defining equations of the basic rheological elements. By doing so, the yield function and the flow rule of
the constitutive model are arising in a natural way.

In order to improve the prediction of energy transformation during plastic flow, four alternative approaches
are proposed for modeling process-dependent energy storage in the friction element, allowing for a reliable
description of the energy transformation behavior observed experimentally—partially even without the need for
introducing any additional material parameters to account for the storage of energy, related to ideal plasticity.

Due to its well structured procedure and its high clarity, the concept presented for rheological modeling
is also suitable especially for the purpose of education in science and research. Moreover, it may serve as a
guidance for the development and characterization of further rheological assemblages with a more complex
structure and new basic elements.

In a forthcoming publication, the proposed concept of enhanced rheological modeling is generalized to the
three-dimensional application.

Acknowledgments The authors thankfully acknowledge the financial support of the German Research Foundation (DFG) through
grant number Ma1186/5.
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Table 8 Review of rheological bodies from literature

Material type Rheological component Abbreviation Structural formula

Liquids (viscoelastic) Maxwell body M H — N
Lethersich body L1 N | M

L2 N — K
Trouton-Rankine body TR N — PTH
Burgers body BU M — K

Solids (viscoelastic) Kelvin body K H | N
Poynting-Thomson body PTH H | M
Thermal Poynting-Thomson body [19] T-PTH (H — T) | (M — T)

Solids (elastoplastic) Prandtl body P H — ST.-V.
Endochronic body [19] EN H — D
Krawietz body [19] KRA (EN | ST.-V.) — H

Solids (elastoviscoplastic) Bingham body B (N | ST.-V.) — H
Schwedoff body SCHW (M | ST.-V.) — H
Schofield-Scott-Blair body SCH SCB B — K
Modified Schwedoff body [19] MO-SCHW (M | P) — H
Shape-Memory bodya [19] SH-ME

(
H | BL | (N — ST.-V.)

)
— H

Lion bodya [22] LIO EN | H | M
Thermal Lion bodya [24] T-LIO T — LIO
Thermal Krawietz body [23] T-KRA T — KRA

a Rheological body comprises nonlinear elastic spring

A Appendix

A.1 Remark on friction body

The friction element acts like two bodies sliding against each other in dry friction. To effect a nonzero strain ε
in the St.-Venant’s element, the magnitude of the applied external stress σ has to exceed the yield point κ0.
The direction of strain evolution equals the direction of the applied stress:

ε̇ �= 0, sgn(ε̇) = sgn(σ ) for |σ | = κ0,
ε̇ = 0 for |σ | < κ0.

However, as long as the yield point κ0 is not reached, the friction element acts like a rigid body, that is, no
strain emerges in this component. Formulating the stress as a function of the strain leads to the relation given
in Table 1.

A.2 Review of various rheological bodies from literature

Further rheological bodies, given in [31] table 13 and 14, in [26,27] or proposed in [19,22,25,24,23], are
summarized in Table 8 by means of their structural formula. As an alternative to the graphical representation
of element assemblages, this formula specifies the basic elements and their compositions, which are included
in the rheological network, and how they must be configured. The series connection of two elements E1 and E2
(Table 2 left) is represented by a horizontal line and results in the substitute element E3, whereas a vertical line
indicates the parallel connection (Table 2 right) of the elements. In this review, the abbreviation “H” is used
for Hooke’s body, whereas “N” and “ST.-V.” represent the Newton and the St.-Venant element. Moreover,
the symbols “D” and “T” are used for the dissipative and the thermal strain bodies, specified in Sect. 3.3, and
the abbreviation “BL” represents a blocking element, introduced by Krawietz [19], for the modeling of shape
memory effects.
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A.3 Free energy of thermal strain element

Since only thermal strains occur in the thermal strain element, the free energy, stored in this rheological com-
ponent, and, therefore, the entropy are functions of the temperature only: ψ = ψ(θ) and s = s(θ). Hence, the
free energy ψ can be calculated from the definition of the heat capacity at constant deformation cdef as in (18)
and the potential equation of the entropy (7)—namely

cdef(θ) = θ
∂ s(θ)

∂θ
= −θ ∂

2ψ(θ)

∂θ2 (93)

—after some rearrangements by means of integration with respect to temperature θ . In general, the heat capac-
ity cdef is a function of the temperature: cdef = cdef(θ). Assuming a constant heat capacity cdef = const and
linearizing it at the temperature value θ = θ0, the free energy of the thermal strain element can be calculated
from (93) by double integration with respect to temperature θ :

ψ = − 1

2θ0
cdefθ

2 + c1θ + c2. (94)

The free constants c1 and c2 are determined from the initial conditions ψ(θ = θ0) = 0 and s(θ = θ0) = 0,
which state that both the free energy (94) and the entropy (7) have to vanish for this rheological body at the
reference temperature θ0. Thus, the free energy of the thermal strain element results as given in (39).

A.4 Review of mechanical dissipation

Two further formulations of the mechanical dissipation in (88) may be given from different points of view by
means of (52) with (57) to (59) as well as (45, 47, 49) and (26)2:

δM = 1

ρ

(
σ ε̇vp − σκ0 ḣe − σκ ṙe − σξ ẏe

)
, (95)

and by means of (69) with (44, 45, 47) and (49) as well as (63)1, (65) and (26)2:

δM = 1

ρ

(
σηε̇vp + σκ0 ḣd + σκ ṙd + σξ ẏd

)
. (96)

In all variants of the mechanical dissipation (88, 95) and (96), each summand can be assigned directly to
its corresponding basic component in the viscoplastic part of the rheological network in Fig. 5. In (95), the
mechanical dissipation follows from the total viscoplastic stress power of the model less the power of stresses
in the energy storing basic elements for friction and hardening as well as in the spring of kinematic hardening.
On the other hand, the mechanical dissipation in (96) as well as in (88) is made up by the sum of the stress
powers spent on the dissipative bodies, that is, in the dashpot and in the three dissipative strain elements.

A.5 Special cases of enhanced rheological model

Two special cases of the rheological network in Fig. 5 are discussed below.

Thermoplasticity

If the dashpot element is removed from the network in Fig. 5 or by driving the dashpot stress (44) to zero with
d( ˙̄εp) ≡ 0, rate-independent thermoviscoplasticity is recovered. The decomposed stress as in (43) and (77)
with vanishing overstress d( ˙̄εp) = 0 is separated into an equation of its absolute value and one for its algebraic
sign, leading to

sgn(σ − ξ) = sgn
(
ε̇p

)
, |σ − ξ | = (κ0 + κ). (97)
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The first relation (97)1 gives the direction of growth of the plastic strain rate ε̇p = |ε̇p| sgn
(
ε̇p

)
. The second

one in (97)2 provides the yield function of thermoplasticity according to

f := |σ − ξ | − (κ0 + κ) ≡ 0. (98)

The argumentation to distinguish between the elastic and plastic domain is similar as before in the case of
thermoviscoplasticity—cf. Sect. 4.4. Hence, no elastoplastic flow may occur for f < 0 and (97) holds only
for states of f ≡ 0. In contrast to viscoplasticity, values of f > 0 are impossible for rate-independent plas-
ticity, and furthermore, no constitutive equation exists for a closed form calculation—cf. (84)—of the plastic
multiplier λ := |ε̇p|, which may be determined from the yield condition f ≡ 0 in (98) or from the related
consistency condition of plasticity

ḟ = ∂ f

∂σ
σ̇ + ∂ f

∂ξ
ξ̇ + ∂ f

∂κ
κ̇ = 0. (99)

Due to the identity f ≡ 0, the first term of the mechanical dissipation in (88) or (96) vanishes in the case of
the rate-independent plasticity20.

Thermoviscoelasticity

For the special case of κ0 = 0 and κ ≡ 0, the yield function (81) is satisfied trivially and, hence, the material
model behaves purely thermoviscoelastic. Thereby, both branches of the rheological model in Fig. 5 for the
friction and hardening body remain stress free, and thus, may be omitted. By setting the internal strain vari-
able yd identical to zero in the lowest dissipative strain element (Fig. 5), the rheological network turns into a
thermoviscoelastic model of the Kelvin type and the mechanical dissipation reduces to the first term of (96)
or the first summand of the product in (88).

A.6 Comparison of alternative approaches of thermoelastic free energy

Instead of the strain decomposition (2), it is common in thermoviscoplastic modeling to divide the total strain
into a (thermo)-elastic and an inelastic part according to21

ε = εte + εi (100)

only, where the strain part εte contains both elastic and thermal contributions. Hence, the thermoelastic part of
the related free energy is usually assumed according to the classical approach of thermoelasticity as a function
of the thermoelastic strain εte and the temperature θ :

ψ(εte, θ) = 1

ρ

[
1

2
Eεte

2 − Eα(θ − θ0)εte − 1

2θ0
ρcdef(θ − θ0)

2
]

(101)

—see also [10,11,13–16,21,26,43]22. Since both alternative approaches of the thermoelastic free energy (51)2
and (101) do not originate the same constitutive model, the arising differences are investigated in this section
for the interested reader23.
According to the potential relations of classical thermoelasticity24, the stress and the entropy are calculated
from the free energy term in (101) as

σ = ρ
∂ψ

∂εte
= E

[
εte − α(θ − θ0)

]
, s = ρ

∂ψ

∂εte
= 1

ρ
Eαεte + 1

θ0
cdef(θ − θ0) (102)

20 It is proven analytically in [10,16,38] that the material equations of viscoplasticity with the flow rule according to (85) (for the
special case m = 1) turn into the rate-independent equations of plasticity for the vanishing parameter η → 0 or in a quasi-static
process.

21 In the literature, the first summand of (100) is usually denoted as εel.
22 This approach of the free energy may be justified as follows: The first two terms result from the integration of the stress

relation σ = E
[
ε − α(θ − θ0)

]
with respect to the strain ε, whereas the last summand is obtained by integrating the definition

of the heat capacity as shown in Appendix A.3.
23 The following considerations are given for the special case of thermoelastic material behavior, since the arising differences

only affect this part of the constitutive model.
24 In contrast to the potential equation for the entropy (7), the well-known relation (102)3 contains only one single term. The

additional summand in (7) results from the separated thermal strain part εth in (2) and its associated evolution equation (3) for
the thermal strain rate—see also [23].
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and the equation of heat conduction becomes—see e.g., [10]:

cdef θ̇ = − 1

ρ
Eα θε̇te + 1

ρ
k div(g)+ b. (103)

Only in order to better compare the mathematical structure of both representations of the free energy (51)2
and (101), the thermoelastic strain εte at hand may be decomposed formally also into a purely elastic and a
thermal part

εte = εel + εth, (104)

although this partition might not be meaningful in physical sense or intended in classical thermoelasticity. In
accordance with the stress relation (102)2, the latter one is computed as given in (38). The split (104) allows
to transform the free energy of (101) into the expression

ψ(εel, θ) = 1

ρ

[
1

2
Eεel

2 − 1

2
Eεth

2 − 1

2θ0
ρcdef(θ − θ0)

2
]
. (105)

Compared to the approach for the free energy in (51)2, the summand − 1
2 Eεth

2 appears as an additional neg-
ative energy contribution in (105) as a consequence of the coupling term −Eα(θ − θ0)εte in the free energy
expression in (101) and is discussed by means of the subsequent thought experiment.

A thermoelastic rod with free ends is considered under thermomechanical loading:
In the first step, the rod is heated up to the temperature level θ1 causing inevitably the thermal strain εth =
α(θ1 − θ0). However, due to the boundary conditions given, no stress is induced in the rod during heating,
that is, the elastic strain vanishes εel = 0 and the total strain is equal to the thermal one: εte = εth. According
to the free energy assumption (51)2, only the heat energy ψ th = −cdef (θ1 − θ0)

2/(2θ0) is rationally stored
in the rheological model due to the thermal loading process specified above. However, compared to the free
energy term (51)2, an unexpected additional energy contribution ψ̃ th = −Eεth

2/(2ρ) obviously arises in the
expression of the free energy (105).
In a second process step, the hot rod is compressed isothermally by driving the total strain to zero: εte = 0.
Hence, the equality εel = −εth results for the elastic and the thermal part of the strain. In the free energy
assumption of the rheological model (51)2, the compression applied causes an elastic energy storage of ψel =
Eεel

2/(2ρ) due to the elastic strains besides the existing thermal contribution ψ th, that is, ψ = ψel + ψ th
results. However, in the free energy term (105), the first two terms cancel each other for the thermomechanical
loading given. Hence, only the energy ψ = ψ th is stored in this case, although the stress σ = −Eα(θ1 − θ0)
certainly governs the elastic rod deformation.
In view of these contradicting conclusions, only the free energy of the rheological model according to (51)2
offers physically reasonable results for both the thermal and the mechanical loading step.

The evaluation of (102) and (103) by means of the assumption (104) provides the stress

σ = Eεel, (106)

which is identical to the one of the rheological model in (86)1 from Sect. 4.5. However, the entropy relation

s = 1

ρ
Eα

(
εel + εth

) + 1

θ0
cdef(θ − θ0), (107)

emerging from (102)4, as well as the equation of heat conduction

cdef θ̇ = − 1

ρ
Eα θ

(
ε̇el + ε̇th

)
︸ ︷︷ ︸

−pe

+ 1

ρ
k div(g)+ b (108)

following from (103), deviate from the corresponding expressions in Sect. 4.5: The first term on the right-hand
side of (107) and (108) contains the sum of elastic and thermal strain or their rates. In contrast, only the elastic
strain or its rate appears in the corresponding term of the material equations (86)2 and (89) from the rheological
model.
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The structure of the thermoelastic coupling term

pe = − 1

ρ
Eα θ

(
ε̇el + ε̇th

) = − 1

ρ
Eα θ

(
ε̇el + αθ̇

)
(109)

in the equation of heat conduction (108) leads obviously to the following consequence: The elastic strain rate
ε̇el, which is a purely mechanical quantity, affects a positive or negative heat contribution to pe. Moreover,
if, for example, the body is heated externally, that is, θ̇ > 0 holds, then the thermal strain rate ε̇th, driven by
temperature change according to (3), in turn causes negative heat production and, surprisingly, reduces the
temperature rise as a consequence of the mathematical structure of the thermoelastic coupling term pe in (109).
On the other hand, the structure of the thermoelastic coupling term appears as expected and more reasonable
in the equation of heat conduction (89) of the constitutive model in Sect. 4.5.
Note, if the free energy (101) and the thermoelastic coupling term in (103) are considered without the rear-
rangements by means of the formal strain decomposition in (104), identical conclusions may be drawn as
documented above.
Therefore, the decomposition of the strain according to (2) and the associated representation of the thermo-
elastic free energy in (51)2 are not only suitable for the concept of rheological modeling as proposed, but also
lead to more general material equations and, thus, appear advantageously in comparison to classical approach
of thermoelasticity in (101).
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