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Abstract Nematic shells are thin films of nematic liquid crystal deposited on the boundary of colloidal par-
ticles, where liquid crystal molecules may freely glide, while remaining tangent to the surface substrate. The
surface nematic order is described here by an appropriate tensor field Q, which vanishes wherever a defect
occurs in the molecular order. We show how the classical concept of parallel transport on a manifold introduced
by Levi-Civita can be adapted to this setting to define the topological charge m of a defect. We arrive at a
simple formula to compute m from a generic representation of Q. In a number of separate appendices, we
revisit in a unified language several, apparently disparate applications of Levi-Civita’s parallel transport.

Keywords Parallel transport · Nematic shells · Nematic defects · Topological charge · Order tensor

1 Introduction

Defects in ordered media arise in configurations that cannot relax to the uniform state by local modifications
of the order parameter [17,18,27]. The topological charge of a defect is its fingerprint, as it characterizes the
qualitative behavior of the order parameter in the vicinity of the defect. In systems where the order parameter
is a vector on a plane, as in a two-dimensional ferromagnet, the topological charge is the index of a vector field,
introduced by Poincaré in his study of equilibria for ordinary differential equations [22]. If a vector field is
constrained to lie everywhere tangent to an orientable surface S embedded in the three-dimensional Euclidean
space, the definition of its topological charge can conveniently be related to another geometric notion, that of
parallel transport along curves on S .

Since its appearance in [16], the concept of parallel transport of a vector along a curve lying on a mani-
fold has proved to have ubiquitous applications to physics, starting from general relativity. Parallel transport
is connected to a concept of covariant derivative, which measures the variation of vector and tensor fields
defined along a curve on a manifold, as seen, so to say, from the manifold itself. Thus, for a vector defined on
a surface, the ordinary derivative is deprived of the component along the unit normal to the manifold to yield
the covariant derivative. As perhaps first pointed out by Persico [20], Levi-Civita’s parallel transport can also
be given a telling kinematic interpretation in terms of a rigid convex surface S rolling without sliding nor
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pivoting on a fixed plane P: the ruled surface generated by all instantaneous axes of rotation of the moving
surface can be developed in P , upon which directions parallel transported along the curve C traced on S by
the point of contact between S and P appear to be parallel in the usual sense. Pictorially, the parallel transport
along a curve C on S is thus described in [20] by imagining that parallel directions on P impress their marks
on S while this rolls without sliding nor pivoting along C on P . Essentially the same image is evoked by
Pfister [21] in his definition of the Levi-Civita motion of a pair of smooth rigid surfaces in mutual contact at
one point, varying in time. Such a kinematic interpretation also purports the one adopted in this paper, which,
as better explained below, regards a vector e tangent to a surface S as parallel transported along a curve C
on S whenever e is rigidly conveyed in a frame that performs the least motion capable of accompanying the
variations of the local unit normal ν to S at all times.1

In the method employed in this paper to define the topological charge for a vector field tangent to a surface,
parallel transport plays a central role: we call this method intrinsic as it requires a minimum knowledge of dif-
ferential geometry, the main tools being re-obtained here, including an independent proof of the Gauss-Bonnet
formula.

The rest of the paper is organized as follows. In Sect. 2, we introduce the naive definition of topological
charge for a vector field on a plane. In Sect. 3, we elaborate on a kinematic interpretation of the parallel
transport of a vector tangent to a surface S along a curve C on S , which forms the basis for our method.
Section 4 is devoted to the extension of our definition of topological charge to defects on nematic liquid crystal
shells, which are described here as in [15] through a purely biaxial2 order tensor field Q defined on a surface
S . In Sect. 5, we apply to spherical nematic shells our method to detect the topological charge of a defect
directly from the knowledge of the order tensor field Q around it. The outcomes of the paper are summarized
in Sect. 6.

Other methods can also be used to compute the topological charge of a tangent vector field: in Appendix A,
we recall the notion of index and formulate in terms of it a definition of topological charge equivalent to the
one based on parallel transport that we privilege here. The paper is closed by a number of other technical
appendices, where we illuminate the connection between Levi-Civita’s parallel transport along a curve on a
surface and other, apparently unrelated concepts.

2 Topological charge in the plane

When the physical space is a plane P and the order parameter is a unit vector field n on it, defined everywhere
away from possibly a finite number of isolated points, the topological charge of n at any point in P can be
computed through a classical formula [14]. Here, we rephrase it in a form that may more easily justify its
extension to two-dimensional manifolds. Following Trebin [27], we parameterize n as

n = n1e1 + n2e2, (1)

where e1 and e2 are orthogonal, unit vectors fixed in P , n1 and n2 are scalar fields smooth everywhere, but a
finite number of points, which obey the pointwise constraint

n2
1 + n2

2 ≡ 1.

We now prove that if n is singular at an isolated point p0, then the topological charge of n associated with the
point defect at p0 is defined by

m := 1

2π

∮

C

a · tds, (2)

where

a := n1∇n2 − n2∇n1

1 For a curve C in the three-dimensional Euclidean space, not necessarily lying on a surface, a similar point of view was
adopted long ago by Bishop [3] who introduced a movable frame including the unit tangent vector t , but which differs from
Frénet-Serret’s in that it is constrained not to rotate about t . Such a frame, which according to Bishop can also be said to be parallel
transported along C , is the same as the frame involved in the Fermi-Walker transport, which Dandoloff [10] has related to the
geometric phase, also called the Berry phase [1,26]. Alternative choices for the movable frame along a curve in three-dimensional
space have also been discussed for Kirchhoff’s theory of elastic rods [11, §2].

2 A purely biaxial tensor is a non-zero, symmetric tensor such that both its trace and its determinant vanish.
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and C is a regular closed circuit with unit tangent vector t that surrounds the point p0. In (2), s denotes the
arc-length parameter along C . Letting n1 and n2 be represented on C as

n1(s) := cos ϑ(s) and n2 := sin ϑ(s),

where ϑ is the angle that n makes with e1, an easy computation shows that∮

C

a · tds =
∮

C

ϑ ′ds,

where a prime stands for differentiation with respect to s, and so m in (2) is clearly an integer that expresses
the number of times n(p(s)) winds about e1 as p(s) travels along C once. The integer m is either positive or
negative, depending on whether n winds coherently with t or not. Since m is a continuous mapping of C and
can only attain integer values, it remains constant on all curves C that encircle the defect p0 without crossing
it.

Equivalently, we may define the differential form

ωn,e1 := n1dn2 − n2dn1

and rephrase (2) as

m = 1

2π

∮

C

ωn,e1 =: ι(n, p0) ∈ Z,

which is also known as the index of the vector field n at the point p0 encircled by C . This point of view is
further pursued in Appendix A.

Yet another way of phrasing (2), which we find suggestive of a possible extension to a curved surface, is
obtained by defining

n⊥ := e3 × n = n1e2 − n2e1, (3)

where e3 := e1 × e2 is the unit normal to the (e1, e2)-plane that orients it. By (3), we can rewrite (2) in an
intrinsic form, independent of the parametrization (1),

m = 1

2π

∮

C

n′ · n⊥ds, (4)

for which we shall find below the natural extension to a unit vector field n everywhere tangent to a surface S
in space. In Sect. 3, apart from adding to (4) a term reflecting the curvature of S , we shall replace n⊥ in (3)
with n⊥ := ν × n, where ν is the outer unit normal to S .

3 Parallel transport and topological charge on a surface

Let a smooth, closed, orientable surface S be given in the three-dimensional Euclidean space E and let ν be
the outer unit normal to S . Consider a closed, simple curve C over S that can be continuously contracted in
S to a point p0 and denote by SC the subset of S enclosed by C whence, conventionally, the orientation
chosen for C is seen to be anti-clockwise around ν. Thus, by changing the orientation of C , we make SC
represent either one or the other of the two subsets of S bounded by C . As done above for a planar curve, we
still denote by s the arc-length parameter along C .

Given an orthonormal frame (e1, e2, ν) defined on C such that e1 × e2 = ν, we imagine to follow its
evolution along C as if it were a movable frame gliding in time over S : ideally, this amounts to imagine that
the origin of this frame traces C at unit speed. Since this is a rigid motion in space, building upon Persico’s
kinematic analogy [20], we can write

e′
1 = � × e1, e′

2 = � × e2, ν′ = � × ν, (5)

where a prime denotes differentiation with respect to s and � is the spin vector associated with the frame’s
evolution. Since ν is unambiguously defined on S , ν′ is uniquely determined by C and so is consequently
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the component of � orthogonal to ν. The component of � parallel to ν, which does not affect ν′, represents
the spin of the frame (e1, e2, ν) about ν. We say that the frame (e1, e2, ν) is parallel transported along C
whenever

� = �‖ with �‖ · ν ≡ 0. (6)

By (6), �‖ can easily be characterized as the least spin for which (5)3 is valid. Since ν is a unit vector field,
(6)2 also determines �‖ explicitly from (5)3 as

�‖ = ν × ν′. (7)

More generally, any vector u tangent to S is said to be parallel transported along C whenever it is rigidly
conveyed by a parallel transported frame, so that

u′ = �‖ × u. (8)

A simple, but important consequence of (8) is that

u′ ‖ ν (9)

for all parallel transported vectors u. Moreover, since by (8) u′ · u ≡ 0, the parallel transport of a vector does
not affect its length.

There is no guarantee that the parallel transport of a vector u along C brings it back to the same vector
after a complete turn around C . Actually, the angle mismatch �ϑC between any tangent vector u and its image
under parallel transport along a complete turn around C is a good measure of the distortion induced by the
surface S . A classical result says that

�ϑC =
∫

SC

K da, (10)

where K is the Gaussian curvature of S (see, for example, [24, p. 193]). In Appendix D, we shall give a
non-standard proof of (10), which shall be then extended in Appendix E to prove a similar formula for the
vector mismatch induced by parallel transport, whence a new relation between parallel transport on S and
Gaussian curvature of S will emerge. Though such a relation is not directly involved in our development, we
reckon that it merits being derived and recorded here. Equation (10) makes it clear that the total rotation of
parallel transported vectors along a closed curve C on S is controlled solely by the geometry of the surface.
This makes parallel transported bases the natural frames through which the topological charge of a vector field
on S can be defined.

Let n be a unit vector field, tangent to S and defined within the region SC surrounded by C , and let e0
be a unit tangent vector to S , defined at a point q ∈ C . Suppose that n is regular in SC , apart from a point
p0 where it fails to be defined. Since n is properly defined and continuous on C , we can assume that the angle
�ϕC by which it rotates about e0 along a complete turn around C is given by

�ϕC = 2πmC with mC ∈ Z.

We say that mC , which is positive or negative depending on whether the complete turn of n is coherent or
not with the orientation of C , is the charge of the field n along C . By the way it is defined, mC appears to
depend on C . However, since it is continuous under deformation of C on S , it must be constant, as such is
any continuous mapping that can only attain isolated values. Thus, mC is invariant under deformations of C ,
and we shall simply denote it by m: it is a topological invariant associated with the defect of n at p0 and shall
be called the topological charge of this defect.

Let e be a unit tangent vector field parallel transported along C and let n be represented as

n = cos α e + sin α e⊥, (11)

where e⊥ := ν × e. We may also write

2πm = �ϕC = �αC + �ϑC , (12)
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where �ϑC is the angle mismatch of e and

�αC =
∮

C

α′ds. (13)

This latter angle can be given a more intrinsic form by computing the inner product n′ ·n⊥, where n⊥ := ν×n.
It readily follows from (11) that

n′ = −α′ sin α e + cos α e′ + α′ cos α e⊥ + sin α e′⊥,

whence, by (9), since both e and e⊥ are parallel transported along C , we arrive at

n′ · n⊥ = α′, (14)

once use is also made of the equation

n⊥ = cos α e⊥ − sin α e,

which follows from the definition of n⊥ and the fact that ν × e⊥ = −e. By combining (14), (13), (12), and
(10), we then conclude that

m = 1

2π

∮

C

n′ · n⊥ds + 1

2π

∫

SC

K da. (15)

We note that the integrals on the right-hand side of (15) need not be separately integers: only their sum needs
to be so. Actually, by (12), we may distinguish two contributions in �ϕC , the former—�ϑC —only depending
on the geometry of S , the latter—�αC —accounting for the rotation of n relative to a parallel transported
basis. It is instructive to compare (4) and (15): the latter, which reduces to the former in the plane, reveals the
role of the Gaussian curvature of the underlying surface S in computing the topological charge m.

Equation (15) for m is somehow unpractical from the computational point of view as it requires evaluation
of both a line and a surface integral. Below we shall derive from (15) a formula for m that involves only a
line integral. Here, we apply (15) to establish the additivity of topological charge. Imagine that in the surface
patch SC delimited by C , there are N point defects, located at the points pi , i = 1, . . . , N . We may say that
(15) delivers the total topological charge m enclosed by C . We now surround the point pi by a closed, regular
contour Ci and let Si be the surface patch containing pi and bounded by Ci . According to (15), the topological
charge mi of the i-th defect is

mi = 1

2π

∮

Ci

n′ · n⊥ds + 1

2π

∫

Si

K da. (16)

Consider the surface patch S ∗
C := SC \ ⋃N

i=1 Si with boundary ∂S ∗
C = C

⋃N
i=1(−Ci ), where −Ci is Ci

with opposite orientation. To reobtain a simply connected region, we also insert cuts C +
i j and C −

i j connecting
the holes and endowed with opposite orientations (see Fig. 1). Another pair of oppositely oriented contours,
C +

01 and C −
01, is required to connect the outer boundary C with the inner boundary C1.

Since the field n is regular inside S ∗
C we have that

0 = 1

2π

∮

∂S ∗
C

n′ · n⊥ds + 1

2π

∫

S ∗
C

K da, (17)

as the integrals along C ±
i j cancel in pairs. By using the additivity of integrals, (17) becomes

0 = 1

2π

∮

C

n′ · n⊥ds −
N∑

i=1

∮

Ci

n′ · n⊥ds + 1

2π

∫

SC

K da −
N∑

i=1

1

2π

∫

Si

K da
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Fig. 1 Sketch of a simply connected domain employed to prove additivity of the topological charge. The gray region is the
singularity-free domain S ∗

C . Singular points of the vector field n are located at p1 and p2

whence, by use of (15) and (16), we obtain the desired result

m =
N∑

i=1

mi . (18)

By applying (15) to the unit tangent t to C , under the assumption that C is everywhere smooth so that t is
a continuous function of s, since then �ϕC = 2π , we find that

2π =
∮

C

t ′ · t⊥ds +
∫

SC

K da, (19)

where t⊥ := ν × t . As shown in Appendix B, t⊥ is opposite to the outer conormal vector νC to C , and so,
by (49)1 t ′ · t⊥ equals the geodesic curvature κg of C . Thus, (19) reduces to the Gauss-Bonnet formula for a
smooth curve C (see, for example, [24, p. 195]):

2π =
∮

C

κgds +
∫

SC

K da. (20)

For a piecewise smooth contour C = ⋃n
i=1 Ci , where all n curves Ci are regular, the Gauss-Bonnet formula

acquires a form different from (20). With the aid of (14) applied to the piecewise continuous mapping s 	→ t(s),
we now see that

�αC =
n∑

i=1

⎛
⎜⎝

∫

Ci

κgds + �αi

⎞
⎟⎠ ,

where �αi represents the jump of the angle α at the i-the vertex of C where t is discontinuous. Letting
βi := π − �αi be the internal angle at the i-th vertex of C , we arrive at

(2 − n)π +
n∑

i=1

βi =
n∑

i=1

∫

Ci

κgds +
∫

SC

K da, (21)

which is the Gauss-Bonnet formula for a piecewise smooth curve C .
Both (20) and (21) can be used to express the topological charge of m of a unit vector field n through only

line integrals. For a smooth curve C , it easily follows from (15) and (20) that

m = 1

2π

∮

C

(
n′ · n⊥ − κg

)
ds + 1. (22)
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In particular, if C is a closed, smooth geodesic of S , κg vanishes identically in (22). For a planar curve, also
(22) reduces to (4), as the geodesic curvature κg then coincides with the total curvature κ , whose integral along
C equals 2π . For a non-planar curve, since the integral of κg fails in general to be an integer multiple of 2π ,
the integral of n′ · n⊥ also fails to be so.3

A similar formula can be obtained for a piecewise smooth curve C with the aid of (21):

m = 1

2π

n∑
i=1

∮

Ci

(
n′ · n⊥ − κg

)
ds + 1 − n

2
+ 1

2π

n∑
i=1

βi . (23)

Reasoning as in [24, p. 237] to prove that the integral of the Gaussian curvature over the whole surface S (the
curvatura integra) is a topological invariant of S , we may think of triangulating S with sufficiently small
geodesic triangles, each enclosing at most one defect of the field n. Thus, adapting (23) to the triangle Ci
enclosing the i-th defect, we have that

mi = 1

2π

3∑
j=1

∫

Ci j

n′ · n⊥ds − 1

2
+ 1

2π

3∑
j=1

βi j ,

where Ci j is the j-th arc of Ci and βi j is the j-th internal angle of Ci . Summing over all triangles on S , over
those that include one of the N defects of n as well as over those that include none, since all curves Ci j are
traversed twice in opposite senses, by (18), we may define the total topological charge m(S ) of n on S as

m(S ) :=
N∑

i=1

mi = −1

2
N + 1

2π

N∑
i=1

3∑
j=1

βi j . (24)

By a classical argument (see, for example, [24, p. 238]), the right-hand side of (24) can easily be identified
with the Euler characteristics χ(S ), the topological invariant of S defined in terms of the number F of faces,
the number E of edges, and the number V of vertices of any tessellation of S as

χ(S ) := F − E + V .

Since

χ(S ) = 2(1 − g(S )), (25)

where g(S ) is the genus of S , which by an appropriate definition of connectivity4 is recognized to be the
number of “handles” possessed by the two-sided surface S , we finally write (24) as

m(S ) = 2(1 − g(S )), (26)

which is the assertion of a theorem of Poincaré [22]. In particular, for a sphere and for all closed surfaces S
that can be obtained by smoothly deforming a sphere, g(S ) = 0 and m(S ) = 2, while for a torus and for all
surfaces with its shape, g(S ) = 1 and m(S ) = 0. Besides its elegance, the merit of (26) is establishing that
the total topological charge for any unit vector field n tangent to S is a topological invariant of S . Moreover,
(26) requires that for g(S ) �= 1 any unit tangent field on S must be singular.

Though equation (22) has been instrumental to relate the total topological charge of a unit tangent vector
field n on a surface S to a topological invariant of S , it is in general inconvenient for the explicit computation
of the topological charge m of a single defect, as it also requires computing the geodesic curvature κg of C .
Another formula for m can be obtained from (15), which only involves a line integral. To this end, we consider
any unit vector field n∗ tangent to S and defined everywhere on SC , possibly away from a finite number of
points. Let m∗ be the topological charge of n∗ in SC , which by (15) can be written as

m∗ = 1

2π

∮

C

n∗′ · n∗⊥ds + 1

2π

∫

SC

K da. (27)

3 Again, as in (15), though the left-hand side of (22) is necessarily an integer, it does not result from the sum of integers.
4 See, for example, [12, §§ 44,45], for a classical and suggestive definition of this notion and a derivation of (25).
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It follows from (15) and (27) that

m − m∗ = 1

2π

∮

C

(
n′ · n⊥ − n∗′ · n∗⊥

)
ds. (28)

Here, n∗ acts as a comparison field, which can be chosen freely on S . In particular, if it is chosen so as to be
free from defects in SC , (28) takes the easier form5

m = 1

2π

∮

C

(
n′ · n⊥ − n∗′ · n∗⊥

)
ds. (29)

In the following section, we shall build upon both (28) and (29) to compute the topological charge of defects
when the unit vector field n on the surface S is replaced by a tensor field Q, which better describes the ordering
of a two-dimensional molecular assembly lying upon a surface S , which is also called a nematic shell.

4 Topological charge in the order tensor representation

Nematic shells, which are the very motivation of this study, are thin films of nematic liquid crystals deposited
on the boundary of colloidal particles whose linear size is typically below the range of microns. We imagine
that liquid crystal molecules as elongated ribbons able to glide freely on the colloids’ surface and induced to lie
flat on it by the intermolecular forces exerted by the colloids’ surface substrate. Simplistic as this representation
may appear, it conveys the main features of the microscopic picture that underlies our model for a nematic
shell.

Elaborating on this, we showed in [15] that a two-dimensional order tensor Q can be defined on a surface
S as

Q :=
〈
� ⊗ � − 1

2
P(ν)

〉
, (30)

where the brackets 〈· · · 〉 denote an ensemble average, � is a unit vector representing the molecular long axis,
and

P(ν) := I − ν ⊗ ν (31)

is the projection onto the local tangent plane to S . The postulation leading to (30) is that � is subject to a
degenerate tangential anchoring on S , which amounts to require that

� · ν ≡ 0. (32)

As also shown in [15], it follows from (32) that ν is an eigenvector of Q with zero eigenvalue, and so det Q = 0.
Since Q is by construction symmetric and traceless, it can be uniquely represented as

Q = λ(n ⊗ n − n⊥ ⊗ n⊥), (33)

where λ, which is positive by definition, is the scalar order parameter. In (33), n denotes the eigenvector
with positive eigenvalue, while n⊥ := ν × n is the eigenvector with negative eigenvalue. Moreover, as shown
in [15], λ is bound to range in the interval [0, 1

2 ]. For λ = 1
2 , Q represents the limiting state in which all

molecules are oriented along n, whereas for λ = 0, Q vanishes, representing a disordered molecular state with
no preferred orientation, a state that our theory regards as a defect in orientation, where the unit tangent vector
field n fails to be defined.

In a local basis (e1, e2), where e1 and e2 are unit tangent vector fields on S such that e1 × e2 = ν, the
tensor Q can be represented as follows

Q = q1(e1 ⊗ e1 − e2 ⊗ e2) + q2(e1 ⊗ e2 + e2 ⊗ e1), (34)

5 Other ways to compute the topological charge m for vectors fields defined on a surface S have been introduced in the
literature, which appear even simpler as they ignore the underlying differential structure of S . For instance, on studying the
continuum Heisenberg model to describe ferro- or antiferromagnets distributed on a sphere [19] or on a torus [9], the spins are
parameterized in terms of their spherical polar coordinates, both viewed as functions of the Gaussian parameters that describe
the surface. For some particular spin fields studied there, their apparently simpler formulas for m coincide indeed with ours.
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where q1 and q2 are scalar fields on S . It is apparent from (34) that (e1, e2) is a basis of eigenvectors for Q,
if and only if q2 ≡ 0, in which case q1 coincides with the scalar order parameter λ. In general, computing the
square norm Q · Q of Q using both (33) and (34), we easily conclude that

λ =
√

q2
1 + q2

2 . (35)

Let η be the angle defined by

n = cos η e1 + sin η e2, (36a)

so that

n⊥ = − sin η e1 + cos η e2. (36b)

By inserting this representation into (33) and comparing the result with (34), with the aid of (35), we readily
obtain that

cos 2η = q1√
q2

1 + q2
2

and sin 2η = q2√
q2

1 + q2
2

. (37)

Since Q vanishes wherever n is undefined, though a point p0 ∈ S where this is the case is by no means
a singular point of Q, we call it a defect of Q, as there n, the eigenvector of Q with positive eigenvalue, is
singular (as so is also its orthogonal companion n⊥). To a point p0 on S where the order tensor field Q has
an isolated zero, we attribute the same topological charge as to the unit tangent vector field n. However, since
n is now defined through Q in (30), it should not be regarded as having an orientation, though it can always
be given one along any curve C on S enclosing p0 so that (36) still make sense with η defined to within a
multiple integer of π . Thus, the field n becomes akin to a field of line elements on S , for whose first study
in connection with the properties of closed surfaces in the large Stoker [24, p. 244] refers to H. Hopf’s lecture
notes [13]. The net effect of defining n through (33) is that its topological charge m is no longer an integer,
but half an integer, 2m ∈ Z.

To compute m, we find it convenient employing (28) above with n∗ = e1. Since e2 = ν × e1, an easy
computation based on (36a) shows that

n′ · n⊥ − e′
1 · e2 = η′,

and then (37) implies that

η′ = 1

2

q1q ′
2 − q2q ′

1

q2
1 + q2

2

,

so that (28) can finally be expressed in terms of the components q1 and q2 of Q in the generic basis (e1, e2) as

m − m∗ = 1

4π

∮

C

q1q ′
2 − q2q ′

1

q2
1 + q2

2

ds, (38)

where m∗ is the topological charge of the reference field e1, which vanishes wherever e1 has no singularity
on SC .

In the following section, we shall employ (38) to compute the topological charge of the defects exhibited
by a spherical nematic shell at equilibrium.

5 Topological charge of defects on a spherical nematic shell

A simple phenomenological model to describe stable equilibrium order textures on a nematic shell S was
based in [15] on the following free-energy functional
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F :=
∫

S

{
k

2
|∇sQ|2 + 1

2
(A − k24 K ) tr Q2 + C

4
(tr Q2)2

}
da. (39)

In (39), k and k24 are elastic constants, K is the Gaussian curvature of S , ∇s denotes the surface gradient and
A = A0t , where A0 is a material constant, like C , and t is the dimensionless, reduced temperature defined by

t := T − Tc

Tc
(40)

in terms of the absolute temperature T and its critical value Tc. This latter is defined as the value of T at which
the condensation potential

f p(Q) := A

2
tr Q2 + C

4
(tr Q2)2 (41)

ceases to be minimized by Q = 0, which represents the isotropic state. Moreover, in (39), elastic distortions are
penalized by both |∇sQ|2 and K tr Q2, the latter affecting the temperature Tc at which the ordering transition
from a homogeneous melt with λ ≡ 0 would take place for a developable surface (with K ≡ 0). Thus, the
elastic terms that appear in (39) have two distinct origins: one results from order distortions and the other from
geometric distortions.

The theory based on the energy functional F in (39) treats states with opposite order tensors, Q and −Q, as
equivalent. Such an identification stems from being tr Q3 = 0 as a consequence of the definition (30), so that,
at variance with its three-dimensional analog, the potential f p in (41) misses a cubic term. By (33), reverting
the sign of Q amounts to exchange n and n⊥, which for a purely uniaxial state would mean that a π

2 rotation of
the nematic director on the plane tangent to ν has no consequence on the energy density. Pictorially, such an
energy degeneracy could be represented by imagining molecules as square ribbons. Though the theory based
on (39) has already proven able to predict defect aggregations promoted by curvature, as will be recalled shortly
below, it would be desirable to extend it so as to remove the energy degeneracy it suffers from. Intuitively,
contributions to the energy density that couple Q to the curvature tensor ∇sν (see (53) in Appendix B below)
emerge as a natural choice; among these, the easiest that distinguishes Q from −Q while being invariant under
reversal of ν (which means invariance under reversal of orientation of S ) is

ksQ · (∇sν)2, (42)

where ks is a further elastic constant. By (33), (42) also reads

ksλ[n · (∇sν)2n − n⊥ · (∇sν)2n⊥],
which resembles closely the coupling between surface order and curvature outlined in [23] for a spin system.
We shall study elsewhere the effects of (42) on the equilibrium order textures in nematic shells. Here, we shall
be contented with considering the energy functional F in (39) as the formula (38) we wish to illustrate is
clearly independent of the energy functional being employed.

It was proved in [15] that the elastic free-energy density in (39) is positive definite whenever

k > 0 and − k < k24 < k.

Moreover, since tr Q2 = 2λ2, one easily sees that for t < 0 the potential f p in (41) attains its absolute minimum
when λ equals the condensation value

λc :=
√

− A0

2C
t, (43)

which is required to lie in the admissible interval [0, 1
2 ]. Similarly, a characteristic length, which measures the

scale over which the order tensor Q varies on S at equilibrium, is given by

ξ0 :=
√

k

A0
, (44)

which is also called the nematic coherence length.
In [15], the functional in (39) was minimized numerically for a family of axisymmetric ellipsoids param-

eterized by the angle u ∈ [0, 2π] running along parallels and the angle v ∈ [0, π] running along meridians.
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Fig. 2 Two-dimensional plot of the scalar order parameter λ on a sphere of radius R. The shade code on the right side of the
figure represents the ratio λ/λc, where λc is defined by (43). This plot was obtained for k24 = 0, R/ξ0 = 20, and t = −0.03,
where ξ0 and t are defined as in (44) and (40), respectively

Fig. 3 Representation of the scalar order parameter λ shown in Fig. 2 as a graph on the (u, v) plane

It was proved that when the surface S is a sphere the equilibrium order texture with least free energy F
exhibits four defects, each with topological charge m = 1

2 , so that the global topological constraint (26) is
satisfied: these defects appeared symmetrically disposed on the sphere, at the vertices of an inscribed regular
tetrahedron, thus confirming an earlier result reached analytically in [29] within a purely elastic model. It was
further shown in [15] that upon gradually transforming the sphere into an oblate ellipsoid, the four defects with
m = 1

2 first migrate toward the equator and then dispose themselves symmetrically along it, at the vertices of a
square, as the degree of oblation is further increased. Conversely, upon gradually transforming the sphere into
a prolate ellipsoid, the four defects migrate in pairs toward the poles until, once a critical degree of prolation is
reached, they coalesce into two defects with m = 1, each at one pole, thus showing that the number of defects
at equilibrium on a nematic shell S can be affected by the local curvature of S , while keeping the global
topological constraint (26) valid.

Figure 2 illustrates the equilibrium order texture on a sphere with radius R = 20ξ0 through a plot of the
scalar order parameter λ scaled to the condensation value λc, which easily visualizes the occurrence of defects:
the darker the shade, the closer is λ to zero. The same scalar order parameter λ is depicted in Fig. 3, but in the
form of a graph over the (u, v) plane that parameterizes the sphere: here defects appear as deep depressions
in the graph of λ. Finally, Fig. 4 shows the different paths we have considered to compute the topological
charge m through (38). Here, the unit tangent vector fields e1 and e2 in (34) were either along parallels or
along meridians, thus exhibiting singularities only at the poles. Since none of the contours displayed in Fig. 4
encircles a pole, we set m∗ = 0 in (38). Within numerical accuracy, the computations of m performed along
these contours confirmed that m = 1

2 for each defect.
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Fig. 4 Contours chosen on the (u, v) plane to compute, according to (38), the topological charge m of the defects shown in Figs. 2
and 3. The results obtained confirm the expected values to within numerical accuracy: a m = 1

2 , b m = 1, c m = 3
2 , d m = 0

6 Conclusions

We proposed to define through parallel transport the topological charge m of a point defect in a nematic liquid
crystal film coating the surface of a colloidal particle. Definitions have been given that apply when a nematic
texture is described by a director field n or by a tensor field Q; only for the former, defects are singularities,
as for the latter they are nodal points. We applied the formula obtained in the tensorial case, (38), to compute
the topological charge of defects on an ellipsoidal colloid. Since the equilibrium tensorial texture is obtained
by solving numerically non-linear partial differential equations, a defect is likely to be mistaken for a point
where Q is close to vanish, but indeed it does not. Since the topological charge must be either an integer or half
an integer, equation (38) can easily decide whether a true defect has indeed be caught. It is also conceivable
that points where Q vanishes fail to be defects. In this case, equation (38) will also single out, among points
eligible as defects, the true ones, for which m is different from zero.

In our treatment, we assumed that the director field n is everywhere tangent to the substrate S . It might be
of interest also to consider situations in which n may have a component out of S . In this case, some defects
for the projection n‖ of n onto S may not be defects for n, if this fully escapes from the tangent plane to S .

The method proposed here revisited some classical issues in global differential geometry of surfaces and
made it possible to arrive in a self-consistent way to the Gauss-Bonnet formula, as well as to express intrinsi-
cally the vector mismatch, that is, the difference between a vector and its image under parallel transport along
a closed curve of S .

Appendix A: Curvature and connection

To illustrate the intimate relationship between curvature and connection on manifolds, we follow the elemen-
tary approach contained in Thorpe’s introductory textbook [25, Chap. 21]. To this end, we observe that the
skew-symmetric tensor field N defined on the surface S by
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Nu := ν × u, (45)

for all vectors u tangent to S , induces a complex structure on the local tangent plane, since N2 = −P(ν),
where P(ν) is the projector defined in (31), which here plays the role of a two-dimensional identity. Let now X
be any smooth unit tangent vector field defined on an open set U ⊂ S containing the point p. The connection
form ω at p is the differential form defined by

ω(u) := (Du X) · NX(p),

where Du X is the covariant derivative of X along u at p. Given a vector u tangent to S at a point p and
a curve γ (t) ⊂ S such that γ (0) = p, the covariant derivative Du X of a vector field X tangent to S with
respect to u is defined as the tangent vector to S at p such that

Du X := P(ν)∇u X,

where ∇u X := d
dt X(γ (t))

∣∣
t=0. This definition actually does not depend on the choice of the curve γ on S ,

provided it passes through p at t = 0 and obeys γ̇ (0) = u.
Since X · X ≡ 1, the covariant derivative of X is directed along NX and we see that

Du X = ω(u)NX(p) and DuNX = −ω(u)X(p).

The relevance to our setting of the differential form ω is revealed by the following Lemmas, which we quote
from [25, pp. 191–193]. In what follows, X , U , and ω have the meaning just introduced.

Lemma 1 If γ : [a, b] → U is a parameterized curve in U and Z is a parallel unit vector field along γ , then
ω(γ̇ ) is equal to the opposite of the rotation rate of Z, relative to X , along γ and

∫
γ

ω := ∫ b
a ω(γ̇ ) is the

negative of the total angle of rotation of Z relative to X along γ .

Lemma 2 If now γ is a unit speed curve in U, the angle of rotation of γ̇ with respect to X is
∫ b

a κg − ∫
γ

ω.

Lemma 3 If K is the Gaussian curvature of S and ζ is the volume two-form6 on S then

dω = −K ζ

where d stands for the exterior derivative of the one-form ω.7

By use of these Lemmas, and also resorting to Stokes theorem for differential forms,
∫

U

dω =
∫

∂U

ω,

we conclude that ∫

U

K ζ

is equal to the total angle of rotation of the parallel field Z, relative to X , along the closed contour ∂U .
We are now in a position to define the index of a unit tangent vector field X having an isolated singularity

at p with respect to a regular unit vector field Y defined in U . If we set

f := X · Y and g := X · NY

and introduce the one-form

ωXY := f dg − gd f,

6 We recall that the mapping (e1, e2) 	→ ζ(e1, e2) = e1 × e2 · ν is a volume two-form.
7 See [25, p. 182 ] for the definition of the exterior derivative of a one-form.
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then dωXY = 0 and
∫
γ

ωXY coincides with the total angle of rotation of X relative to Y along any parame-
terized curve γ (see [25, pp. 201–204]). This results makes it possible to define the index ι(X, p) of X at the
isolated singularity p by setting

ι(X, p) := 1

2π

∫

γ

ωXY . (46)

Actually, it is possible to prove (see [25, pp. 202–204]) that ι(X, p) is an integer independent of both Y and the
simple, closed curve γ embracing p. The curve γ can be obtained as the image of a circle lying in the tangent
plane Tp to S at p under the exponential mapping, which is a local diffeomorphism between a neighborhood
of p in Tp and a neighborhood of p on S . The vector field Y can be taken as the image of a constant vector
field in Tp but, in any case, it plays an ancillary role.

The reader will easily appreciate that, despite the different formalism employed here, the definition of
index in (46) parallels closely the definition of topological charge given in (28).

Appendix B: Surface calculus

We collect here a few basic results concerning differential calculus on a smooth orientable surface S , which
shall be repeatedly used in the following. Let C be a smooth, closed curve on S . We denote by ν the unit
normal that orients S , conventionally chosen to be the outer unit normal to S . Correspondingly, we define
along C the conormal νC to be the unit vector orthogonal to C on S , oriented away from SC , the portion of
S surrounded by C . We call the orthonormal frame (t, ν, νC ), where

t := ν × νC , (47)

the Darboux frame. Seen from SC , the orientation induced on C by t defined as in (47) is anti-clockwise
around ν. This definition of the Darboux frame departs from the traditional one in the orientation of t (see,
e.g., [8, p. 261]). Such a slightly heretic choice is made both to maintain here for C the same conventional
orientation adopted in the text above and to express both the surface-divergence theorem in (52) and the surface
Stokes theorem in (64) below in their traditional forms.8

The evolution along C of the frame (t, ν, νC ) is governed by the Darboux equations,

t ′ = −κgνC + κnν, (48a)

ν′
C = κg t + τgν, (48b)

ν′ = −κn t − τgνC , (48c)

where a prime denotes differentiation with respect to the arc-length s oriented like t , and

κg := −t ′ · νC , κn := t ′ · ν, τg := −ν′ · νC (49)

are the geodesic curvature, the normal curvature, and the geodesic torsion of C , respectively.9

Let a vector-valued mapping u be defined on S and let û denote a smooth extension of u in a three-dimen-
sional neighborhood of S that agrees with u on S . Suppose that û is differentiable at all points of S and
denote by ∇ û its (three-dimensional) gradient. We define the surface gradient of u on S as

∇su := (∇ û)P(ν), (50)

where P(ν) is the orthogonal projector on S as in (31). It is easily seen that ∇su is independent of the extension
û of u in (50). Relative to a fixed Cartesian frame (u1, u2, u3), the components of ∇su are denoted by ui; j ,
where a semicolon denotes surface differentiation, and (50) becomes

ui; j = ui,h Phj , (51)

where a colon denotes the usual differentiation in three space, Phj := δhj −νhν j are the Cartesian components
of P(ν), and summation over repeated indices is understood.

8 Choosing the traditional orientation of the Darboux frame would indeed imply an annoying minus sign in both (52) and (64).
9 In particular, the geodesic curvature κg is defined by (49)1 in accordance with equation (7.21) of [24, p. 173].
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The surface divergence of u is defined as

divs u := tr ∇su,

where tr denotes the trace of a tensor. In component form, by (51), divs u = ui;i = ui,i − ui, jνiν j . A classical
result of differential calculus on surfaces is the surface-divergence theorem (see, e.g., [28, p. 84]), which states
that

∫

SC

divs uda =
∫

SC

2H u · νda +
∮

C

u · νC ds (52)

where a stands for the area measure on S , while H is the mean curvature of S . If S is a surface of class
C2, that is, if it can locally be regarded as the graph of a C2-mapping, ∇sν is a symmetric tensor that can be
represented in its principal basis (e1, e2, ν) as

∇sν = σ1e1 ⊗ e1 + σ2e2 ⊗ e2, (53)

where σ1 and σ2 are the principal curvatures of S and e1, e2 are the corresponding principal directions of
curvature. The mean curvature H and the Gaussian curvature K are related to the principal curvatures by

H := 1

2
(σ1 + σ2), K := σ1σ2. (54)

In particular, it follows from (53) and (54)1 that divs ν = 2H .
A result similar to (52) also holds for a tensor field L. To establish it, we let a be a constant, but otherwise

arbitrary, vector defined on SC , and we apply (52) to u = LTa, so as to obtain

∫

SC

divs(LTa)da =
∫

SC

2H(LTa) · νda +
∮

C

(LTa) · νC ds = a ·
∫

SC

2HLνda + a ·
∮

C

LνC ds.

Defining divs L as the vector such that divs(LTa) = a · divs L, for all constant vectors a, we conclude that

∫

SC

divs Lda =
∫

SC

2HLνda +
∮

C

LνC ds. (55)

The Cartesian components of the tensor N defined on S by (45) are given by

Ni j = εik jνk, (56)

where εi jk is the Levi-Civita alternator, skew-symmetric under the exchange of any pair of indices. Since ∇sν
is symmetric, it readily follows from (56) that

Ni j; j = εih jνh; j = 0.

Hence

divs N = 0. (57)

Another surface differential operator which we shall use below is the surface curl of a vector field defined
on S ; it is obtained by the following construction, which mimics the usual definition in three space dimensions.
Let skw(∇su) be the skew-symmetric part of ∇su:

skw(∇su) := 1

2
[∇su − (∇su)T].
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The surface curl of u, which we denote as curls u, is defined10 as twice the axial vector associated with
skw(∇su). In terms of the Cartesian components ui; j of ∇su, those of curls u are given by

(curls u)i = εik j u j;k = −εi jku j;k . (58)

Since ∇sν is a symmetric tensor, we conclude that

curls ν = 0. (59)

A surface curl can also be defined for a second-rank tensor field on S . Let L be such a field, and let a be
a constant vector field on S . Then, by applying (58) to u = LTa, we obtain that

[curls(LTa)]i = −εi jk(LT
jhah);k = −εi jk Lhj;kah = (curls L)T

ihah, (60)

where we have set

(curls L)i j := −ε jhk Lih;k = ε jkh Lih;k,

so that in absolute notation (60) also reads as

curls(LTa) =: (curls L)Ta, (61)

which, being valid for all vectors a, defines curls L as a tensor field on S .
The analog to the Stokes theorem for surfaces can be obtained from the surface-divergence theorem as

follows. We first compute
∫

SC

curls u · νda = −
∫

SC

εi jku j;kνi da = −
∫

SC

[(εi jku jνi );k − εi jku jνi;k]da = −
∫

SC

(εi jkνi u j );kda,

where use has also been made of εi jku jνi;k = curls ν · u = 0, which follows from (59). Finally, reverting to
intrinsic notation and recalling (56), we conclude that

∫

SC

curls u · νda = −
∫

SC

divs(Nu)da (62)

and, since Nu · ν = 0, by (52), the right-hand side of the latter equation reduces to
∫

SC

divs(Nu)da =
∮

C

Nu · νC ds = −
∮

C

u · NνC ds = −
∮

C

u · tds, (63)

where we invoked the skew-symmetry of N and the orientation of the Darboux frame prescribed by (47). By
combining (62) and (63), we arrive at the desired result:

∫

SC

curls u · νda =
∮

C

u · tds. (64)

Equation (64) can also be extended to a tensor field L on S . To this end, we consider the following integral
∫

SC

[(curls L)ν]i da = −
∫

SC

ε jhk Lih;kν j da = −
∫

SC

εk jhν j Lih;kda,

10 The surface differential operators divs and curls were introduced by C. Burali-Forti and P. Burgatti. Precisely, Burali-Forti
defined the surface gradient for a scalar function on S in [4], whereas surface differential operators acting on surface vector
fields were introduced by Burgatti in [5] (see also [6]). Some of Burgatti’s results simplify formulas obtained by E. Beltrami in
his work on complex analysis on a surface. These results were reobtained independently by Weatherburn (see [30, Chap. I]). The
reader interested in the achievements of the Italian school of differential geometry originated by Levi-Civita, and expressed in
vectorial notation, should consult [7].
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which, by (56), can be recast as∫

SC

[(curls L)ν]i da = −
∫

SC

[(Nkh Lih);k − Nkh;k Lih]da = −
∫

SC

[− divs(LN) + L(divs N)]i da,

whence, by use of (55) and (57), and since Nν = 0, we arrive at∫

SC

(curls L)νda =
∮

C

LNνC ds =
∮

C

L(ν × νC )ds =
∮

C

Ltds, (65)

which is the desired extension of (64).

Appendix C: Parallel transport in the Darboux frame

In this appendix, we look at the parallel transport of a vector along a curve C on the surface S within the
Darboux frame introduced in Appendix B.

Let a frame (e1, e2, ν) be given along C such that e1 × e2 = ν. In general, an angle φ(s) can be introduced
along C so that

e1 = cos φ t + sin φνC , (66a)

e2 = − sin φ t + cos φνC . (66b)

For φ ≡ 0, the frame (e1, e2, ν) clearly reduces to the Darboux frame. For a generic φ(s), the frame (e1, e2, ν)
evolves along C according to (5), with a spin vector � whose components in the frame (e1, e2, ν) we now
proceed to compute. By use of (48), we readily obtain from (66) that

e′
1 = (φ′ − κg)e2 + (κn cos φ + τg sin φ)ν, (67a)

e′
2 = −(φ′ − κg)e1 − (κn sin φ − τg cos φ)ν, (67b)

ν′ = −(κn cos φ − τg sin φ)e1 + (κn sin φ − τg cos φ)e2. (67c)

Equations (67) can be written in the compact form (5) by setting

� = −(κn sin φ − τg sin φ)e1 − (κn cos φ + τg sin φ)e2 + (φ′ − κg)ν. (68)

It then follows from (6) that the frame (e1, e2, ν) is parallel transported along C , if and only if

φ′ ≡ κg, (69)

in which case, � = �‖. A further consequence of (68) is that the modulus of �‖ depends only on the differential
geometric characteristics of C on S , as

�2‖ = κ2
n + τ 2

g .

It is finally instructive to use (69) to reobtain the Gauss-Bonnet formula in (20). Since the angle α that t
makes with a regular unit vector field w1 in SC can be written as α = φ + ϑ , where ϑ is the angle made by
e1 with w1, the corresponding total mismatch angles upon a complete turn around C are related through

�αC = �φC + �ϑC , (70)

where, by (69),

�φC =
∮

C

φ′ds =
∮

C

κgds. (71)

Since �αC = 2π , by inserting (10) and (71) into (70), we readily arrive at (20).
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Appendix D: Angle mismatch induced by parallel transport

Here, we prove equation (10), which in the text above was instrumental to establish the expression in (15) for
the topological charge m of a unit tangent vector field n.

Let e be a unit tangent vector to S that is parallel transported along a curve C in S and let (u, u⊥) be
any orthonormal frame defined along C , with u and u⊥ both tangent to S and such that u⊥ := ν × u. Hence,
we can set

e = cos ϑu + sin ϑu⊥
and then compute

e′ = −ϑ ′ sin ϑu + cos ϑu′ + ϑ ′ cos ϑu⊥ + sin ϑu′⊥.

Since e is parallel transported along C , by (9), e′ · u = e′ · u⊥ = 0. Moreover, it follows from u · u⊥ = 0 that
u′ · u⊥ = −u′⊥ · u, and since both u and u⊥ are unit vectors, u′ · u = u′⊥ · u⊥ = 0. Thus, we easily conclude
that e′ is parallel transported along C , if and only if

ϑ ′ + u′ · u⊥ = ϑ ′ − u′⊥ · u = 0.

If we now imagine both u and u⊥ defined as smooth fields on SC , we can write u′⊥ = (∇su⊥)t , where t is
the unit tangent to C , and we also have that

ϑ ′ = u · u′⊥ = u · (∇su⊥)t = (∇su⊥)Tu · t = w · t, (72)

where we have set w := (∇su⊥)Tu. If we suppose that C is closed, by (64), it follows from (72) that

�ϑC :=
∮

C

ϑ ′ds =
∫

SC

curls w · νda. (73)

To expand the surface integral in (73), we revert to Cartesian components, so that

(curls w)� = ε�mjw j;m
and since u⊥ = ν × u, we obtain that

w j = εihkui (νhuk; j + ukνh; j ),

whence it follows that

(curls w)� = ε�mjεihk[ui;m(νhuk; j + νh; j uk) + ui (νh;muk; j + νhuk; jm + νh; jmuk + νh; j uk;m)].
To simplify this latter expression, we note that εihkνh; j [ui;muk + uk;mui ] = 0 since the bracketed term is
symmetric in the exchange of indices i ↔ k, whereas εihk is skew-symmetric. Moreover, for the same reason,
εihkui ukνh; jm = 0, and so

(curls w)� = ε�mjεihk[ui;mνhuk; j + ui (νh;muk; j + νhuk; jm)]. (74)

A further simplification is possible, but it requires a closer inspection of (74). The product ε�mjεihkuiνhuk; jm
does not vanish because, as also recalled in [15], second-order surface derivatives fail in general to be symmetric
in the differentiation indices. By using (51) and the symmetry of the tensor ∇sν, one can prove that

uk; jm − uk;mj = uk,q(νq; jνm − νq;mν j ),

which, since P∇sν = ∇sν, also becomes

uk; jm − uk;mj = uk,q Pqr (νr; jνm − νr;mν j ) = uk;r (νr; jνm − νr;mν j ).

Hence, also by use of (56), we obtain that

ε�mj (uk; jm − uk;mj ) = 2ε�mj uk; jm = uk;q [ε�mj (νq; jνm − νq;mν j )]
= uk;q(N�jνq; j + N�mνq;m) = 2uk;q N�jνq; j ,
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which in turn implies that

ε�mj uk; jm = uk;q N�jνq; j , (75)

an identity valid for any surface field u, be it tangent or not. By applying (75) and also remarking that ν�N�j = 0,
we finally obtain that

(curls w) · ν = ν�ε�mjεihk[ui;mνhuk; j + uiνh;muk; j ].
By recalling again (56) and setting

Ua := u × a, ∀ a, that is, Uhk := εhikui ,

we finally arrive at

(curls w) · ν = N(∇su)N · ∇su − U(∇sν)N · ∇su, (76)

where the inner product A · B of the tensors A and B is defined in such a way that in Cartesian components
A · B = Ai j Bi j .11 The symmetric, second-rank tensor ∇sν in (53) can also be referred to the local frame
(u, u⊥, ν) through the equation

∇sν = ν11u ⊗ u + ν22u⊥ ⊗ u⊥ + ν12[u ⊗ u⊥ + u⊥ ⊗ u].
A similar expression can also be obtained for ∇su. Since u · ν ≡ 0, we have that (∇su)Tν = −(∇sν)u.
Moreover, since u · u ≡ 1, (∇su)Tu = 0, and finally, by definition, (∇su)ν = 0. Putting all these requirements
together, we can write

∇su = −ν ⊗ (ν11u + ν12u⊥) + u⊥ ⊗ (u21u + u22u⊥),

from which we see that

N(∇su)N · ∇su = 0.

Similarly,

U(∇sν)N · ∇su = ν2
12 − ν11ν22 = −K ,

where K is the Gaussian curvature of S , which, being a scalar invariant of ∇sν, does not depend upon the
choice of the local basis used to expand ∇sν. As a result, by (76), we can recast (73) precisely as (10).

Appendix E: Vector mismatch induced by parallel transport

Equation (13) is a classical result, for which in Appendix D we gave a different proof, based on the differential
calculus on surfaces recalled in Appendix B. The angle �ϑC expressed by (13) measures the distortion induced
in space by the surface S . A similar, but independent measure of distortion can be introduced as follows.

Consider a closed contour C on S and a point p0 in the interior of the surface SC delimited by C . We
conceive C as a member of a family F of regular, closed curves shrinking to p0: one can imagine these curves
as geodesic circles, though this will not be required in the following. Let C0 be another curve, starting at p0
and crossing each member of the family F once. Let e0 be a unit tangent vector defined along C0. We parallel
transport e0 along the curves of F, that is, for every point p∗

0 on C0, letting C ∗
0 be the unique member of F

passing through p∗
0 , we extend e0 along C ∗

0 by applying the law (8) of parallel transport. By repeating this
construction for all points in C0, we obtain a vector field e defined on SC , apart from the curve C0, as there
is no guarantee that a vector parallel transported along a closed curve returns upon itself upon completion of
the circuit. We denote by �eC the vector on the tangent plane to S that fills this gap for the curve C ; we call
it the vector mismatch induced by parallel transport. Here we shall learn how to compute �eC .

11 It is easily seen that for any triple of second-rank tensors, A, B, and C, A · BC = BTA · C = ACT · B.
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Equation (8) makes it possible to define the surface gradient of e everywhere in SC , but along C0. Assum-
ing that a curve in the family F passes through the point p ∈ SC \ C0 with tangent unit vector t , we can write
(8) for the evolution of e as

e′ = �‖ × e =: (∇se)t, (77)

where �‖ depends implicitly on t . Equation (38) properly defines ∇se only if the spin �‖ depends linearly on
t , which in (77) can be regarded as an independent variable ranging in the tangent plane Tp to S at p. The
tensor A such that �‖ = At can be determined through the equation

ν′ = (∇sν)t = �‖ × ν = At × ν, ∀t ∈ Tp, (78)

which results from applying (8) for u = ν. Since �‖ · ν = 0, At ∈ Tp for all t ∈ Tp, and so A maps linearly
Tp onto itself. Equation (78) is of the form

x × a = b,

and so it is solved by

x = b × a
|a|2 + λa,

where λ is an undetermined scalar. By making the appropriate identifications, we obtain that

At = ν × (∇sν)t + λν,

which satisfies At · ν = 0 for all t ∈ Tp, only if λ = 0. Thus, we find that

A = N∇sν. (79)

where the skew-symmetric tensor N is defined as in (45) above. By calling E the skew-symmetric tensor
associated with the unit vector field e through the equation

Ea = e × a, ∀ a,

we rewrite (77) as

(∇se)t = −EAt, ∀ t ∈ Tp,

and so we conclude that

∇se = −EA = −EN∇sν, (80)

which can also be interpreted as a linear differential equation for the unit vector field e induced on SC \ C0
by parallel transport of e0, arbitrarily defined on C0.

We shall now see how (80) leads us to a formula for �eC . By (65), we have that

�eC =
∮

C

e′ds =
∮

C

(∇se)tds =
∫

SC

(curls ∇se)νda, (81)

where the discontinuity of (curls ∇se) along C0, being concentrated on a set of zero surface measure, does not
affect the value of the surface integral. In components, (80) reads as

ei; j = −εihkeh Ak j ,

whence it follows that

(curls ∇se)�m = εmhkε�pq(ep Aqh);k = εmhkε�pq [ep;k Aqh + ep Aqh;k] = ��m + ��m, (82)

where, for simplicity, we have set

��m := εmhkε�pqep;k Aqh and ��m := εmhkε�pqep Aqh;k .
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If we further expand ep;k = −εprt er Atk and employ the identity

εpq�εprt = (δqrδ�t − δqtδ�r ), (83)

by lengthly, but easy computations, we obtain that

��m = −εmhk(er A�k Arh − e� Aqk Aqh) = −εmhker A�k Arh, (84)

since Aqk Aqh is symmetric in the exchange of indices h and k. By (79), (84) finally becomes

��m = −εmhkerε�pqεrstνpνq;kνsνt;h .

To simplify ��m , we make use of

Aqh;k = εqrt (νrνt;h);k,

which follows from (79), thus getting

��m = εmhkε�pqεqrt ep(νr;kνt;h + νrνt;hk).

By using (83) and recalling that ν · e = νpep = 0, we obtain

��m = εmhkep(ν�;kνp;h + ν�νp;hk − νp;kν�;h),

which, by exchanging dummy indices h and k in the last term, is further reduced to

��m = εmhkepν�νp;hk + 2εmhkepν�;kνp;h .

By applying (75) for u = ν and exploiting both the symmetry of ∇sν and the skew-symmetry of N, we easily
see that

εmhkνp;hk = Nhmνh;rνp;r ,

and so, we can recast (82) as

(curls ∇se)�m = −εmhk N�q Nrt erνpνq;kνt;h + 2εmhkepν�;kνp;h + Nhmepν�νh;rνp;r ,

whence, by repeated use of (56), the symmetry of ∇sν, and the skew-symmetry of N, in intrinsic notation, we
obtain

(curls ∇se)ν = N(∇sν)N(∇sν)Ne + 2(∇sν)N(∇sν)e,

which, by (79), finally becomes

(curls ∇se)ν = [A2N + 2(∇sν)A]e. (85)

Letting ∇sν be represented as in (53), with e1 × e2 = ν, from (79) we arrive at

A = σ1e2 ⊗ e1 − σ2e1 ⊗ e2,

from which we easily obtain

(∇sν)A = σ1σ2(e2 ⊗ e1 − e1 ⊗ e2) = K N (86)

and

A2 = −σ1σ2(e1 ⊗ e1 + e2 ⊗ e2) = −K P(ν). (87)

Making use of both (86) and (87) in (85), we conclude that

(curls ∇se)ν = K Ne,

thus arriving from (81) to the desired formula for �eC ,

�eC =
∫

SC

K e⊥da, (88)

where e⊥ = Ne.
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Equations (88) becomes perhaps more stringent in a special case. Let C be a closed geodesic.12 Since
κg = 0 along C , by (48a) and (9), we conclude that the unit tangent t to C is parallel transported along C .
Since t is continuous along C , �tC = 0, and so (88) implies that

∫

SC

K Ntda = 0,

where now t is defined on SC as the unit tangent vector to the curves of the family F nested within C . It would
be interesting to check this result against the surfaces such as the Tannery pears or the Zoll surfaces that only
possess closed geodesics [2].
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