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Abstract A triply convective-diffusive fluid mixture saturating a porous horizontal layer in the Darcy–
Oberbeck–Boussinesq scheme is studied. The nonlinear stability analysis of the conduction solution is per-
formed when the layer is heated from below and salted from above by one salt and below by another salt.
Denoting by Pi , (i = 1, 2), the salts Prandtl numbers, it is shown that in the cases {P1 = 1; P2 = 1; P1 = P2}
do not exist subcritical instabilities and the thermal Rayleigh critical number of global stability in a simple
closed form is given. The methodology used and the results obtained appear to be new in the existing literature
and useful for the applications.

Keywords Multi-component fluid mixtures · Porous media · Convection · Stability

1 Introduction

Materials with very small voids (pores), distributed everywhere and interconnected, are called porous media.
Many materials (sandstones, skin, bones, metallic foams,…) are porous media. The pores are generally occu-
pied by a fluid. The convective-diffusive motions of the fluid in the interconnected pores can describe several
phenomena. In particular, there are numerous applications in geophysical situations (like salt movement under-
ground), in contaminant transport and underground water flow in ice melting {cfr. [1–3] and the references
therein}.

The research concerned with the fluid motions in the porous media—very active in the past—is still very
active in the nowadays, also because artificial porous materials (like fiber materials used in insulating purposes
or metallic foams in heat transfer devices) occur everywhere and influence all of our lives. A porous medium
is schematized via a body (generally rigid and called skeleton) having interconnected pores everywhere. In the
present paper, we are concerned with convective-diffusive phenomena in a porous horizontal layer.

Generally, the fluid invading the pores is a mixture since are dissolved in chemical species (“salts”) and
the layer is embedded in a temperature field.

Although the subject of double-diffusive convection is still a very active research area {cfr, for instance,
[1–20,28] and the references therein}, the same subject with more than two components—although more dif-
ficult—in the past as nowadays has also attracted the attention of many authors {cfr [21–25]}. This is because
the multicomponent diffusive convection presents a picture of behaviors increasing together with the number
of components.
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As concerns the nonlinear stability of the conduction solution in multicomponent (triply, quadruply,. . .)
diffusive convection in a porous layer, as far as we know, the stability has been investigated only in the (sym-
metric) cases of a layer heated from below and salted by all salt fields either from above (the most stabilizing
case) or from below (the most destabilizing case).

The present paper is devoted to the nonlinear stability of the conduction solution in the case of a triply
convection-diffusion in a porous layer heated from below and salted from above by one salt (“salt 2”) and
from below by the other (“salt 1”). This case, not considered before (in particular neither in [23] nor in [28]),
appears of notable interest since heat and “salt 2 ” are destabilizing while “salt 1” is in competition and acts
as a stabilizing agent. Our aim is precisely to show that, in this case, exists relevant salts for which

(i) do not exist subcritical instability regions;
(ii) the thermal critical Rayleigh number Rc of nonlinear stability in the L2-norm can be given in a simple

closed form;
(iii) R < Rc implies global nonlinear stability in the L2-norm, that is, nonlinear stability with respect to

any initial data.

Denoting by Ri and Pi , (i = 1, 2), respectively, the Rayleigh and Prandtl number of “salt i ,” we show that in
the cases {P1 = 1; P2 = 1; P1 = P2 = P}, do not exist subcritical instability regions and the global nonlinear
stability conditions are given by R2 < R2

c with

R2
c = min

[
R2

1 − R2
2

P2
+ 4π2

(
1 + 1

P2

)
, R2

1 − R2
2 + 4π2

]
, when P1 = 1, (1.1)

R2
c = min

[
R2

1

P1
− R2

2 + 4π2
(

1 + 1

P1

)
, R2

1 − R2
2 + 4π2

]
, when P2 = 1, (1.2)

R2
c = min

[
1

P
(R2

1 − R2
2)+ 4π2

(
1 + 1

P

)
, R2

1 − R2
2 + 4π2

]
, when P1 = P2 = P. (1.3)

Section 2 is devoted to some preliminaries concerned with the problem at stake. In Sect. 3, the main bound-
ary value problem of the model equations is studied. Preliminaries to the stability of the conduction solution
are given in Sect. 4. Section 5 is concerned with the cases {P1 = 1; P2 = 1; P1 = P2}. Via the introduction of
auxiliary systems of P.D.Es, the absence of subcritical instabilities and the global stability condition R2 < R2

c ,
with R2

c given, respectively, by (1.2), (1.3), are obtained. The paper ends (Sect. 6) with some final remarks.

2 Preliminaries

Let Oxyz be a Cartesian frame of reference with fundamental unit vectors i, j,k (k pointing vertically upwards).
We assume that the fluid has dissolved in two different chemical components (or “salts”) Sα (α = 1, 2),

having the concentration Cα (α = 1, 2), respectively, and assume that the equation of state is given by

ρ = ρ0

[
1 − α(T − T0)+ A1(C1 − Ĉ1)+ A2(C2 − Ĉ2)

]
,

where ρ0, T0, Ĉα (α = 1, 2) are reference values of density, temperature, and salt concentration, respectively,
and the constants α, Aα denote, respectively, the thermal and solute Sα expansion coefficient, respectively
(α = 1, 2). Combining the Darcy’s Law

∇ p = − μ

K
v + ρg,
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together with the equations of conservation of temperature and solute in the Boussinesq approximation {cfr
[1] and [29]}, the equations governing the isochoric motions can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ p = − μ

K
v − gρ0[1 − α(T − T0)+ A1(C1 − Ĉ1)+ A2(C2 − Ĉ2)],

∇ · v = 0,

Tt + v · ∇T = k�T,

C1t + v · ∇C1 = k1�C1,

C2t + v · ∇C2 = k2�C2,

(2.1)

where p, pressure field; μ, dynamic viscosity; K , porosity; v, velocity; g, gravity; k, thermal diffusivity;
Kα , diffusivity of the solute Sα .

To (2.1) we append the boundary conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (0) = T1, T (d) = T2,

Cα(0) = Cαl , Cα(d) = Cαu α = 1, 2,

v · k = 0, at z = 0, d,

(2.2)

with T1, T2,Cαl ,Cαu (α = 1, 2), positive constants. The boundary value problem (2.1), (2.2) admits the
conduction solution (ṽ, p̃, T̃ , C̃α) given by [23]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ = 0, T̃ = T1 − βz, β = T1 − T2

d
,

C̃α = Cαl − z(δCα)

d
, Cαl − Cαu = δCα,

p̃ = p0 + ρ0gz2
[
−αβ

2
+ A1

(δC1)

2d
+ A2

(δC2)

2d

]
+

−ρ0gz2
[
1 − α(T1 − T0)+ A1(C1l − Ĉ1)+ A2(C2l − Ĉ2)

]
,

(2.3)

where p0 is a constant. Setting

v = ṽ + u, p = p̃ +�, T = T̃ + θ, Cα = C̃α +Φα, (2.4)

and introducing the scalings

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = t∗ d2

k
, u = u∗ k

d
, � = �∗μk

K
, x = x∗d, θ = θ∗T �,

Φα = (Φα)
∗ϕα, T � =

(
μk|δT |
αρ0gK d

) 1
2

, ϕα =
(
μk Pα|δCα|
Aαρ0gK d

) 1
2

,

R =
(
αρ0gK d|δT |

μk

) 1
2

, Rα =
(

Aαρ0gK d Pα|δCα|
μk

) 1
2

,

δT = T1 − T2, H = sgn(δT ), Hα = sgn(δCα), Pα = k

kα
,

(2.5)
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the dimensionless equations governing the perturbation {u∗,�∗, θ∗, (Φα)∗}, omitting the stars, in the case
H = H1 = 1, H2 = −1, are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇� = −u + (Rθ − R1Φ1 − R2Φ2)k,

∇ · u = 0,

θt + u · ∇θ = Ru · k +�θ,

P1(Φ1t + u · ∇Φ1) = R1u · k +�Φ1,

P2(Φ2t + u · ∇Φ2) = −R2u · k +�Φ2,

(2.6)

under the boundary conditions (free boundary conditions)

(u · i)z = (u · j)z = u · k = θ = Φ1 = Φ2 = 0 on z = 0, 1. (2.7)

In (2.5), (2.6), R and Rα are the thermal and salt Rayleigh numbers, while Pα are the salt Prandtl numbers.
We assume, as normally is done in stability problems in layers [1,2,5], that

(i) the perturbations (u, v, ω, θ,Φ1, Φ2) are periodic in the x and y directions, respectively, of periods
2π/ax , 2π/ay ;

(ii) � = [0, 2π/ax ] × [0, 2π/ay] × [0, 1] is the periodicity cell;
(iii) u, Φ1, Φ2, θ belong to W 2,2(�) and are such that all their first derivatives and second spatial derivatives

can be expanded in a Fourier series uniformly convergent in �.

3 A boundary value problem

This section is devoted to the boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇� = −u + (αψ − βψ1 − γψ2)k, in �

∇ · u = 0, in �,

ω = ψ = ψ1 = ψ2 = 0, on z = 0, 1,

(3.1)

with α, β, γ real constants. Equation (3.1), already present in (2.6) with {α = R, β = R1, γ = R2, ψ =
θ, ψi = Φi , i = 1, 2}, will be encountered in the sequel with different values for α, β, γ .

Let L∗
2(�) be the set of the functions Φ such that

(i) Φ : (x, t) ∈ �× R
+ → Φ(x, t) ∈ R, Φ ∈ W 2,2(�), ∀t ∈ R

+; Φ is periodic in the x and y directions

of periods
2π

ax
,

2π

ay
respectively and [Φ]z=0 = [Φ]z=1 = 0;

(iii) all the first derivatives and the second spatial derivatives of Φ can be expanded in a Fourier series
absolutely uniformly convergent in �,∀t ∈ R

+.
Since the sequence {sin nπ z}, (n = 1, 2, . . .), is a complete orthogonal system for L2[(0, 1)]—by virtue

of periodicity—it turns out that, ∀Φ ∈ L∗
2(�), it exists a sequence {Φn(x, y, t)} such that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ =
∞∑
1

Φn(x, y, t) sin nπ z,
∂Φ

∂t
=

∞∑
1

∂Φn

∂t
sin nπ z,

�1Φ = −a2Φ, �Φ = −
∞∑
1

ξnΦn sin nπ z,

(3.2)

⎧⎪⎪⎨
⎪⎪⎩
ξn = a2 + n2π2, a2 = a2

x + a2
y,

� = �1 + ∂2

∂z2 , �1 = ∂2

∂x2 + ∂2

∂y2 ,

(3.3)

the series appearing in (3.1) being absolutely uniformly convergent in �.
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Lemma 1 Let (u, ψ,ψ1, ψ2)—with ω,ψ,ψ1, ψ2 ∈ L∗
2(�)—be solution of the b.v.p.(3.1). Then

(i) (ω,ψ,ψ1, ψ2) is solution of the b.v.p.⎧⎨
⎩
�ω = �1(αψ − βψ1 − γψ2) in �,

ω = ψ = ψ1 = ψ2 = 0, z = 0, 1,
(3.4)

(ii) the first two components u, v of u are given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u =
∞∑

n=1

un(x, y, t)
d

dz
(sin nπ z), un = 1

a2

∂ωn

∂x
,

v =
∞∑

n=1

vn(x, y, t)
d

dz
(sin nπ z), vn = 1

a2

∂ωn

∂y
,

(3.5)

(iii) u verifies (3.1)2 with⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω =
∞∑

n=1

ωn(x, y, t) sin nπ z, ψ =
∞∑

n=1

ψn(x, y, t) sin nπ z,

ψi =
∞∑

n=1

ψin(x, y, t) sin(nπ z), i = 1, 2.

(3.6)

Proof In view of ⎧⎨
⎩

k · {∇ × ∇ × u} = −�ω,
k · {∇ × ∇ ×Φ} = −�1Φ, Φ ∈ {ψ,ψ1, ψ2}

(3.7)

Equation (3.1)1 implies (3.4)1. Setting

ζ = (∇ × u) · k, (3.8)

in view of (3.1)2, one obtains ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
�1u = − ∂2ω

∂x∂z
− ∂ζ

∂y

�1v = − ∂2ω

∂y∂z
+ ∂ζ

∂y

(3.9)

On the other hand, (3.1)1 implies ζ = 0, hence

�1u = − ∂2ω

∂y∂z
, �1v = − ∂2ω

∂y∂z
(3.10)

that is, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�1u = −
∞∑
1

∂ωn

∂x

d

dz
(sin nπ z)

�1v = −
∞∑
1

∂ωn

∂y

d

dz
(sin nπ z)

(3.11)
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By virtue of the periodicity in the x and y directions and (3.11), one obtains that (3.4)1, (3.4)3, and (3.11)
together with

�1un = −a2un, �1vn = −a2vn (3.12)

imply (3.4)2 and (3.4)4. Finally in view of

∇ · u =
∞∑
1

(
1

a2�1ωn + ωn

)
d

dz
(sin nπ z) (3.13)

Equation (3.1)2 immediately follows.
Setting ⎧⎨

⎩
ψ̃in = ψin(x, y, t) sin nπ z, i = 1, 2,

ω̃n = ωn(x, y, t) sin nπ z, ψ̃n = ψn(x, y, z) sin nπ z,
(3.14)

the following theorem holds. �	
Theorem 1 Let ω̃n, ψ̃n, ψ̃1n, ψ̃2n ∈ L∗

2(�), ∀n ∈ N
+. Then, a complete orthogonal system of solutions of

the b.v.p. (3.4) is given by⎧⎪⎪⎨
⎪⎪⎩
ω̃n = η(αψ̃n − βψ̃1n − γ ψ̃2n), (n = 1, 2, . . .),

un = 1

a2

(
∂2ω̃n

∂x∂z
i + ∂2ω̃n

∂y∂z
j
)

+ ω̃nk, ηn = a2

ξn
.

(3.15)

Proof In view of (3.2), (3.3), it easily follows that (3.15) implies (3.4) ∀n ∈ N
+. On the other hand, by virtue

of

1∫
0

sin nπ z · sin mπ z dz = 0 n 
= m, n,m ∈ N
+, (3.16)

the system {ω̃n, ψ̃n, ψ̃1n, ψ̃2n, (n = 1, 2, . . .), with ω̃n given by (3.15)1 is a complete orthogonal system of
solutions of (3.1) since {sin nπ z} is a such system for L2(0, 1). �	
Remark 1 By virtue of (3.15), the independent unknown fields are reduced only to ψ,ψ1, ψ2.

4 Preliminaries to nonlinear stability

Lemma 2 The eigenvalues of the matrix

L =
⎛
⎝α11 0 0
α21 α22 α23
α31 α32 α33

⎞
⎠ , (4.1)

with real entries αi j , have negative real part if and only if

α11 < 0, I = α22 + α33 < 0, A = α22α33 − α23α32 > 0. (4.2)

Proof Since the invariants I1,I2,I3 of (4.1) and I1I2 − I3 are given by

I1 = α11 + I, I2 = α11I+ A, I3 = α11 A, I1I2 − I3 = α11I

(
I+ α2

11 + A

α11

)
, (4.3)

it immediately follows that (4.2) implies the Routh–Hurwitz stability condition [26]

I1 < 0, I3 < 0, I1I2 − I3 < 0. (4.4)
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Vice versa, let (4.4) hold. Since one easily verifies that α11 is a real root of (4.1), by virtue of (4.4), it
follows that α11 < 0. Then (4.3)3 and (4.4)2 imply A > 0. It remains to obtain I < 0. But (4.4) implies

(−α11)I

(
I+ α2

11 + A

α11

)
= (−α11)I

2 − (α2
11 + A)I > 0,

and the roots of

(−α11)I
2 − (α2

11 + A)I = 0,

are 0 and
α2

11 + A

−α11
> 0, hence I /∈

[
0,−α

2
11 + A

α11

]
. Since −α

2
11 + A

α11
> −α11, (4.4)1 does not allow, in view

of (4.3)1, I > −α11, hence I < 0. �	

Lemma 3 The temporal derivative of

W = 1

2

[
X2

1 + A(X2
2 + X2

3)+ (α22 X3 − α32 X2)
2 + (α23 X3 − α33 X3)

2] , (4.5)

along the solutions of

dX
dt

= LX + F, (4.6)

with L given by (4.1), A by (4.2)3 and X = (X1, X2, X3)
T , F = (F1, F2, F3)

T , is given by

dW

dt
= 1

2

[
α11 X2

1 + IA(X2
2 + X2

3)
] +Φ∗, (4.7)

with I given by (4.2)2 and

⎧⎨
⎩
Φ∗ = F1 X1 + (A1 X2 − A3 X3)F2 + (A2 X3 − A3 X2)F3,

A1 = A + α2
32 + α2

33, A2 = A + α2
22 + α2

23, A3 = α22α32 + α23α33.

(4.8)

Proof A detailed proof can be found in [27–30]. �	

Lemma 4 Let F = F(X) be a nonlinear function of X such that F(0) = 0 and let Φ∗ ≤ 0 and (4.2) hold.
Then the zero solution of (4.6) is nonlinearly globally stable, and subcritical instabilities do not occur.

Proof By virtue of Φ∗ ≤ 0, (4.2) gives

Ẇ ≤ −δ(X2
1 + X2

2 + X2
3) ≤ 0, (4.9)

with

δ = min(|α11|, |IA|). (4.10)

Therefore, Ẇ is negative definite for any initial data when Φ∗ ≤ 0 and W is positive definite when (4.2)
holds. Since—by virtue of Lemma 2—(4.2) is equivalent to the Routh–Hurwitz conditions of linear stability,
subcritical instabilities cannot occur. �	
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5 Absence of subcritical instabilities and global nonlinear L2-stability in the case P1 = 1

In the case P1 = 1 (2.6) reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇� = −u + (Rθ − R1Φ1 − R2Φ2)k,

∇ · u = 0,

θt = Rω +�θ − u · ∇θ,
Φ1t = R1ω +�Φ1 − u · ∇Φ1,

Φ2t = − R2

P2
ω + 1

P2
�Φ2 − u · ∇Φ2.

(5.1)

Setting

ϕ = R1θ − RΦ1, (5.2)

it turns out that

Φ1 = 1

R
(R1θ − ϕ), (5.3)

and (5.1) becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇� = −u +
(

R2 − R2
1

R
θ + R1

R
ϕ − R2Φ2

)
k,

∇ · u = 0,

ϕt = �ϕ − u · ∇ϕ,
θt = Rω +�θ − u · ∇θ,

Φ2t = − R2

P2
ω + 1

P2
�Φ2 − u · ∇Φ2.

(5.4)

By virtue of Lemma 1 and Theorem 1 for (α = R2 − R2
1

R
, β = − R1

R
, γ = R2, ψ = θ, ψ1 = ϕ, ψ2 = Φ2),

it follows that

ω̃n = ηn

(
R2 − R2

1

R
θ̃n + R1

R
ϕ̃n − R2Φ̃2n

)
, n ∈ N, (5.5)

with θ̃n, Φ̃2n given by (3.14) and—analogously—ϕ̃n ∈ L∗
2(�) given by

ϕ̃n = ϕn(x, y, t) sin nπ z. (5.6)

Setting

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ā1n = −ξn, ā2n = ā3n = 0,

b̄1n = R1ηn, b̄2n = (R2 − R2
1)ηn − ξn, b̄3n = −R R2ηn,

c̄1n = − R1 R2

R P2
ηn c̄2n = − R2(R2 − R2

1)

R P2
ηn c̄3n = R2

2ηn − ξn

P2
,

(5.7)



Global nonlinear stability 637

one obtains ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt =
∞∑
1

ā1nϕn − u · ∇ϕ,

θt =
∞∑
1

(b̄1nϕn + b̄2nθn + b̄3nΦ2n)− u · ∇θ,

Φ2t =
∞∑
1

(c̄1nϕn + c̄2nθn + c̄3nΦ2n)− u · ∇Φ2,

(5.8)

under the boundary conditions (2.7), and u = ∑∞
n=1 un with un given by (3.15).

Since

ϕ = lim
m→∞ S(ϕ)m , θ = lim

m→∞ S(θ)m , Φ2 = lim
m→∞ S(Φ2)

m , Um =
∞∑

n=1

un, (5.9)

with

S(ϕ)m =
m∑

n=1

ϕn, S(θ)m =
m∑

n=1

θn, S(Φ2)
m =

m∑
n=1

Φ2n, (5.10)

the nonexistence of subcritical instabilities and the global stability is guaranteed by showing that the asymptotic
stability of the null solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
S(ϕ)m =

m∑
n=1

ā1nϕn − Um · ∇S(ϕ)m ,

d

dt
§(θ)m =

m∑
n=1

(b̄1nϕn + b̄2nθn + b̄3nΦ2n)− Um · ∇S(θ)m ,

d

dt
S(Φ2)

m =
m∑

n=1

(c̄1nϕn + c̄2nθn + c̄3nΦ2n)− Um · ∇S(Φ2)
m ,

(5.11)

under the initial boundary conditions

(ϕn)t=0 = ϕ
(0)
n , (θn)t=0 = θ

(0)
n , (Φ2n)t=0 = Φ

(0)
2n ,

ϕn = θn = Φ2n = 0, z = 0, 1,
(5.12)

is guaranteed for any initial data (ϕ
(0)
n , θ

(0)
n , Φ

(0)
2n ) and for any m ∈ N if and only if the Routh–Hurwitz

conditions

Ī1n < 0, Ī3n < 0, Ī1nĪ2n − Ī3n < 0, (5.13)

with Ī1n, Ī2n, Ī3n invariants of the matrix

Ln =
⎛
⎝ ā1n 0 0

b̄1n b̄2n b̄3n
c̄1n c̄2n c̄3n

⎞
⎠ , (5.14)

are verified for any n ∈ N.
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We call auxiliary system of order n of (5.11) and denote it by (AS)n , the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕn

∂t
= ā1nϕn − Um · ∇ϕn,

∂θn

∂t
= b̄1nϕn + b̄2nθn + b̄3nΦ2n − Um · ∇θn,

∂Φ2n

∂t
= c̄1nϕn + c̄2nθn + c̄3nΦ2n − Um · ∇Φ2n,

(5.15)

under the initial boundary conditions (5.12), (5.13) with

Um =
m∑

n=1

un, un = 1

a2

(
∂2ωn

∂x∂z
i + ∂2ωn

∂y∂z
j + ωnk

)
, (5.16)

and remark that (5.11) is immediately obtained by adding with respect to n, from n = 1 to n = m, each
equation of the (AS)n (5.15). Therefore, the conditions guaranteeing the nonlinear stability of the null solution
of (AS)n, ∀n ∈ N and for any initial data, guarantee the stability of the null solution of (5.11), ∀m ∈ N and
for any initial data. Further, the nonexistence of subcritical instabilities is guaranteed if the stability conditions
are equivalent to (5.13) for any n. Setting

Xn = (ϕn, θn, Φ2n)
T , Fn = − (Um · ∇ϕn, Um · ∇θn, Um · ∇Φ2n)

T , (5.17)

Equation (5.15) can be written

∂

∂t
Xn = LnXn + Fn, (5.18)

and is of the type (4.6). Therefore, introducing the functional (analogous to (4.5))

Wn = 1

2

∫
�

[
ϕ2

n + An(θ
2
n +Φ2

2n)+ (b̄2nΦ2n − c̄2nθn)
2 + (b̄3nΦ2n − c̄3nθn)

2] d�, (5.19)

with

An = b̄2nc̄3n − c̄2nb̄3n = ηnξn

P2

(
R2

1 − R2
2 + ξ2

n

a2 − R2
)
, (5.20)

its temporal derivative along the solutions of (5.15) is given by

Ẇn = 1

2

∫
�

[−ξ2
nϕ

2
n + InAn(θ

2
n +Φ2

2n)
]

d�+Φ∗
n , (5.21)

with

In = b̄2n + c̄3n = ηn

[
R2 − R2

1 + R2
2

P2
−

(
1 + 1

P2

)
ξ2

n

a2

]
, (5.22)

and ⎧⎪⎨
⎪⎩
Φ∗

n = 〈F1n, Xn〉 + 〈A1n X2n − A3n X3n, F2n〉 + 〈A2n X3n − A3n X2n, F3n〉,

A1n = An + c̄2
2n + c̄2

3n, A2n = An + b̄2
2n + b̄2

3n, A3n = b̄2nc̄2n + b̄3nc̄3n,

〈·, ·〉 scalar product of L2(�).

(5.23)
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Since Um · ∇ fn , with fn ∈ {ϕn, θn, Φ2n}, is given by

Um · ∇ fn =
m∑

p=1

up · ∇ fn =
m∑

p=1

[
pπ

a2

(
∂ω̃p

∂x

∂ f̃n

∂x
+ ∂ω̃p

∂y

∂ f̃n

∂y

)
cos(pπ z) sin(nπ z)

+nπω̃p f̃n sin(pπ z) cos(nπ z)

]
, (5.24)

and 〈 f ∗
n ,Um · ∇ fn〉 with f ∗

n ∈ {ϕn, θn, Φ2n} is given by 〈 f̃ ∗
n sin(nπ z),Um · ∇ fn〉, by virtue of

1∫
0

sin(qπ z) cos(pπ z) sin(nπ z) dz = 0 for p + q 
= n, (5.25)

one easily obtains that < f ∗
n ,Um · ∇ fn >= 0. Since any scalar product appearing in (5.23)1 is given by a

finite numbers of scalar products of the type < f ∗
n ,Um · ∇ fn >, it follows that {Φ∗

n = 0, ∀n ∈ N} and (5.21)
reduces to

Ẇn ≤ 1

2

∫
�

[−ξnϕ
2
n + InAn(θ

2
n +Φ2

2n)
]

d�. (5.26)

Theorem 2 Let (1.1) hold. Then the zero solution of the auxiliary system of order n (5.15) is globally asymp-
totically stable ∀n ∈ N and do not exist subcritical instabilities.

Proof In fact, since

⎧⎪⎪⎨
⎪⎪⎩

ā1n = −ξn = −(n2π2 + a2) < −π2,

inf
(a2,n)∈R+×N

ξ2
n

a2 = 4π2, η2
nξn > 0, ∀(a2, n) ∈ R

+ × N,

(5.27)

it follows that (1.1) guarantees

An > 0, In < 0, ∀n ∈ N. (5.28)

Hence Wn is positive definite and—in view of (5.26), (5.27), (5.28)—Ẇn is negative definite ∀n ∈ N, for
any initial data. Finally subcritical instabilities, since (5.28) together with −ξn < 0 are equivalent to the
Routh–Hurwitz conditions for the matrix Ln , cannot exist. �	
Remark 2 Setting

W =
m∑

n=1

Wn, (5.29)

Equation (1.1) guarantee that W is positive definite and its temporal derivative along the solutions of (5.11) is
negative definite.

Remark 3 In the case P2 = 1, setting

ϕ = R2θ + R1Φ2, (5.30)
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Equation (2.6) reduces to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇� = −u +
(

R R1 + R2
2

R1
θ − R2

R1
ϕ − R1Φ1

)
k,

∇ · u = 0,

ϕt = �ϕ − u · ∇ϕ,
θt = Rω +�θ − u · ∇θ,
P1(Φ1t + u · ∇Φ1) = R1ω +�Φ1.

(5.31)

Analogously, in the case P1 = P2 = P, setting

ϕ = R2Φ1 + R1Φ2, (5.32)

Equation (2.6) reduces to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇� = −u +
(

Rθ − R1

R2
ϕ + R2

1 − R2
2

R2
Φ2

)
k,

∇ · u = 0,

ϕt = �ϕ − u · ∇ϕ,
θt = Rω +�θ − u · ∇θ,
P(Φ2t + u · ∇Φ2) = −R2ω +�Φ2.

(5.33)

Either (5.31) or (5.33) is of the type (5.1). In fact both contain the equation

ϕt = �ϕ − u · ∇ϕ, (5.34)

which guarantees that

〈ϕ, ϕ〉 = 〈ϕ(0), ϕ(0)〉e−αt , α = const. > 0. (5.35)

Then, following step by step, the previous methodology, the absence of subcritical instabilities and the condi-
tions of global asymptotic stability R2 < R2

c with R2
c given by (1.2), (1.3), can be obtained.

6 Final remarks

(i) The paper is concerned with the stability of the conduction solution in a triply convective fluid mixture
saturating a porous horizontal layer when the layer is heated from below and salted from above by one
salt and from below by another;

(ii) denoting by P1 and P2 the salts Prandtl numbers, either the case P1 = 1 or P2 = 1 or P1 = P2, are
studied;

(iii) the absence of subcritical instability is shown, and the critical Rayleigh number of nonlinear global
stability—in closed form—is obtained;

(iv) a new methodology aimed to reduce the triply diffusive convection to the double-diffusive convection
has been applied;

(v) as far as we know, the results obtained appear to be new in the existing literature and useful for the
applications.
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