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Abstract In this paper, we describe the stationary heat transfer problem in non-reacting gas mixtures confined
between two coaxial cylinders or two concentric spheres kept at different temperatures. For the description
of this phenomenon, we refer to the extended thermodynamics 13-moments single temperature system and
we compare its predictions with those obtained by the classical Navier–Stokes–Fourier–Fick approximations.
In contrast with the classical theory, we show that extended thermodynamics takes over also thermodiffusion
effects, predicts boundary layers for the common temperature and non-vanishing stress tensors. Furthermore,
we compare the results with those already obtained in the planar case, in order to point out the effects of the
radial dependence.

Keywords Extended thermodynamics · Gas mixtures · Heat transfer · Thermal diffusion

1 Introduction

In a gas mixture, the presence of a temperature gradient gives rise to a gradient of the relative concentration of
the constituents [1]. This effect is known as thermal diffusion and was theoretically discovered and described
by Enskog [2,3] and, independently, by Chapman some years later [4]. The experimental demonstration of
the existence of such a phenomenon is due to Chapman and Dootson [5]. After its discovery, very soon ther-
mal diffusion was used for the mixture separation and a wide literature appeared on this topic, with analysis
both from the theoretical and from the experimental point of view, see for example [6–14]. At the beginning,
all the theoretical treatments were restricted by the assumption that the mixture was confined between two
parallel plates [6,11–14], one hot and the other cold. Nevertheless, in experiments of mixture separations (in
particular isotope separations) and in devices for the experimental determination of physical coefficients such
an assumption was not correct [7–10]. In fact, the separation columns used in practice consists usually of two
concentric cylinders. So, from 1940 many authors studied the heat transfer problem and the isotope separation
in cylindrical symmetry [15–23].
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The description of gas mixture effects through mathematical models is an appealing problem studied by
many authors in the last century. There are basically two different theoretical approaches to this subject:
a microscopic description of the phenomena through kinetic theory and Boltzmann equations [1] and macro-
scopic models from continuum mechanics [24–27]. We have to recall that the first theory for homogeneous gas
mixtures within the framework of rational thermodynamics was proposed by Truesdell [28–31] and Müller
[32,33] and in what follows we will follow their approach to the problem. Phenomenological macroscopic
models are often less accurate but extremely more simple to be used. Unfortunately, in the stationary case the
most simple equations, that are the ones obtained through the Fourier, Navier-Stokes and Fick approximations
with the assumption of a common temperature (classical thermodynamics), fail to take into account thermal
diffusion [34]. Very recently, it was shown [35–37] that in the planar stationary case, thermal diffusion is
qualitatively and quantitatively well described by the extended thermodynamics (ET) model for mixture with
13 moments and the single temperature assumption due to Heckl and Müller [38] with the BGK approximation
[39]. For the planar case, the same heat transfer problem has been studied by Kosuge, Aoki and Takata [40]
through the numerical integration of the full Boltzmann equation. They found that the common temperature
exhibits boundary layers in the neighborhood of the two boundaries. As already remarked, this behavior cannot
be described by the field equations of classical thermodynamics. Indeed, the classical temperature field in the
planar case is practically the linear function which connects the two boundary temperatures. Instead, it has
been found that the field equations of 13 moments extended thermodynamics appropriate to the planar case
are able to describe these boundary layers [35–37]. In particular, in [36] the solutions of the non-linearized
field equations of extended thermodynamics are directly compared with the results obtained in [40] through
kinetic theory. The comparison shows a very good agreement for the temperature field. Furthermore, the same
equations imply a non-constant mass concentration for the two constituents. In fact, if a temperature gradient
is applied to a monoatomic gas mixture, the lighter molecules tend to move toward the hot side, while the
heavier ones toward the cold side.

For the cylindrical and the spherical domains, there are no results in the literature about the field variables
obtained from the numerical integration of the Boltzmann equation or from experimental measurement, but
also in these geometries, we expect a behavior similar to the classical solution combined with boundary layers.
The aim of this paper is precisely to test these equations in non-planar domains and to study the effect of
domain geometry on the thermodiffusion.

In this framework, also the comparison between classical and 13 moments extended thermodynamics
description of heat transfer problems plays a relevant role. In the literature, previous comparisons were already
presented for single gases [41–45]. In that case, it was clearly shown that for heat transfer in non-planar geom-
etries, there were differences between classical and extended thermodynamics models: in the temperature
behavior and also in the presence of non-vanishing stress tensor components. So, what will we expect for
heat transfer problems in binary mixtures confined in radial domains? Of course, as for a single gas, stress
tensors do not vanish and the temperature presents a profile with boundary layers that cannot be predicted by
the classical theory. Moreover, thermodiffusion is well described by ET, and it is possible to show how this
phenomenon depends on the geometry of the problem. In particular, the curvature of the domain enhances the
thermal diffusion effect.

In this paper, we have extended the model by Heckl and Müller to non-Cartesian coordinates with BGK
approximation (see Sect. 2 and the “Appendix”). Furthermore, in Sect. 3, the Navier–Stokes–Fourier–Fick
model is briefly recalled. In order to get analytical solutions (Sect. 4), we have focused on the linearized equa-
tion system and in Sect. 5 we have used fluctuation principle [46] to prescribe the non-observable boundary
data. In Sect. 6, the solutions are analyzed and compared.

2 Extended thermodynamics field equations

In this paper, we refer to the field equations derived by Heckl and Müller [38] in the context of extended
thermodynamics. In the Appendix, one can find some details about the determination of the field equations.
We will focus here on binary inert mixtures of classical ideal gases confined between two cylinders or two
spheres maintained at different temperatures. We assume that one boundary is permeable, while the other is
impermeable, so that the diffusion flux of each component vanishes (see “Appendix”). Moreover, the process
is supposed to be stationary, the velocity of the mixture (barycentric velocity) vanishes and the fields depend
only on the radial coordinate r . From now on, r will denote the radial coordinate in the case of coaxial cylinders
or concentric spheres and the Cartesian coordinate orthogonal to the walls in the planar domains. Explicitly,
the equations read
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for the whole mixture, together with the algebraic relations
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This system consists of eleven equations in the eleven fields pα, ρα〈rr〉, ρα〈ϑϑ〉, ρα〈33〉, qα (with α = 1, 2) and T ,

which represent, respectively, the pressure, the traceless1 parts of the stress tensor, the radial component of
the heat flux appropriate to the α-constituent and the common temperature2. Instead of the usual contra- or
co-variant components of the vectors and tensors, here we have used the physical components (for details, see
[25,47] or the “Appendix”). kB denotes the Boltzmann constant and mα are the atomic masses. Γ i

lk represents
the Christoffel symbols and the index j characterizes the three different geometries: we have j = 0 for the
planar case, j = 1 for cylindrical domains and j = 2 for the spherical geometry. Finally, τ is the constant
relaxation time appropriate to the BGK approximations [39] used in this paper.

Equations (1)1 and (2)1 are the conservation laws of momentum for the first constituent and for the whole
mixture. Equation (2)2 is the conservation law of energy for the whole mixture. While, the other equations are
the balance laws for the traceless parts of the stress tensor and for the heat flux.

The equations for the whole mixture (2) coincide with those of extended thermodynamics with thirteen
moments for a single gas in cylindrical and spherical coordinates, derived and studied by Müller and Ruggeri
[41]. The underlined terms in system (1–3) give the field equations of classical thermodynamics. This last
system will be discussed in detail in the next section.

For further purposes, we introduce the mass concentration cα , defined in terms of the mass density ρα , as

cα = ρα

ρ
where ρ = ρ1 + ρ2. (4)

These quantities can be easily computed with respect to the field variables through the thermal equations of
state, pα = kB/mαραT .

The field Eqs. (1–3) require six boundary conditions to be integrated. Unfortunately, we can associate to
this problem only four boundary values that are the temperature, the total pressure and the mass concentration
at the external permeable boundary and the temperature at the internal impermeable wall:

1 Angular brackets refer to the traceless part of a symmetric tensor.
2 See the “Appendix” for the definition of the common temperature.
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at r = re T = Te, p1 + p2 = P, c1 = c1
e ,

at r = ri T = Ti.
(5)

Later on, we will prescribe the remaining boundary values through a fluctuation principle [46].
To avoid misunderstandings, we underline that the boundary temperatures Te and Ti are the temperatures

of the gas at the walls, not the wall temperatures. Our analysis does not incorporate the temperature jumps at
the walls.

We proceed here introducing the dimensionless fields
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P
√
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. (7)

We assume that m2〉m1 and so Kn plays the role of the Knudsen number related to the heaviest component of
the mixture.

With respect to the dimensionless variables, the system3 is rewritten as
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and the mass concentrations become

c1 = rm p̃1

rm p̃1+ p̃2 , c2 = 1 − c1. (9)

Equation (8) cannot be solved analytically and, therefore, in order to get analytical solutions, we linearize
system (8) around the constant state T̃ = T̃e = 1, p̃α = p̃α
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3 The dimensionless form of the algebraic relations (3) is not presented here, since it is trivial.
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After some rearrangements, the field equations read
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where Q is a dimensionless constant to be determined and we have already used the boundary condition (5)2.
In the linear approximation, the mass concentrations are expressed as
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The use of fluctuation principle requires the explicit expression of the entropy density. In this case, the
entropy density reads (see [38] and “Appendix”)
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where the symbol E refers to the equilibrium value. So, in terms of the dimensionless variables and parameters
(6, 7) it becomes
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Since here we consider the linearized field equations, it is reasonable to neglect in expression (16) all the terms
of third or higher orders in the fluxes, so that ρ̃η̃ reads
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This expression will be used in Sect. 5 for the evaluation of the remaining unknown boundary values.
In this paper, we will refer to system (12) and compare its solutions with the results already known in the

literature. To this aim, in the next section, we will briefly recall the results concerning the planar case and the
classical Navier–Stokes–Fourier–Fick approximations for the cylindrical and spherical cases.
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3 The Navier–Stokes–Fourier–Fick model for heat transfer in binary mixtures

We present here a brief summary of the Navier–Stokes–Fourier–Fick (NSFF) approximations.
The field equations of classical thermodynamics for a single gas are based on the conservation laws of

mass, momentum and energy. These conservation equations are closed through the Navier–Stokes and Fourier
laws, which assume the stress tensor and the heat flux proportional respectively to the gradient of velocity and
temperature.

In the case of mixtures, the equations of classical thermodynamics are introduced in two different ways.
A possible manner is to consider the classical equations for both components of the mixtures, as it was made
in [38] for the extended thermodynamics description (see also the “Appendix”). The field equations coincide
with those of a single fluid except for the production terms that must take into account the interactions between
the components. Here we follow this method. The field equations are given by the underlined terms in systems
(1–3, 8, 12). In particular, for the linearized dimensionless case, we have

d p̃1

dr̃
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5 p̃1
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Kn ,

ρ̃α〈i j〉 = 0.

(18)

Another possible way to introduce the classical field equations for mixtures is to consider only the conser-
vation laws of mass, momentum and energy for the whole mixture and to close them with the Navies-Stokes,
Fourier and the generalized Fick’s laws. Under the assumptions previously made for the heat transfer problem,
the conservation law of mass for the whole mixture is identically satisfied, the conservation law of momentum
is given by (18)3 in terms of the total pressure p = p1 + p2, while Eq. (18)4, with the total first component
of the heat flux q = q1 + q2, corresponds to the conservation law of energy. Then, Eq. (18)5,6 represent,
respectively, the Fourier and Navier–Stokes laws for the whole mixture, and (18)1 recovers the generalized
Fick law. J̃ 1

1 is the dimensionless first component of the diffusion flux for the first constituent which vanishes
identically in the presence of an impermeable wall (see “Appendix” for more details).

If we determine the field equations of classical thermodynamics in the first way, Eq. (18)1 follows as the
conservation law of momentum for the first constituent, while in the second way, the same equation must be
assumed as a constitutive law.

More commonly, Eq. (18)1 is expressed in terms of the concentration of the first constituent. Indeed, taking
into account the definition of the mass concentration (4) and the two thermal equations of state, Eq. (18)1
becomes

rm[
rm

(
1 − c1

) + c1
]2

dc1

dr̃
= − J̃ 1

1
Kn = 0. (19)

Hence, the NSFF approximations imply in this case that the mass concentration is constant, so that no
thermal diffusion can be described by these equations. This conclusion obviously contradicts the empirical
and theoretical expectations and motivated our analysis of an alternative macroscopic description of mixtures.

Equation system (18) can be integrated referring to the boundary conditions (5). We have p̃1 = p̃1
e , where

p̃1
e is determined by relation (10), or c1 = c1

e , furthermore the temperature field reads
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with

F(r̃) = r̃1− j

1 − j
for j = 0, 2, while F(r̃) = ln(r̃) for j = 1 (21)
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and λ = 15/8
[
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for the planar4, cylindrical and spherical case, respectively. The other fields follow easily from system (18).

4 ET analytical solutions

For the sake of completeness, we present here the results for the planar cases together with the radial one. We
recall once more that for binary mixtures the planar case was already studied in [35] in the linear approximation
and in [36] in the non-linear case.

From (12), a differential equation in the only temperature field is easily deduced. Taking into account that
j = 0, 1, 2, the differential equation for the common temperature reads
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Through its integration, the other field variables are completely determined, since it holds
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if F(r) is the function defined in (21) and Π1 is an unknown dimensionless constant. The other fields can be
algebraically determined from the remaining equations of (12).

From (23), the explicit solution for the temperature field can be determined as a function of r̃ , that is

T̃ (r̃) = H − 3Qrm

4Knλ
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where

G1(x) = cosh(x), G2(x) = sinh(x), for j = 0, 2,

G1(x) = I0(x), G2(x) = K0(x), for j = 1,
(26)

and H, C1 and C2 are three integration constants, while In and Kn are the modified Bessel functions of the
first and second kind5.

From (25), it is evident that the unknown constants C1 and C2 play an important role since they are
responsible for the deviation of the temperature field from the classical Fourier solution T̃F(r̃).

4 In the planar case, we have considered as integration domain [r̃i = 0, r̃e = 1].
5 The modified Bessel function of the first and second kind, In and Kn , are the solutions of the differential equation

z2 y′′ + zy′ − (
z2 + n2

)
y = 0.



320 E. Barbera, F. Brini

4.1 Cylindrical case

Through (25), it is easily deduced the explicit form for the field variables q̃1, ρ̃1〈rr〉 and p̃1 appropriate to the
cylindrical case, that is
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and, as already stressed, the remaining fields can be computed algebraically from system (3, 12).
In this way, the complete analytical solution is known if the values of five integration constants

Π1, Q, H, C1 and C2 are prescribed. Through the three boundary conditions (5)1,3,4, it is only possible
to recover the first three of them (Π1, Q, H ) in terms of the remaining two (C1 and C2).

As a matter of fact, from the boundary conditions on the temperature field (5)1,4 and the solution (25), the
two integration constants H and Q are given by

H = 1 − C1 I0

(√
λ

Kn

)
− C2 K0

(√
λ

Kn

)
,

Q = 4

3

Kn λ

rm ln r̃i

[
1 − T̃i − C1 I0

(√
λ

Kn

)
+ C1 I0

(
r̃i

√
λ

Kn

)
− C2 K0

(√
λ

Kn

)
+ C2 K0

(
r̃i

√
λ

Kn

)]
.

(28)

Furthermore, from the boundary value for the concentration (5)3 and from (27)3 evaluated at r̃e, it holds

Π1 = p̃1
e − 4λ

3(1−rm)

[
C1 I0

( √
λ

Kn

)
+ C2 K0

( √
λ

Kn

)]
. (29)

We have only to assign the last two integration constants, but it is not possible to prescribe any other
boundary conditions, so this will be done in the next section through the fluctuation principle.

4.2 Spherical case

For the bounded domains between two concentric spheres, we start from (25) in order to get the explicit
expression for the non-vanishing fields, so we get

q̃1 = Q

r̃2

λ − 15
8 rm

λ (1 − rm)
+ 5

2 (1 − rm) r̃2

[(
C2r̃

√
λ − C1Kn

)
cosh

(√
λr̃

Kn

)
+

(
C1r̃

√
λ − C2Kn

)
sinh

(√
λr̃

Kn

)]
,

ρ̃1〈rr〉 = 8

5

Kn Q

r̃3

λ − 15
8 rm

λ (1 − rm)
− 4

3 (1 − rm) r̃3

[(
3C1Kn2 − 3C2Kn

√
λr̃ + C1λr̃2

)
cosh

(√
λr̃

Kn

)

+
(

3C2Kn2 − 3C1Kn
√

λr̃ + C2λr̃2
)

sinh

(√
λr̃

Kn

)]
,

p̃1 = Π1 + 4λ

3 (1 − rm) r̃

[
C1 cosh

(√
λr̃

Kn

)
+ C2 sinh

(√
λr̃

Kn

)]
.

(30)
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From the boundary conditions on the temperature field (5)1,4 and the solution (25), H and Q are given by

H = 1 − r̃i T̃i

1 − r̃i
− C1

1 − r̃i

[
cosh

(√
λ

Kn

)
− cosh

(√
λr̃i

Kn

)]
− C2

1 − r̃i

[
sinh

(√
λ

Kn

)
− sinh

(√
λr̃i

Kn

)]
,

Q = −
4Knr̃i

(
1 − T̃i

)
λ

3rm (1 − r̃i )
(31)

+ 4C1Knλ

3 (1 − r̃i ) rm

[
r̃i cosh

(√
λ

Kn

)
− cosh

(√
λr̃i

Kn

)]
+ 4C2Knλ

3 (1 − r̃i ) rm

[
r̃i sinh

(√
λ

Kn

)
− sinh

(√
λr̃i

Kn

)]
.

Furthermore, from the boundary value for the concentration (5)3 and from (30)3 calculated at r̃e, Π
1 reads

Π1 = p̃1
e − 4λ

3 (1 − rm)

[
C1 cosh

(√
λ

Kn

)
+ C2 sinh

(√
λ

Kn

)]
. (32)

5 The fluctuation principle and its application

From (25), it is evident that the deviation of the temperature field from the classical Fourier solution T̃F(r̃)
is due to non-vanishing values of C1 and C2. So that, although we cannot prescribe them through boundary
conditions, such values cannot be arbitrary. Indeed, we expect a solution not coincident with the classical one,
but close to it. We imagine that the gas itself adjusts the values for these two constants. A possible manner by
which this is done is the way proposed by the fluctuation principle in [46]. It assumes that the gas is subject
to thermal fluctuations, together with the fields and the non-controllable data. The fluctuations are extremely
rapid for the gas to adjust to their ever changing values. Therefore, the gas adjusts its field variables to the
mean values of the fluctuating data. These mean values can be calculated by the Boltzmann formula

S = kB ln W. (33)

In the following we show how this can be done.
The entropy density appropriate to this problem is (17). We insert the analytical solutions into (17) and we

recover the explicit entropy density ρ̃η̃ in terms of the dimensionless radial coordinate r̃ and the two remaining
integration constants C1 and C2. By integration of ρ̃η̃ (r̃ , C1, C2) over the whole spatial domain, we get the
total entropy density appropriate to the radial cases as an explicit function of C1 and C2, namely

S (C1, C2) = 2π j Pr3
e

Te

1∫

r̃i

ρ̃η̃ (r̃ , C1, C2) r̃ j dr̃ . (34)

Hence, from the Boltzmann formula (33), it is possible to recover W (C1, C2) = exp (S (C1, C2) /kB), that
is the number of possibilities of realizing these two integration constants. Therefore, the probability of the
occurrence of C1 and C2 during a thermal fluctuation is

P (C1, C2) =
exp

(
S(C1,C2)

kB

)

∫ +∞
−∞

∫ +∞
−∞ exp

(
S(C1,C2)

kB

)
dC1dC2

(35)

and, consequently, the mean values of the two remaining integration constants are

〈Ci 〉 =
∫ +∞
−∞

∫ +∞
−∞ Ci exp

(
S(C1,C2)

kB

)
dC1dC2

∫ +∞
−∞

∫ +∞
−∞ exp

(
S(C1,C2)

kB

)
dC1dC2

with i = 1, 2. (36)
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Table 1 Mean values

j 〈C1〉 〈C2〉
0 −1.89093 × 10−2 1.89093 × 10−2

1 1.20995 × 10−7 −8.92045 × 10−2

2 −1.89395 × 10−2 1.89395 × 10−2

Following the fluctuation principle, the quantities (36) are the values of C1 and C2 that the gas “chooses”.
In this way, the solutions of the field equations (12) appropriate to the cylindrical and spherical geometries are
completely determined.

We have computed these mean values for c1
e = 0.5, rm = 0.1, r̃i = 0.1, Kn = 0.1 and T̃i = 0.9. The

results are listed in Table 1, where, for the sake of completeness, the values for the planar case obtained for
the same parameters are also presented. The corresponding solutions will be analyzed and commented in the
next section.

From Table 1, it is evident that the mean values obtained for the constants C1 and C2 in the cylindrical case
( j = 1) are quite different from the other cases. The reason lies in the expression of the analytical solution of
the cylindrical equations, which differs from the other ones because of the occurrence of the modified Bessel
functions.

6 Results

In this section, we analyze and compare the results obtained by the classical and the extended thermodynamics
models. To this aim, in Fig. 1, we consider the cylindrical case and show the behavior of the extended ther-
modynamics solutions (25, 27) (solid lines), comparing them with the classical NSFF ones (dashed lines). In
particular, in Fig. 1a one can find the temperature field (25, 26) for j = 1 (the values of the two constants C1
and C2 are prescribed by the fluctuation principle). The temperature behavior is the combination of classical
solution and boundary layers. To highlight the differences between the two models, Fig. 1b presents their
difference T̃ − T̃F. Obviously, the boundary layers are more pronounced in the neighborhood of the internal
wall, where the curvature is higher. Figure 1c, d shows the behavior of the concentrations c1 and c2 of the two
constituents and compares it with the classical solution (dashed lines). As already said, the classical NSFF
theory is not able to predict the thermal diffusion. On the contrary, the extended thermodynamics solution for
c1 is an increasing function of r̃ , while for c2 is a decreasing one. Our model predicts that the concentration
of the lighter monatomic gas is greater near r̃e, where the temperature is higher, while the concentration of the
heavier monatomic gas, c2, increases in the neighborhood of r̃i, where the common temperature is lower.

In Fig. 2, we present the same analysis for the spherical case. The solutions are actually of the same kind,
but in the spherical domain, the effect of the curvature is visibly more pronounced.

In order to analyze the role of geometries, we have plotted in Fig. 3 the difference T̃ − T̃F and the normalized
concentration c̄1 = c1(r̃) − c1((r̃i + r̃e)/2) relative to the cylindrical (solid lines), spherical (dotted lines) and
planar (dashed lines) cases. We recall that in [35], the planar solution was studied for different choices of the
parameters.

Figure 3 clearly shows that the “peak” in the temperature difference and the left boundary layer in c̄1 are
more evident in the spherical case, while the planar problem presents the weakest effects. From the comparison
in Fig. 3, one could conclude that the mixture separation is stronger when the two components are confined
between two spheres. On the contrary, the realization of an experiment for such problem in the spherical case
is surely more complex.

In the subinterval [(r̃i + r̃e)/2, r̃e], the results for the planar and the spherical cases are more similar to each
other than those of the cylindrical symmetry. Surely the reason of this effect lies in the analytical form of the
solutions. In fact, the deviation of the temperature field obtained in (25, 26) from the corresponding classical
solution for the spherical and planar cases differs by the factor 1/r̃ . Clearly, when the radius is increased, the
differences between these two cases become less evident. In principle, the differences grow for small values
of the radius, that is, to say in the neighborhood of the internal boundary. Of course this is not true at r̃i where
the two temperatures are forced to be equal. The cylindrical case, as it can be seen also from the analytical
solution (25, 26) is somehow distinct.

From now on, we will restrict our attention to the cylindrical case. Obviously, analogous results could be
obtained also in spherical symmetry.
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(a) (b)

(c)

(d)

Fig. 1 The cylindrical case with c1
e = 0.5, rm = 0.1, r̃i = 0.1, Kn = 0.1, T̃i = 0.9: a comparison between the classical ther-

modynamics solutions (dashed lines) and the ones obtained by extended thermodynamics (solid lines) with the non-controllable
boundary values prescribed by the fluctuation principle

As already said in Sect. 3, the Navier–Stokes laws imply a vanishing stress tensor, since the mixture is at
rest. On the contrary, the field equations of extended thermodynamic predict non-vanishing components for
this field, also in accordance with the single fluid radial case [41]. As an example, in Fig. 4 we have plotted
the behavior of ρ̃1〈rr〉 which follows from (27) and, for completeness, the first component of the heat flux

q̃1, together with the corresponding classical fields (dashed lines). Also for stress tensor and heat flux, the
curvature stresses the differences between classical and extended thermodynamics models. From (12)1, (18)1
and (19), it can be seen that the field ρ̃1〈rr〉, together with ρ̃1〈ϑϑ〉 = −ρ̃1〈rr〉, are responsible for the deviation of

the concentration c1 from the classical constant solution.
In Fig. 5, we analyze the effect of the gas rarefaction on the field behavior. For this purpose, we

have used the same parameters already considered for the previous figures except for the Knudsen num-
ber. Some different values of Kn were chosen: Kn = 0.01 (solid lines), Kn = 0.075 (dashed-dotted
lines), Kn = 0.05 (dashed lines) and Kn = 0.025 (dotted lines) and their effects are compared. It
can be easily seen that the boundary layers in the temperature field and in the concentration of the
first component c̄1 depend on the values of Kn and become more pronounced and broader for increas-
ing Knudsen number, that is, in the case of more rarefied gases. In fact, the case of dense gases is
close to the range of validity of classical thermodynamics. For small Kn, we expect only very little dif-
ferences between classical and extended thermodynamics results, whereas the differences become more
evident, for more rarefied single gases. A similar dependence on Kn was already observed in the pla-
nar geometry and in other problems of heat conduction for rarefied gases [35–37,41,43–46,48,49]. We
have to stress that we cannot consider solutions for Knudsen number much greater than Kn = 0.1,
since the equations of extended thermodynamics with only 13 moments are not sufficient for an accu-
rate description of very rarefied cases. For larger Knudsen numbers, many moments have to be taken into
account.

Finally, Fig. 6 presents the effect of the domain dimensions on the solutions. The parameters are the same
as in Fig. 1, except for the value of the dimensionless internal radius. In particular, we have compared the
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(a) (b)

(c)

(d)

Fig. 2 The spherical case with c1
e = 0.5, rm = 0.1, r̃i = 0.1, Kn = 0.1, T̃i = 0.9: a comparison between the classical ther-

modynamics solutions (dashed lines) and the ones obtained by extended thermodynamics (solid lines) with the non-controllable
boundary values prescribed by the fluctuation principle

Fig. 3 Comparison between the cylindrical (solid lines), spherical (dotted lines) and planar (dashed lines) solutions

cases: r̃i = 0.05 (solid lines), r̃i = 0.075 (dashed-dotted lines), r̃i = 0.1 (dashed lines) and r̃i = 0.125
(dotted lines). These different values for r̃i = ri/re can be obtained fixing the internal radius and chang-
ing the external ones or vice versa. In both cases, when r̃i decreases, the effects of the curvature become
more evident. This effect is visible in the solutions illustrated in Fig. 6. In particular, the “peak” in T̃ − T̃F
is less pronounced and broader for increasing r̃i, and the difference tends to become skew-symmetric as in
the planar domain. The field c1 is less influenced by the value of r̃i in the whole range of r̃ except in the
neighborhood of the internal boundary, where significant differences in the values of the concentration can be
observed.
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Fig. 4 The field variables ρ̃1〈rr〉 and q̃1 for the cylindrical case, compared with the corresponding classical results (dashed lines)

Fig. 5 Dependence of the solution on Kn

Fig. 6 Dependence of the solution on r̃i

7 Conclusions and final remarks

In this paper, we have studied the potentiality of an extended thermodynamics description of gas mixtures
for heat transfer problem between coaxial cylinders or concentric spheres. We have compared the results with
those obtained by Navier–Stokes–Fourier–Fick approximations and with what is already known in the literature
about this subject. The advantages of an extended thermodynamics model are evident also for radial geome-
tries. In spite of all the simplifying hypothesis that we have introduced (only 13 moments, single temperature
assumption, BGK approximation, linearization), the model is able to describe the thermal diffusion effects
and to predict boundary layers in the temperature behavior. Moreover, in contrast with the classical thermody-
namics, also the stress tensors present non-vanishing components. Referring to these results, we presuppose
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that unlike the classical theory, thermodiffusion is well described by 13-moment extended thermodynamics
models with single-temperature for any heat transfer problem of gas mixtures at rest confined in a bounded
domain.

It is also interesting to underline that the 13-moment equations of extended thermodynamics are able to
describe boundary layers in the case of a gas mixture but not for a single gas. This is due to the presence
of non-vanishing stress tensors of the two components. In fact, to predict boundary layers in a single gas,
more moments are needed (see for example [46,48–50]) or one can also refer to the regularized 13-moment
equations [51–53].

We have to remark that in the present calculations, no temperature jumps at the walls have been taken into
account. As already said, our boundary temperatures are the temperatures of the gas at the walls, not the wall
temperatures. The jumps of the fields at the walls could be a further effect that can be added to the present
calculations.

Finally, in order to focus on thermal diffusion phenomenon, in our system, we have neglected gravitation
and thermal convection contribution. We believe that it would be interesting to consider also these effects that
could play an important role, as in the separation columns. The problem is already under investigation, and it
will be part of a further work.
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2010: Modelli classici e quantistici in Termodinamica Estesa e problemi di stabilità in fluidodinamica”.

Appendix

The field equations used in this paper are based on the model obtained in [38] for a multi-component mixture.
In order to make this paper self-consistent, we summarize in this Appendix their determination in the case of
a binary mixture.
The field variables of extended thermodynamic [27] for binary mixtures of classical, monatomic, ideal gases are
moments of the distribution functions fα (x, cα, t) (α = 1, 2), where fα (x, cα, t)dxdcα indicates the average
number of α particles of velocity cα , position x and time t . The moment of rank N is defined as

Fα
i1,i2,...,iN

= mα

∫
fαcα

i1
cα

i2
. . . cα

iN
dcα, (37)

where mα denotes the atomic mass of the α constituent.
Usually, the fields Fα

i1,i2,...,iN
are expressed in terms of the internal moments ρα

i1,i2,...,iN
, defined as in (37) but

with the peculiar velocity, Cα
i = cα

i − vα
i , instead of cα

i , that is

ρα
i1,i2,...,iN

= mα

∫
fαCα

i1
Cα

i2
. . . Cα

iN
dCα, (38)

if vα
i is the macroscopic velocity of the constituent α.

Some of the internal moments can be expressed in terms of the usual physical variables. So, the moment of
rank “0” is the density of the α component, ρα , and we have

ρα
i = 0, ρα

ll = 3pα = 3 kB
mα

ραT α, ρα〈ik〉 = −tα〈ik〉, ρα
ill = 2qα

i , (39)

where pα, tα〈ik〉, qα
i , T α represent, respectively, the pressure, the traceless part6 of the stress tensor, the heat

flux and the temperature of the constituent α. Furthermore, in this paper, we consider only the case in which
all the constituents of the mixture have the same temperature T , that is, T α = T for α = 1, 2.
The relation between the Fα

i1,i2,...,iN
and the ρα

i1,i2,...,iN
reads7

Fα
i1i2...iN

=
N∑

k=0

(
N

k

)
ρα

(i1i2...iN−k
vα

iN−k+1...
vα

iN ). (40)

6 Angular brackets denote symmetric trace-less tensors.
7 Round brackets denote symmetric tensors.
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In order to describe the behavior of the whole system, it could be useful to introduce the moments for the
whole mixture. They are defined in terms of the ρα

i1,i2,...,iN
as

Fi1i2...iN =
N∑

k=0

(
N

k

)
ρ(i1i2...iN−k viN−k+1...viN ), with

ρi1i2...iN =
2∑

α=1

[
N∑

k=0

(
N

k

)
ρα

(i1i2...iN−k
uα

iN−k+1...
uα

iN )

]
.

(41)

Here vi , called the velocity of the center of mass, represents the velocity of the whole mixture, while uα
i ,

defined as

uα
i = vα

i − vi , (42)

is the diffusion velocity of the constituent α.
The field equations are obtained from the Boltzmann equation, which with the BGK approximation [39] reads

∂ fα
∂t

+ cα
k
∂ fα
∂xk

= − fα − f E
α

τ
, (43)

The symbol “E” refers to equilibrium, where the distribution function is a Maxwellian one, expressed as

f E
α = ρα

mα

3

√
mα

2πkBT
exp

(
− mα

2kBT

(
cα − v

)2
)

. (44)

kB represents the Boltzmann constant, τ is a constant relaxation time.
Multiplying the Boltzmann equation by cα

i1
cα

i2
. . . cα

iN
and integrating it over cα , one obtains the balance equa-

tions for the moments, that are

∂ Fα
i1,i2,...,iN

∂t
+ ∂ Fα

i1,i2,...,iN k

∂xk
= − Fα

i1,i2,...,iN k − FαE
i1,i2,...,iN k

τ
α = 1, 2, (45)

while, the addition of these last equations in α furnishes, thanks to the definitions (41), the balance equations
for the moments relative to the whole mixture, namely

∂ Fi1,i2,...,iN

∂t
+ ∂ Fi1,i2,...,iN k

∂xk
= − Fi1,i2,...,iN k − FE

i1,i2,...,iN k

τ
. (46)

One can use the balance equations (45) for the both components (α = 1, 2) or consider the set (45) relative to
one component (for example α = 1) together with the set (46) for the whole mixture. This second choice is
the one usually followed in extended thermodynamics.
Furthermore, the two infinite hierarchy of balance laws (45, 46) has to be truncated to a finite number of equa-
tions. A common choice in extended thermodynamics of a single gas is to use the first 13 moments. Here in the
mixtures, this is equivalent to consider the first 25 field variables, that are ρα, vα

i , T, ρα〈ik〉, qα
i with α = 1, 2.

Then, the field equations of the two hierarchies (45, 46) that we take are

for the first component for the whole mixture

∂ρ1

∂t + ∂ρ1v1
k

∂xk
= 0,

∂ρ
∂t + ∂ρvk

∂xk
= 0,

∂ρ1v1
i

∂t + ∂ F1
ik

∂xk
= −ρ1u1

i
τ

,
∂ρvi
∂t + ∂ Fik

∂xk
= 0,

∂ Fll
∂t + ∂ Fkll

∂xk
= 0,

∂ F1〈i j〉
∂t + ∂ F1〈i j〉k

∂xk
= − F1〈i j〉−F1E〈i j〉

τ
,

∂ F〈i j〉
∂t + ∂ F〈i j〉k

∂xk
= − F〈i j〉−FE〈i j〉

τ
,

∂ F1
ill

∂t + ∂ F1
ikll

∂xk
= − F1

ill−F1E
ill

τ
.

∂ Fill
∂t + ∂ Fikll

∂xk
= − Fill−FE

ill
τ

.

(47)
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Equation (47)1,2 are, respectively, the conservation laws of the mass of the first constituent and of the total
mass. Clearly, the mass of the first constituent is conserved, since no reactions are taken into account. Equa-
tions (47)3,4 are the balance law of momentum of the first constituent and the conservation law of total
momentum. Equation (47)5 is the conservation law of the total energy. The remaining equations are the bal-
ance laws of the stress tensor of the first constituent, the total stress tensor, the heat flux of the first constituent
and the total heat flux, respectively.
Equation (47) form a not closed system because of the occurrence of the fields F1〈i j〉k, F〈i j〉k, F1

ikll and Fikll or,
from (40, 41), of the moments ρα〈i j〉k and ρα

ikll .
They can be determined through the Grad’s method [54,55]: the moments ρα〈i j〉k and ρα

ikll can be obtained with
the Grad’s distribution function, which takes into account the first terms of an expansion of fα with respect to
Hermit polynomials, that is

f G
α = f E

α

[
1 − u2

α

2θα
+ Mα〈i j〉Cα

i Cα
j

2pαθα
+ 1

2θα

(
7 − C2

α

θα

)
uα

i Cα
i − Zα

i Cα
i

2pαθ2
α

(
1 − C2

α

5θα

)]
(48)

where

θα = kB
mα

T, Mα〈i j〉 = ρα〈i j〉 + ραuα
i uα

j ,

Zα
i = ρα

ill + 2ρα〈il〉uα
l + 5pαuα

i + ραu2
αuα

i .
(49)

The combination of the Grad distribution (48) with the definition of the internal moments (38) yields the
constitutive relations for the fields ρα〈i j〉k and ρα

ikll , that, neglecting all the terms of quadratic or higher order in
the variables uα

i , ρα〈i j〉 and ρα
ill , read

ρα〈i j〉k = 2
5

(
qi
αδ jk + q j

αδik − 2
3 qk

αδi j

)
, ρα

ikll = 5ρα
(

kB
mα

T
)2

δik + 7 kB
mα

Tρα〈ik〉. (50)

So, Eq. (47), together with the constitutive relations (50), form a closed system of 25 field equations in the 25
fields ρα, vα

i , T, ρα〈ik〉, qα
i , with α = 1, 2.

We use these equations in order to describe a stationary heat transfer problem in a binary inert mixture at rest
between two infinite coaxial cylinders or two concentric spheres. Then, we can assume that the fields do not
depend on time and that the velocity of the center of mass vanishes. Consequently, the field equations (47, 50),
written in terms of the curvilinear coordinates zk , become

for the first component: for the whole mixture:

J k
1;k = 0, identically satisfied

gik ∂p1

∂zk + ρ
〈ik〉
1;k = − J k

1
τ

,

2∑
α=1

(
gik ∂pα

∂zk
+ ρ

〈ik〉
α;k

)
= 0,

2∑
α=1

(
2qk

α;k + 5
kB

mα

T J i
α

)
= 0,

ρ
〈i j〉k
1;k + M 〈i j〉k

1;k = −ρ
〈i j〉
1
τ

,

2∑
α=1

(
ρ

〈i j〉k
α;k + M 〈i j〉k

α;k
)

= −
∑2

α=1 ρ
〈i j〉
α

τ
,

ρikn
1n;k = − 2qk

1 +5 kB
mα

T J i
1

τ
,

2∑
α=1

ρikn
αn;k = −

∑2
α=1

(
2qk

α + 5 kB
mα

T J i
α

)

τ
,

(51)
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with

ρ〈i j〉k
α = 2

5

(
qi
αg jk + q j

αgki − 2

3
qk
αgi j

)

M 〈i j〉k
α = kB

mα

T

(
J i
αg jk + J j

α gki − 2

3
J k
α gi j

)
,

ρikn
αn = 5

kB

mα

T pαgik + 7
kB

mα

Tρ〈ik〉.

(52)

In Eqs. (51, 52) upper and lower indices represent contra- and co-variant components of the tensors, gik is
the metric tensor (as usual, gik gk j = δi

j , with δi
j the Kronecker symbol) and the semicolon denotes covariant

derivative with respect to zk . For simplicity, the diffusion flux J k
α = ραuα

k = ρα
(
vα

k − vk
)

and the pressures
of the two constituents pα = kB

mα
ραT are used as fields instead of vα

k and ρα , respectively.
We will write Eqs. (51, 52) explicitly for the cases of heat transfer between two cylinders and two spheres.
We assume that in both cases, the fields depend only on the radius r . Since the covariant derivative must be
expressed in terms of the metric tensor and the Christoffel symbols, we recall that in cylindrical coordinates,
they read

gik =
⎛
⎝

1 0 0
0 1

r2 0
0 0 1

⎞
⎠ , Γ 1

22 = −r, Γ 2
21 = Γ 2

12 = 1
r , Γ m

kn = 0 else, (53)

while in spherical coordinates, we have

gik =
⎛
⎝

1 0 0
0 1

r2 sin2 ϑ
0

0 0 1
r2

⎞
⎠ , Γ 1

22 = −r sin2 ϑ, Γ 2
23 = Γ 2

32 = cot ϑ, Γ 1
33 = −r,

Γ 2
21 = Γ 2

12 = Γ 3
31 = Γ 3

13 = 1
r , Γ 3

22 = − sin ϑ cos ϑ, Γ m
kn = 0 else.

(54)

Clearly, the equations are still valid in Cartesian coordinates, where r plays the role of x and gik = δik , while
Γ m

kn = 0.
In order to avoid useless calculations, it is better to consider the first Eq. (51)1 separately. Indeed, it reads
explicitly

dJ 1
1

dr
+ j

J 1
1
r = 0, with j =

⎧⎨
⎩

0 planar
1 for the cylindrical case.
2 spherical

(55)

If we suppose that one boundary is impermeable, J 1
1 vanishes there and from (55)1, we have J 1

α = 0∀r . Then,
we obtain the field equations presented in system (1–3). They are written in terms of the physical components
[25,47], defined as8

q̂ i
α = √

gii qi
α, ρ̂

〈ik〉
α = √

gii
√

gkk ρ
〈ik〉
α . (56)

But for simplicity, the hats in system (1–3) have been dropped. The field variables that do not appear in (1–3)
vanish identically.
To the system of field equations, we can associate the entropy density ρη. Indeed, the kinetic theory defines
the entropy density in terms of the distribution function as

ρη =
2∑

α=1

ραηα with ηα = − kB
ρα

∫
fα ln fαdcα. (57)

8 The underlined indices are unsummed.
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The Grad distribution function (48) together with (57) furnishes the expression of the entropy density in terms
of the fields [38], that is,

ρη =
2∑

α=1

ραηα with ηα = ηα
E − 1

4
ρ̂α〈i j〉ρ̂α〈i j〉
ρα pαT − 1

5
q̂α

i q̂α
i

p2
αT

, (58)

where ηα
E represents the specific entropy density at equilibrium given by

ηα
E = 3

2

kB

mα

ln T − kB

mα

ln ρα. (59)
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