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Abstract Considering a one-dimensional problem of debonding of a thin film in the context of Griffith’s theory,
we show that the dynamical solution converges, when the speed of loading goes down to 0, to a quasistatic
solution including an unstable phase of propagation. In particular, the jump of the debonding induced by this
instability is governed by a principle of conservation of the total quasistatic energy, the kinetic energy being
negligible.
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1 Introduction

Griffith’s theory of fracture mechanics is universally used to treat the propagation of cracks in brittle elastic
bodies. When the load varies slowly with time, the quasistatic approach is preferred to the dynamic approach
for its simplicity. However, it turns out that, even when the crack path is known in advance, Griffith’s law
is unable to give the evolution of the crack if the total (quasistatic) energy is not a convex function of the
crack length. Indeed, in this case, an unstable phase of propagation takes place and the quasistatic Griffith
law, which does not allow discontinuous crack evolutions, cannot be applied any more. It is generally claimed
that in a such situation the quasistatic framework must be abandoned because the crack propagation becomes
dynamic and that the kinetic energy plays an important role. The goal of the paper is to show that, in a
particular one-dimensional context, that claim is not true and that the unstable phase of propagation can also
be treated by considering only quasistatic energies. However, the price to pay is to replace the Griffith law of
propagation based on the concept of critical energy release rate by that of conservation of the total quasistatic
energy, at least during the phases of unstable propagation. This result is proved by solving the full dynamical
problem and by passing to the limit when the loading speed goes down to zero. To the best of our knowledge,
a similar argument has been used only by Berry [1,2] in his approximate analysis of dynamic fracture (in two
dimensions), which referred to a quasistatic G for evaluating the kinetic energy and the fracture energy at
crack arrest in a homogeneous medium. Consequently, that gives a theoretical basis to the variational approach
suggested by [3,4] and [5] where the crack evolution is governed by two criteria: a stability criterion and an
energy balance. Indeed, the variational formulation can be applied even if the total quasistatic energy is a
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nonconvex function of the crack length; the jumps of the crack are governed by that energy balance whereas
the two criteria are equivalent to Griffith’s law when the crack length evolves smoothly.

The paper is organized as follows. In Sect. 2, we first introduce the one-dimensional problem that corre-
sponds to a simplified version of the peeling test. Then, we set the dynamic problem and introduce the two
cases of toughness repartition that are considered in the sequel, so-called cases a and b. A discussion follows,
where it is shown that we cannot solve the nonconvex case b in a quasistatic context by using Griffith’s law
alone because the debonding evolution is necessarily discontinuous. As an alternative the energy conservation
principle is proposed to determine the value of the jump. Section 3 is devoted to the dynamic analysis of each
case. We first introduce the general structure of the dynamic response made of a sequence of shock waves that
interact with the front of debonding. Then, we obtain the solutions in closed form. Finally, we pass to the limit
when the speed of loading goes down to 0 to prove the convergence to the quasistatic solutions in each case.

2 Setting of the problem
2.1 The dynamical problem
2.1.1 Notation and main assumptions

The problem deals with a simplified version of the peeling test, cf. [6-8] and Fig. 1. We consider a semi-infinite
perfectly flexible and inextensible thin film that is initially perfectly bonded to a rigid substrate with normal
e>. The end x; = 0 of the film is submitted both to a constant tension —Ne;, N > 0, and to an opening W
linearly increasing with time ¢ so that

N

W=e¢€ct, c=_|—. (1)
P

In (1), p is the mass of a unit length of the film, c is the velocity of the transversal waves propagating in the
film, and € represents the dimensionless speed of loading. In the sequel, € will be considered as a (small)
parameter. Therefore, the dependence of the response on € is made explicit by denoting the solution with € as
a superscript. The main goal of the paper is to determine the asymptotic behavior of the dynamical response
when € goes down to 0. Moreover, in order to simplify the expressions we introduce dimensionless quantities.
Specifically, if L denotes a characteristic length of the film (which will correspond to the point where there is
a change of toughness in the model developed below), we set
X1 ct
x=_ T=¢ I 2)
and consider that the displacement field u€ of the film is a function of (x, T7') defined on the quadrant Q :=
(0, +00)%,
u(x,T)=u(x,T)Le; +w(x, T)Ley. 3)

In (2), T can be considered as a dimensionless rescaled time. Assuming that w€ is small and using a linearized
inextensibility condition, u¢ can be expressed in terms of w® as follows:

e o2
W (x, T) = %/(88“; ) (s. T)ds. (4)

X

Fig. 1 Debonding of a thin inextensible film
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The debonded part of the film at time ¢ corresponds to the points x such that supg_; w€(x, S) > 0. To simplify
the presentation, we assume that the debonding grows from x = 0 at T = 0 in such a way that the debonded
part of the film at time # corresponds to the interval (0, £€(T")). Thus £¢(T) L represents the physical debonded
length at time ¢. Therefore,

u=w=0 inQf):={(x,T)eQ : x>(T)} (5)

with £€(0) = 0.

2.1.2 The equations of motion

The motion of the debonded part of the film is governed by the (classical) wave equation, cf. [9]:

92we 02we .
s LI ®

Let us note that the wave velocity in the (x, 7')-plane is equal to 1/€ because of the time rescaling and the use
of dimensionless coordinates. Moreover, since the gradient of the displacement is discontinuous across some
curves of the (x, T')-plane, it is better to set the problem in terms of the gradient components. Thus, let us
denote by ¢ and v€ the partial derivatives of w€:

owe ow*
wf = 2 e = 2 @)
0x oT

The field w® represents the infinitesimal rotation of the film and the field v€ is the rescaled transverse velocity
of the film (the real transverse velocity of the material points of the film is equal to ecv® because of the time
rescaling).

The rescaled transverse velocity must satisfy the boundary condition

v, T)=1, VT >0. 3
Both fields have to satisfy the Hadamard compatibility condition and the equation of motion

dwt  0v¢ dw* 5 0V€

= , 0= € . ©)
T 0x dx aT

Let S¢ be the set of points (x, T') € Q\ 9, where v and v* are discontinuous; this corresponds to the shock

waves. Equations (9) are to be satisfied in Q\ (§€ U Qf). On §¢, these have to be replaced by the Hadamard

compatibility condition and the Rankine—Hugoniot condition, see [10]:

0= s[[w] + [v], 0 =[]+ se[ve]. (10)

In (10), s denotes the local velocity of a shock wave at a point of S¢, [ f]] denotes the jump discontinuity of
the function f across S¢:

Lf1=f+— f- onSe, (1

f+ and f_ denoting, respectively, the limit after and before the passage of the wave. We deduce from (10) that
s2€? = 1, 1i.e., the shock waves propagate with a velocity equal to 1/¢ [in the (x, T')-plane]. Accordingly, we
can divide ¢ into two subsets: the forward shock waves S¢ where s = +-1/¢ and the backward shock waves
S€ where s = —1/e. Then, the only jump condition that remains to be satisfied is the Hadamard compatibility
condition, which becomes:

0 =[]+ elv¢] on SS, 0=[w]] —€llv’] on S€. (12)
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2.1.3 Griffith’s law of debonding

Let us denote by I'¢ the front of debonding and £€ its local speed in the (x, T')-plane:
_odee
- dar’

The displacement w€ is continuous on I'“ (and equal to 0), but € and v¢ are discontinuous and must satisfy
the Hadamard compatibility condition

€= {((T),T): T >0}, £° (13)

0 = [v¢] + €[] on €. (14)

In (14) the double brackets denote, as in (11), the difference between the limit after and the limit before
the passage of the front of debonding. The debonding of the film is governed by Griffith’s law [11] which is
formulated in terms of the dynamic energy release rate G€. In a general two-dimensional context, G€ is defined
as the limit of a path integral where the path tends to the tip of the crack, see [12]. In our one-dimensional
context, G€ is given by

G — g (Ilwd]] _ €2|IU€2]]) ’ (15)

where the jumps are defined on I'¢, cf. Appendix. Therefore, since the limits before the passage of the debonding
front vanish, upon using (14), G reads as

N .
G = (1= (e€)?) (@)™ (16)
Denoting by x — G.(x) the spatial repartition of the toughness, the Griffith law reads as, cf. [11,13]:
>0, G°<G(t9), (G°—G.(t9)) e =0. (17)

In (17) the first inequality is the irreversibility condition, the second inequality is the Griffith criterion requiring
that the dynamic energy release rate must be always less than the local toughness G.(€), and the last equality
stipulates that the debonding evolves only when the dynamic energy release rate is equal to the local toughness.
According to (16) and (17), we obtain )

0<etf <1, (18)

meaning that the speed of debonding is necessarily less than the wave speed.

2.1.4 Last definitions

The interpretation of the solution in energetic terms is fundamental in the sequel. Let us define the various
energies involved. Since the film is perfectly flexible, the bending energy is neglected and the potential energy
at time 7 is simply equal to the opposite of the work produced by the tension N in the displacement u€ (0, T).
Therefore, using (4), the potential energy of the film at time ¢ can be written

® 2
. NL dw*®
PUT) = EB o (x, T)dx. 19)
0
The kinetic energy of the film at time ¢ can be read as
NL T (9w
KE(T) = 627/ ( a“; ) (x. T)dx, (20)
0

the factor €2 being due to the rescaling (2) of the time. Following Griffith’s assumption the surface energy of

the film at time ¢ reads
L(T)

ST)=L / G (x)dx. 1)
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To summarize this setting of the dynamic debonding evolution, the fields @€, v¢ and the debonding length £¢
must satisfy (8), (9), (12), (14), and (16)—(17). We will solve this problem in two particular cases of spatial
toughness repartition:

. _InN  if0<x <1
Casea: G.(x)= ’)/ZN ifx>1 , (22)
N if0 <1
Caseb: G.(x)= {)’2 1 =r= , (23)
yiN  ifx>1

where in both cases y» > y; > 0.

Remark 1 We construct in each case a (particular) solution. The issue of uniqueness will not be discussed in
this paper.

2.2 The quasistatic approach

In the quasistatic approach, the kinetic energy is neglected as well as any inertial effect, and the film is assumed
to be at equilibrium for every value of the given opening 7. Therefore, let 7 and ¢ be the given opening and
the debonding length. By virtue of the theorem of potential-energy minimum, the transverse displacement
field at equilibrium, w?, is that which minimizes the potential energy on all kinematically admissible vertical
displacement fields w. Since w is admissible if and only if w > 0, w = 0 in [¢, 400), and w(0) = T, and

since the associated potential energy reads f(f NLuw'(x)?/2 dx, the potential energy of the film at equilibrium,
P(T, ¢), is given by
14
NL

P(T, €) = min / —w'(x)? dx. (24)
{w=>0: w(0)=T} 2

In (24) and above the prime denotes the derivative with respect to x. Then we easily deduce that the minimizer
w? is given by
x\+

W) =T (1 — Z) , (25)

the superscript 4 denoting the positive part. Therefore the potential energy and the surface energy are given
by

¢
, SW) = L/Gc(x) dx (26)

0

NLT?
20

P(T, €) =

and the quasistatic potential energy release rate reads

1 9P NT?
G := AT (T,¢) = TR (27)
Let us note that P is a strictly convex function of £ at given T > 0, while S is a convex function of ¢ if and
only if x — G.(x) is monotone increasing. Therefore, the total energy E(T', £) := P(T, £) + S(£) is a strictly
convex function of £ at given 7 > 0 in case a, but not in case b.
If we still assume that the debonding evolution is governed by Griffith’s law, then the function T +— £(T')
giving the evolution of the length debonding must be an absolutely continuous function (see [14] for a precise
definition of absolutely continuous functions) which satisfies, for almost all 7 > 0:

2

20(T)?

2

. N
«T) =0, = G (D)), (

20T)R Gc(ﬁ(T))> 6(T) =0, (28)

with the initial condition £(0) = 0. In this way we have the fundamental result:
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Proposition 2.1 In case a, Griffith’s law (28) admits the solution given by
T/V2y1,  fO<T <2y
o) =11, V2 <T <27 . (29)
T/V2y2. T =20
In case b there is no (absolutely continuous) solution.

Proof Incasealetus verify that T +— €(T) given by (29) is asolution of (28). Its continuity and its monotonicity
are easily checked. We have G(T) = y|N = G.({(T)) for T € (0, /2y1) and G(T) = y»N = G.(¢(T)) for
T > /2. For T € ({/2y1, /2y2), we have G(T) < G.(¢(T)) = y»N and £(T) = 0.

Let us consider case b and assume that there exists an absolutely continuous solution 7 +> £(T). Then £(T')
grows from 0 to co when T grows from 0 to +00. [Indeed, assume the contrary and set £y = lim7_, oo £(T) <
00. Then, according to (28);, we should have T? < 2y24Mm, VT > 0, whatisimpossible; hence limr_ » £(T) =
00.] Therefore, £(T) = 1 for some T. Moreover, because of the monotonicity of T + £(T), there exist Ty
and 771 with 0 < Tp < T} < 4oosuchthat £(T) < 1 forT < Ty, &(T) = 1 for T € [Ty, T1] and £(T) > 1
for T > Ti. We should have G(Tp) = y»N. [Indeed, if not, G(Tp) < y»N and by continuity G(T) < y»N
in some interval (7o — &, Tp]. Hence, according to(28)3 and by the absolute continuity assumption, £(7) = 1
in that interval, which is in contradiction with the definition of Tj.] But, we should have also G(T}) < y1N.
[Indeed, G(T) < G.(¢(T)) = y1 N for T > T; and hence by continuity the inequality holds at 77.] Finally,
we should have 2y, = TO2 < T]2 < 2y1, which is in contradiction with the assumption on the toughness.
Accordingly, there is no absolutely continuous solution. O

In case a, a more careful analysis could show that (29) is the unique (absolutely continuous) solution of
(28) and that £(T) is, at every T, the global minimizer of / + £(T,[) on {/ > 0}. The proof is not reproduced
here, but the interested reader is referred to [15] for similar results relating global minimization to Griffith’s
law. The graph of T +— £(T') is plotted in Fig. 2. The evolution of the potential and surface energies are given

by
VZNTNL/2  if T < /2y
P(T)={T*NL/2 if V21 =T <2 (30)
2T NL/2  f T > /2y
and

V2PTNL)2 T < V2n
S(T)={nNL it 21 =T <2y (€1))

(n = +V2RT/2NL  ifT > 2n

In case b, the debonding evolution is necessarily discontinuous. We can expect that the debonding evolves
continuously and follows Griffith’s law until the debonding reaches the point x = 1, where there is a loss of

T

7

1

g

14

1
Fig. 2 The quasistatic evolution of the debonding in case a by using Griffith’s law
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Fig. 3 The graph of the total energy as a function of the debonding length ¢ for a given opening 7 in case b. Left when T < /2y»;
right when T = /2y» and the value €. of the debonding length after the jump given by the energy conservation principle

toughness. In other words, we can expect that £(T) = T /y/2y> for T € [0, /2y2). As is shown in the proof
of Proposition 2.1, at T = /2y», £ must jump from 1 to a certain £ > 1. This phase of instability of the
debonding can be interpreted from the evolution of the graph of the total energy as a function of the debonding
length when the given opening grows, cf. Fig. 3 and see also [16] for the use of the concepts of instability
in fracture mechanics. For T < /2y, £(T) = T /+/2y> is a local minimum of [ +— &(T,[). However, at
T = /2y», this local minimum disappears and the debonding length must jump from / = 1. The question is:
what is the equation giving the value of the jump? Clearly, the quasistatic Griffith law is unable to give the
answer because it is written only for smooth evolutions. We must introduce a new criterion and the main goal of
the paper is to deduce the correct equation from a dynamic analysis. Considering the graph of [ > £(/2y», )
and by analogy with the motion of a ball in a basin, we could propose that the debonding length falls into
the energy well, i.e., at the point €, such that 0£/91(v/2y2, £m) = 0 or in other words to the point such that
G = y1 N. The dynamic analysis will show that this is not a good value, but that the correct principle is energy
conservation: the jump of the debonding is such that the total quasistatic energy just after the jump remains
equal to that just before the jump. Let us assume that this rule holds. Then, the length debonding after the
jump, £, is such that £. > 1 and £(/2y2, 1) = E(/2y2, £¢). A direct calculation gives

le=22 > tm= |2 (32)

After this jump, the debonding front will propagate in a medium with a constant toughness and we can assume
that the debonding evolution will follow the quasistatic Griffith law again. Since ¢, > £p,, the energy release
rate just after the jump is less than y| N and the debonding length will remain at its value £, as long as the
opening T is not sufficiently large that the energy release rate is equal to y; N. This holds as long as T < T,
with 7, given by

2
T.= 22 (33)

V2Zn
Then, when T > T, the debonding restarts and the debonding length grows so that the energy release rate
remains equal to y; N. Therefore, £(T) = T/ /2y, for T > T..
To summarize this analysis of case b, if we assume that the debonding evolution always follows Griffith’s

law except during the unstable phase where the jump is governed by the energy conservation principle, the
graph of T +— £(T') should be that plotted in Fig. 4,

T/V2y> if0<T <20
UT) = yn/n it 2y < T <2y /2y1 . (34)
T/2y1 i T =2p//2n

The main goal of the paper is to justify this conjecture by solving the full dynamic problem and by passing to
the limit when the speed of loading goes down to 0. We will also state a result of convergence for the energies.
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V2y,

{
1 fe

Fig. 4 The quasistatic evolution of the debonding in case b by using both Griffith’s law for the continuous phases and the principle
of energy conservation for the jump

Their values, corresponding to the conjectured quasistatic solution, are given by

N2WTNL2 it T < /2y
P(T)={T*NL/2¢,. if 2y, <T < T, (35)

V2ZHTNL)2  ifT > T,

and

JIATNL)2 T < 2m
S(T)=1Q2y2—y)NL if 2y, <T <Te. (36)
(o =y +20T/2)NL  ifT > T,

Let us remark that their respective values just before and just after the jump are given by

P- (\/%) — wNL, Pt (Jz?) — »NL, 37)
5™ (V2r) =nNL, 8 (V2r) = @r— yONL. (38)

Of course, since the total energy is conserved, all the released potential energy is thus transformed into surface
energy.

3 The dynamic analysis
3.1 The structure of the dynamic solution

The structure of the dynamic solution is the same for each case. The solution contains a first phase of debonding
evolution where the debonding front propagates at a constant speed until it reaches the point x = 1 where the
toughness changes. That change of the toughness generates a backward (traveling) shock wave as well as a
change of the speed of debonding. The backward shock wave is reflected at x = 0 and is transformed into
a forward (traveling) shock wave. Since the wave speed is necessarily greater than the speed of debonding,
the forward shock wave intersects the front of debonding. Then, the speed of debonding changes again and
the forward shock wave is transformed into a backward shock wave. This second backward shock wave is
reflected itself at x = O into a forward shock wave, which in turn will intersect the front of debonding. Then,
the speed of debonding changes, a backward shock wave is generated and so on.

We seek a solution for which the speed of debonding as well as the rotation and the velocity fields are
piecewise constant, i.e., constant in each sector delimited by the backward shock wave, the forward shock wave,
and the front of debonding; see Fig. 5. Those sectors are denoted by {Qf };en. The sector Q; corresponds to
the sector ahead of the front of debonding, i.e., where @ = v¢ = 0. The sector Qﬁ is delimited by the front
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Fig. 5 Structure of the dynamic solution and numbering of the sectors. Thick line: debonding front; thin lines: backward and
forward shock waves

of debonding before x = 1, I'§j, the backward shock wave generated at x = 1, S¢, and the boundary x = 0.
Then the index i of the sector is incremented at each reflection of the shock wave. In the sector Qf, i >0,

the (constant) values of (v, v¢) are denoted by (@f, vf). Thus, wf = vy = 0. The speed of debonding before

x < 1, that is, the slope of the line segment I'j separating Qf and Qf, is denoted by 56 and the associated

dynamic energy release rate by G{j. The front of debonding reaches x = 1 at T = 7. Once the debonding
propagates in the part x > 1, the speed of debonding and the energy release rate on the line segment I'§
separating Qf and Q5;,7 > 1, are denoted by éf and GF. The values of the opening when the backward shock
wave is reflected at x = 0 and is transformed into a forward shock wave are denoted T{i, i > 1. The values of
the opening when the forward shock wave intersects the front of debonding and is transformed into a backward
shock wave are denoted Tfi_ 1» 1 > 2. The associated position of the debonding front is denoted Zf.

We put 7§ = 0 and £ = 1. The equation of the first front of propagation reads

0§ =0T, 0<T <Tf. (39)

The equations of backward shock wave S5; | between Q5. | and Q5., and of the forward shock wave S5,
between Q5; and Q5; 41> can be written as

S5 T=T5—el, 0<l<t, & :T=T5+el, 0<I<t,, (40)

1

whereas the equation of Ff ,fori > 1 reads

Tf l=€+ 0T —T5_y), Ty <T <T5,. (41)
Therefore
S€=USf, FEZUrf (42)
i~1 ieN

and the T are related to the £{ by

Ty, — Ty, = €l5, T2€i+l —Tfizeéfﬂ, Vi > 1. 43)
Since the fields are piecewise constant, (9) is automatically satisfied in Q\ (S U I'). It remains to find the
sequences a)f, vf ,and Ef for i € N. The procedure is the same in both cases and we use in this subsection the
following notation for the toughness:

y_N ifx <1

. 44
y+N ifx > 1 “4)

Gc(x) = H



10 P.-E. Dumouchel et al.

Let us begin by the first phase of debonding. The boundary condition (8); gives v{ = 1 and (14) leads to
éf)a)i = —1. Hence éf) # 0 and, according to (17)3, Gi = y— N. Using (16), we obtain 8'62 =Qy_ +€e)7 L
Since £5 > 0 by virtue of (17)1, we finally have

. 1
= g =2t =t 43)

To find the debonding evolution in the part x > 1, we use the following statement:

Prop'osition 31 Leti > 1.In Q5; |, v5,_, = 1; let us assume that o5, _| and £ are known. Then w5;, v5;,
and €5 are given by

(@5 —e*—2p0)"

! W)y —€
— , Wy = ———
€ (05 | — >+ 2yy 2 1+ el

€

. vy = 6o, (46)

=

1

Wﬁere the superscript + in the first relation denotes the positive part. Furthermore, o5; 4 vs; 41 and £5 4 are
given by
1+ el€
€ _ € € € — € — L pe€
Wi =20y — @y gy V=1 by = 1 eéeﬁr 47)
i

Moreover the different energies are piecewise-linear functions of T. Their values at TS are given by

NL
PUTy 1) = ngi—12£f9 (48)
e e2NL .
K (Tyi_) = ) L;, (49)
S(T5; ) = (y- + v+ — D) NL, (50)
NL .
PE(TfI-) = Ta)iiz(l + Eﬂf)ff, 51)
e €NL _, o
K (Tzi) = TUZi (1 +6£i )Zi, (52)
S(T5) = (v— + v+ (L +ef)ef — 1)) NL. (53)

Proof Most of the above relations are direct consequences of the boundary condition (8);, the Hadamard
compatibility conditions (12) and (14), or the geometric properties (40), (41), and (43). In particular, (46); is
obtained by a simple combination of (12) and (14). The only part that needs a careful analysis is the formula
(46); for £5. Let us first use (14) and (16) to obtain

v = —fws;, G5 = — (1 — 2) ws,”. (54)

N
2

According to (17), if Gf < y4 N then éf = 0. In such a case, because of (54), |a)§l‘ < 4/2y+. Otherwise, if
Gf = y4+ N, then, because of (54) again, we have

5] = V1 = €26 |05 | = V2rs.

Therefore, it is sufficient to compare |a)§i| to «/2y4 to determine whether the debonding grows and find Zf
However, according to (46)2., w§l| > /2y4+ is equivalent to |w§i_1| +e > 2y4. InserFing the relationship
(46), giving w5; in terms of £5 and w5, _; into the equation G = y; N, we finally obtain £ in terms of w$, .

The energies are piecewise-linear functions of 7' because ¢, v¢ and £€ are piecewise constant. By using
their definition (19), (20), and (21), and by remarking that £°(T5;) = (1 + €£5)£; leads to (48)—(53). O
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T
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T2n€+l

Ty

{
1

Fig. 6 Case a: dynamic solution with the three phases of the debonding propagation for y; = 0.5, y» = 2. and € = 0.075

3.2 Case a
3.2.1 The dynamic solution

The speed of loading € is assumed to be small enough to remove some particular cases. We can distinguish
three phases in the debonding evolution, cf. Fig. 6.

3.2.1.1 Debonding in the zone with the lower toughness. In the sector Qf, we can use (45) with y_ = y; to

obtain 1
05 = ———, o =—/2y1 +€2, vS=1. (55)
0 /—2)/1 ) 1 1

The debonding front reaches x = 1 at T given by

TS =/2y1 + €% (56)

Then the debonding evolution is governed by Proposition 3.1 with y; = y».

3.2.1.2 Arrest at the change of toughness. For € small enough, since |a)§| +e= 21+ +e < V2,

we deduce from (46) that Zﬁ = 0. The debonding stops at x = 1 in the interval (T, T + 2¢) corresponding
to the first back and forth of the shock wave. Upon inserting into (46) and (47), we deduce the values of the
constants in Q5 and QO

0 =—2y1+e2—€, v5=0, of=—/2y1+e>—2¢ v5=1. (57)

Let us show that the debonding does not evolve during a certain number ¢ of back and forths of the shock
wave. Specifically, let us show by induction that, if 1 < i < n€, with n€ to be determined, then Ef = (0 and

6()5[- = —‘/2)/1 + 62 — (21 — 1)6, U;l- = 0, a)§[+1 = —4/ 2)/1 —+ 62 — 2i€, U§[+1 = 1’ (58)

which holds for i = 1. Let us assume that it is true until i — 1 > 1 and let us find under which condition that
remains true for . Using the induction assumption, we have |w§i_ 1 | +e = /2y + €2+ (2i — 1)e. Therefore,

because of (46), if /2y + €2 + (2i — 1)e < /2y, then éf = 0 and all the other properties follow. Hence,

(58) holds as long as i < n€ with
1
C={— 272 —+/2 2 , 59
n <2€( V2 Y1+ € +6>> %59)

where (-) denotes the integer part. In terms of the opening, this phase of arrest corresponds to the interval
(Tf, Ty,e 1) with
Ty = Tf + 2en”. (60)

TS = —of =2y +€2+ (G — e, 1<i<2n°+1. (61)

Let us note also that
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3.2.1.3 Debonding in the zone with the higher toughness. AtT = T, ., the debonding restarts and propagates
inside the zone where the toughness is y». To find the solution, we use Proposition 3.1 and the following lemma

Lemma 3.2 Let n and X be such that 0 < 1 —2n < Xo < 1. Then the sequence {X;};cN defined by
1
— =X; +2n (62)
Xit1 l
always remains between 1 — 2n and 1, its generic element X; is given by
1 1
Xi+n+V/1+n2 2/1+n2

2i
= (—1) (\/1 +n?— n) ( ! ! ) (63)

Xo+n+vV1+n2 2/1+72

and converges, with oscillations, to \/1 + n% — n.

Proof Let us verify that the sequence remains between 1 — 25 and 1. By assumption, it is true for X. Let
i>0.If X; € (1—2n,1), then

1
Xi+2n 1427

thus X; 41 € (1 —2n, 1). Let us establish (63). We first make the following change of variable: ¥; = X; +
1+ 1%+ n. That allows to change the former sequence into

2
1 1 (Vi =n)
Yiei  J1+72 47 Y; ’

from which we easily deduce (63). Since /1 + 72 — n < 1, the term on the right-hand side of (63) tends to
0 when i grows to infinity and the result of convergence follows. The oscillations around the limit are due to
the change of sign with i in that term. O

1>

Xiy1 > > 1—2n,

Let us set, for j > 0,

xe 292 €

=, )76 = .
J /
‘w5n5+l+2j‘ te 272

By definition of n€, we have /2y, < |a)§n6+1| +e =2y + €24 (2n€ + 1)e < /2y, + 2¢ and hence, for
e small enough, 0 < 1 — 2. < (1 +2n)~ ! < X§ < 1. Furthermore, since i;eﬂ > 0, we get from (46)

(64)

and (47), l/Xf = Xg + 2n¢. Since 0 < Xf < 1, we have é;e+2 > (0 and we can iterate the procedure to
obtain (62). Hence, we can use Lemma 3.2. By (46), (47), and (63), we obtain the debonding evolution for
T >T;, +1- In particular, £5 can be read as

2
1 - (Xié—nf—l)

€l = 5
1+ (Xié—ne—l)

1

(65)
and we have the results of convergence

. e __ pE 1 . € __ 2
At = b= V27, + 2 Jim w; = —/2y + €,
setting that the speed of debonding and the rotation of the film tend to those corresponding to the propagation
in a homogeneous medium with toughness y>. The speed of debonding £{ oscillates around that limit value
and tends exponentially to it (with 7). That phenomenon of oscillation can be interpreted as a boundary-layer
effect generated by the phase of propagation into the first zone and the phase of arrest at the interface, which
modify the initial conditions corresponding to the problem of propagation into a homogeneous medium.
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T

— — — QuasiStatic
Dynamic

{

I

Fig. 7 Case a: Comparison of the dynamic solution when € = 0.075 with the quasistatic solution for y; = 0.5, y» =2

3.2.2 Convergence to the quasistatic solution when € — 0

When the speed of loading goes down to 0 we obtain the following expected convergence result:

Proposition 3.3 The dynamic solution T + £°(T) converges to the quasistatic solution T + €(T) given by
(29), uniformly on any compact set; see Fig. 1. Moreover, the potential and surface energies converge also
uniformly on any compact set to their quasistatic homologue given by (30)—(31), the kinetic energy converges
to 0.

Proof  Step 1: Convergence of the first two phases.
We deduce from (55) and (56) that lim¢_o £ = 1/4/2y; and lim¢_o T{ = +/2y;. Furthermore, since (59)

gives lim¢_, 2en€ = /2y2 — /2y1, we also deduce from (60) that lim¢_, ¢ Tfnﬁrl = /2.

Step 2: Convergence of the third phase. )
This is the most difficult part of the proof, because of the oscillations. We know from Lemma 3.2 that £¢
oscillates around the limit speed (2y> + €2)~!/? and converges to it when i — oco. Let us define the mean
value of the slope of the debonding front during one oscillation, i.e.,

AT
+2 i .
pfi= . i>1l (66)
b Ty Ty

Using (47), (62), and (65), we obtain after a tedious calculation

. 2
205, (Xf—nf—l + e — 1+ ’73)

(X ey +200) + (X))’ +2

b5 —pf =

Since )Xf +ne — /14 n?
than ‘Xg +ne —+/ 1+ 773‘, which is of order €. Therefore, denoting generically by C any positive constant
independent of € and i, we have

decreases as i increases, at given €, that quantity tends to 0 when i — o0, itis less

0 <, — pf < Ce.
Furthermore, since 0 < (2y,)~ /2 — égo < Ce? and T5pe ) — «/2y2| < Ce,we get [£(T) —£(T)| < CeT

for T > /2ys.

Step 3: Convergence of the energies.
Since £€(T) — £(T), we also have S¢(T') — S(T), uniformly on any compact set. For the potential and the
kinetic energies, we have for 1 <i < 2n€ 4 1:
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€2NL/2, ifiodd

67
0, if i even 67

NL
PG(Y}E) — 7(7116)2’ ICG(YVIE) — {

with 7 given by (61). Since Tf — /21, since 15, | — /2y, since the T are equipartitioned between
T and T3, |, and since the energies are piecewise linear, we obtain the uniform convergence of P¢ to P

given by (30)—(31) and of K€ to 0, in the interval [0, 4/2}»].
Since lim¢_,¢ X ; = 1 for all j > 0 (with a uniform convergence with respect to j), we obtain from (46),

(64), and (65) that lim¢_, ¢ eéf =0, lime0€v5;_; = limep€v5, =0, and lime 0 05; | = lime g 5, =

2y, for all i > n€ + 1 (with uniform convergence with respect to i). Inserting that into (48) and (49), we
obtain the uniform convergence of P¢ to P given by (30)—(31) and of K€ to O for T > /2y5. O

3.3 Caseb
3.3.1 The dynamic solution

The speed of loading € is assumed to be small enough to remove some particular cases. We can divide the
debonding evolution into four phases, see Fig. 8.

3.3.1.1 Slow debonding in the zone with the lower toughness. In the sector Qf, (45) gives

. 1
0= ———, of=—2m+e2 vi=1, Tf =2y +¢% (68)
0 \/W 1 1 1

For T > T, the debonding evolution is governed by Proposition 3.1.

3.3.1.2 Rapid debonding in the zone with the higher toughness. There is a major difference between the two
cases when the front of debonding reaches the point x = 1, where the toughness changes. In case a, since
the toughness increases, the debonding stops. On the contrary, in case b since the toughness decreases, the
debonding accelerates. Specifically, we deduce from (46) that

2
( 2)/2+62+6) — 27
els =

. . (69)
( 2)/2+€2+€) + 2y

Hence, eéﬁ is less than 1 but of the order of 1, i.e., the debonding propagates at a speed of the same order that,
but less than, the wave speed. The first backward wave reaches x = 0 at Tf = Tf + €. Then, it is reflected
and the generated forward shock wave intersects the front of debonding at (£5, 75 ) given by

T

1 ;

Fig. 8 Case b: dynamic solution with the four phases of the debonding propagation for y; = 0.5, y» = 2, and € = 0.05



Dynamic fracture: an example of convergence towards a discontinuous quasistatic solution 15

1+ el 2e
— L Ty =Tf+ —.
1 — el 1 — el

€ __
5 =

(70)

At T} and T, the kinetic energy is of the order of €2 while it is of the order of 1 at Ty . Specifically, we have
sl +el§ NL

NL
KE(Tf) = 2—, K(Tf) =e?——L—, 71
) 2 ) 1—elf 2 7y

2
(eéi)z ( 2+ €2+ e) NI

KE(TY) = . 72
(72) 1 4 €S 2 (72)
3.3.1.3 Arrest at the point x = (5. AtT = Ty, the debonding stops. Indeed, we have
2yy
S| = (73)

—— t €.
V2 +er + e

Therefore, for € small enough, since |a)§| + € < 4/2y1, we deduce from (46) that Z§ = 0. Furthermore, by
virtue of (46) and (47) we get

2y 2y
vy =0, 0j=——F————— -2, Vs=1, 0f=—————— —3e.
2y + €2+ e V2 +e2+e
With the same procedure as in Sect. 3.2.1.2, using (46), we can show that
=0, v5,=0, v5,, =1, 2<i=<n (74)
and
c 2y . . ¢
W] =—————— ([ —2)¢, 4<i<2n°+1 (75)
2y + €2+ €
with

€ _ i . 2y
ne = 2y — —— +2¢}). (76)
2e V2 + €2+ €

In terms of 7', the debonding does not evolve in the interval (Tf, TfnE Jrl) with
T2€n€+l = T3€ + 26]’166;. (77)
3.3.1.4 Slow debonding in the zone with the higher toughness. AtT = Ty . 1 the debonding restarts. Indeed,

for j > 0 let us put
V2

Xe= YN = (78)

! ‘a)e ‘ +e€ 2y
2n€ 4142

By the definition of n€, we have /2y < |a)§n6 +1| 4+ € < 4/2y; + 2¢ and hence, for € small enough,
0<1—-2n <+2n)7" < X§ < 1. Furthermore, since é;“rl > 0, we obtain from (46) and (47),
1/X{ = X{ + 2ne. Since 0 < X{| < 1, we have é;wrz > 0 and by induction we obtain 1/X;Jrl = X; + 27e.

We can use Lemma 3.2. Owing to (46), (47), and (63), we obtain the debonding evolution for T > T, . 4+1-In
particular, for i > n€ 4 1, éf can be read as
2
. 1—(X¢ .
Egle — ( i—n —1) (79)

2
1+ (Xl€ —n€— 1)
and we obtain the convergence result
L 1
lim £ =¢

€ —_—
i—o0 ! o 271 _{_62.

The speed of debonding éf oscillates around this limit value and tends exponentially to it (with respect to i).
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Fig. 9 Case b: comparison of the dynamic solution when € = 0.05 with the quasistatic solution for y; = 0.5, y» = 2

3.3.2 Convergence to the quasistatic solution when € — 0

We pass to the limit when € goes down to 0 and compare the limits of the dynamic solution to that of the
conjectured quasistatic response given by (34) (Fig. 9).

3.3.2.1 Convergence of the first phase. We deduce from (68) that lim._,¢ ég = 1//2y; and lim¢_,o Tf =
+/2y>. Hence, the convergence to the corresponding quasistatic first phase. Let us note that the kinetic energy

converges to 0 like €.

3.3.2.2 Convergence of the second phase to the predicted jump. Let us remark first that

lim ef$ = 22— 11 (80)
=0 2+
then that
lim Tf = lim Tf = /22, lim ¢§ = 22. 81)
€e—0 €—0 €—0 Y1

Therefore, the second phase tends to the jump of the debonding length from £ = 1to £ = . at T = /2y
as in (34). This convergence result can be interpreted in terms of the energies. Thus, at T, Tf , and T_{, the
kinetic energy takes the values

NL 1+el§NL
K(TE) = —, K(Tf) =e?——L1——
(Ty) =€ 5 e( 3) El—eﬂi 3
and
. 2 2
(e€9) ( 2+ €2+ e) NI
Ke(Ty) = — —_
1+ ef] 2
Therefore, at the limit
. . : (2 =)’ NL
lim Ko (TY) = lim K (T5) =0, lim K (T5) = ——————. 82
GE)T(l) e(]) GE)T(l) 6(3) GE)I}) 6(2) YT ) (82)
For the surface energy, we have
. . 2eé§
Se(Ty) =yNL, S(T3) = nt TN NL (83)
— Y

and at the limit
eli_r)r})Se(Tf) =2y, —yDNL. (84
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K
Ke(T?)

T2

€

Fig. 10 Evolution of the kinetic energy with 7 when y; = 0.5, y» = 2 and € = 0.05

The potential energy takes the following values

NL
Pe(Tf) = @p2 + €)=, (85)
. 2 .
1 — el l+el{NL
PATE) = 1 (,/2 +€2+6)+6 1= 86
1) (1+e£§ " - el 2 (80
and at the limit

lim Pe(Tf) = yoNL, lim Pe(T5) = y1NL. (87)

e—=0 e—0

When comparing to (37) and (38) we see that the limits of the initial values and of the final values are those of
the quasistatic response, because the kinetic energy is then negligible. However, the kinetic energy is not always
negligible during this phase because it takes a finite limit at 7'y . Specifically, let us examine the evolution of the
kinetic energy. It is negligible during the first phase. Then, it grows rapidly during the propagation of the first
backward shock wave to become maximal when that wave is reflected at x = 0. However, the kinetic energy
decreases rapidly during the propagation of the first forward shock wave to become negligible again when that
wave intersects the front of debonding; see Fig. 10. During this return of the wave, all of the kinetic energy is
transformed into surface energy. Finally, the jump of the debonding satisfies the principle of conservation of
the quasistatic energy.

3.3.2.3 Convergence of the phase of arrest. Passing to the limit in (76) and (77) we get

. 2y>
lim 75,y = = = Te. (88)

V2
Hence, the phase arrest converges to that of the quasistatic solution. Since v} oscillates between 0 and 1 during

that phase, the kinetic energy converges to 0 as 2. We easily deduce that the other energies converge to their
quasistatic homologs.

3.3.2.4 Convergence of the last phase. The proof that the dynamic last phase (where the debonding restarts
and propagates with an oscillating speed) converges to the quasistatic last phase is quite similar to that given
in case a, see step 2 of Proposition 3.3. During this phase the kinetic energy remains of the order of > and all
the energies converge to their quasistatic homologue. We can summarize the convergence result obtained in
case b as follows:

Proposition 3.4 When the speed of loading € goes down to 0, the dynamic solution of case b converges to
the extended quasistatic solution (34). Thus the evolution is given by the quasistatic Griffith law during the
first, third, and fourth phases where the debonding evolution is continuous, but the second phase leads to a
Jjump of the debonding that satisfies the principle of conservation of the total quasistatic energy. The role of
the kinetic energy is transitory. It takes finite values only during the first back and forth of the shock waves,
being negligible before and after the jump.
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4 Conclusion

We can learn two major lessons from this model problem of dynamic fracture:

(1) Contrary to what is generally claimed, we can treat the phase of rapid propagation by considering only
quasistatic quantities, because the kinetic energy plays only a transitory role.

(2) The correct criterion giving the value of the crack jump is not Griffith’s criterion formulated in terms of
the energy release rate but the conservation of the total energy.

Of course, it remains to generalize those results to two- or three-dimensional heterogeneous bodies. In particular,
by considering layered composite materials we could obtain their effective toughness.

Acknowledgments We thank the referee who has carefully read the paper and who has verified each formula and each proof.
His remarks have allowed us to improve the quality of the paper.

Appendix A: Definition of the dynamic potential energy release rate

Let us consider a two-dimensional homogeneous elastic medium in which a crack propagates in direction 1.
In dynamics, the potential energy release rate G can be defined by the limit of an integral over a path that
tends to the tip of the crack. Let I', be a such path—for instance a circle of radius r and of center the tip of the
crack—G can be read as (cf. [12])

. o. . ou;
G = rlg% ((Euiui + W(s(u))) ny —ojjn; ﬁ) ds, (A.1)

r

where p is the mass density of the material, u the velocity vector field, # the displacement vector field, &(u)
the strain tensor field, W the elastic potential, o the stress tensor field, and n the output unit normal to the
path. The dynamic energy release rate differs from its static homologue by the first term corresponding to the
kinetic energy.

This relationship of G can be used for the peeling test as follows. Let £ be the position of the debonding
tip. The path I', corresponds to the points {£ — r, £ 4 r}, the normal to the path at £ & r is equal to %1, all
the indices take the value 1, the displacement u corresponds to the opening w, and the strain reads ¢ = w’.
Assuming that the elastic potential is quadratic, W (w’) = Nw'?/2, the stress becomes 0 = Nw’ and the
dynamic energy release rate reads

G = g (W(e+)? —w(e—)?) - % (w'(e+)? —w'(t—)?), (A2)

where the dot denotes the time derivative and the prime the spatial derivative. Furthermore, if we assume that
the debonding grows in direction 1 and if the front of debonding is oriented in space—time such that the ‘+
side corresponds to the points after the passage of the tip debonding, we get

_E 2 _B £ 2
G—2[[w 1 2IIw 1, (A.3)

where the double brackets denote the jump.
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