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Abstract We formulate integral statements of force balance, energy balance, and entropy imbalance for
an interface between a body and its environment. These statements account for interfacial energy, entropy,
and stress but neglect the inertia of the interface. Our final results consist of boundary conditions describing
thermomechanical interactions between the body and its environment. In their most general forms, these results
are partial differential equations that account for dissipation and encompass as special cases Navier’s slip law,
Newton’s law of cooling, and Kirchhoff’s law of radiation. When dissipation is neglected, our results reduce
to the well-known zero-slip, free-surface, zero-shear, prescribed temperature, and flux-free conditions.
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1 Introduction

The framework of modern continuum physics is based on three principal ingredients: (i) balance laws (for mass,
momenta, energy, etc.), (ii) an imbalance that represents the second law of thermodynamics, (iii) constitutive
equations. A careful distinction is maintained between the basic laws expressed within (i) and (ii), which apply
broadly, and the relations (iii) that define particular materials.

To date the process of formulating boundary conditions that account for interactions between a body and
its surroundings remains largely disjoint from this framework; for example, boundary conditions are often
improvised on a problem-by-problem basis using:1

(a) Ad hoc methods based on physical considerations
(b) Variational methods based on energy minimization or on principles such as virtual power (work).

Here our goal is a fairly complete theory of body–environment interactions based on statements of the basic
laws appropriate to such interactions. Specifically: we confine our attention to an interface separating a body
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and its environment; we allow for slip at the interface, but ignore the possibility of cavitation; we endow the
interface with energy and entropy while allowing also for interfacial surface stress and heat flux. On the other
hand, we neglect mass transport within and the inertia of the interface. Our discussion begins from integral
statements of force and moment balance, energy balance, and entropy imbalance for the interface formulated
for pillboxes which include infinitesimal portions of the body and the environment. Our final results consist of
boundary conditions describing thermomechanical interactions between the body and the environment. In their
most general forms, these results are partial differential equations that account for dissipation and encompass
as special cases Navier’s slip law, Newton’s law of cooling, and Kirchhoff’s law of radiation. When dissipation
is neglected, our results reduce to the well-known zero-slip, free-surface, zero-shear, prescribed temperature,
and flux-free conditions.2

In an addendum, we describe an alternative formulation of the first and second laws of thermodynamics
based on the use of interfacial subsurfaces that, in a precise sense, migrate through the interface. That formu-
lation yields the classical identification of surface tension with interfacial free-energy and in addition leads
to a new quantity, the latent heat of migration. We find that the latent heat of migration is the negative of the
entropic free-energy, a quantity ubiquitous in statistical mechanics.

2 Interfacial kinematics

When discussing the motion of the body it is most convenient to work spatially (that is, using the Eulerian
description). Thus consider an evolving body which, at time t occupies a region Bt of three-dimensional
Euclidean space, and let

St
def= ∂Bt

denote the boundary of the deformed body. We view St as an interface separating the body and its environment,
and we write n for the unit normal to St directed outward from the body.

Our formulation of the basic laws for the interface St is based on the use of subsurfaces At of St that
convect with the body.3 The normal velocity V of St and hence At coincides with the scalar normal velocity
v · n of material points,

V = v · n, (2.1)

and—letting V∂A denote the scalar normal velocity of the boundary curve ∂At in the direction of its outward
unit normal4 m—V∂A must coincide with the component of the velocity v in the direction m; viz.

V∂A = v · m. (2.2)

We write P for the projection onto St defined by

P = 1 − n ⊗ n; (2.3)

P associates with every vector field g its component gtan tangential to St :

gtan = Pg = g − (g · n)n.

Note that, for g and h vector fields,

g = gtan + (n · g)n,
gtan · h = gtan · htan,

g · h = gtan · htan + (g · n)(h · n).

⎫
⎬

⎭
(2.4)

2 The zero-slip and prescribed temperature conditions at a solid–fluid interface were obtained previously by Kleinstein [2]
using jump conditions arising from the basic laws.

3 Such subsurfaces At are, therefore, spatial descriptions of material surfaces in the sense that, if x = χ(X, t) denotes the
motion of the body, then there is a fixed material surface S such that St = χ(S, t). Consistent with this, given a spatial field
f (x, t), ḟ denotes its material time-derivative; that is, the derivative of f (χ(X, t), t) with respect to t holding X fixed.

4 Note that m is tangent to the subsurface At , but normal to its boundary curve ∂At .
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We write venv for the environmental velocity, which is the velocity of the environmental material at the
interface. We allow for slip at the interface between the environment and the body and hence do not require
that the tangential environmental velocity, Pvenv, coincide with the tangential material velocity vtan. On the
other hand, we rule out cavitation at the interface. Writing v for the velocity of the body at the interface, the
normal velocity V = v · n of the body at the interface must then coincide with the normal environmental
velocity venv · n:

venv · n = v · n = V . (2.5)

When convenient, we fix the time t and write S for St and B for Bt .

3 Superficial fields, surface gradient, surface divergence

Fields such as n that are defined for points on St —but not for points away from St —are referred to as superficial.
If f is a superficial field, then its conventional spatial gradient is not well-defined, since f is not defined on a
three-dimensional neighborhood of St . However there are many ways to extend a superficial field smoothly to
a three-dimensional neighborhood of any point on St . An example is the normally constant extension in which
a superficial field is extended to be constant on normal lines, where a normal line at time t is a line through
a point x on St parallel to n(x, t) [3]. Moreover, given a scalar-valued superficial field f , its surface gradient
gradS f is defined uniquely in terms of any smooth extension f e via

gradS f = Pgrad f e. (3.1)

Then, because P is symmetric and Pn = 0,

n · gradS f = n · Pgrad f e = (Pn) · grad f e = 0

and gradS f is tangent to the interface. Similarly, the surface gradient gradSg and surface divergence divSg of
a vector-valued superficial field g are defined by

gradSg = (gradge)P and divSg = tr(gradSg) = P : gradge, (3.2)

where, again, the particular features of the extension ge of g are irrelevant.
A useful identity, for f and g scalar- and vector-valued superficial fields, is the product rule

divS( f g) = f divSg + gtan · gradS f, (3.3)

For a superficial tensor field B we require that5

Bn = 0; (3.4)

if, in addition, B�n = 0, then we say that B is fully tangential, so that B maps tangent vectors to tangent
vectors. An example of a fully tangential tensor field is the projection P.

The surface divergence of a superficial tensor field B is defined by

a · divSB = divS(B
�a) (3.5)

for a any constant vector.
Each superficial tensor field B admits a decomposition of the form

B = Btan + n ⊗ b, (3.6)

in which Btan = PB is fully tangential and b = B�n is tangential. (The verification of this decomposition is
straightforward: simply expand PB using (2.3).)

The curvature tensor K defined by

K = −gradSn (3.7)

5 A superficial tensor field would generally be defined at each x ∈ S as a linear transformation of the tangent space at x into
R

3; the requirement (3.4) allows us to consider B at each point as a linear transformation of R
3 into R

3.
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is fully tangential and symmetric, and

K = trK = P : K = −divSn (3.8)

is the total (twice the mean) curvature. Then, by (2.3), we have the identity

divSP = K n. (3.9)

Further, the product rule (3.3) yields the useful identities

gradS(V n) = n ⊗ gradS V − V K and divS(V n) = −K V (3.10)

involving the interfacial normal, normal velocity, and curvature. Also important is the following consequence
of (2.4)1:

divSv = divSvtan − K V (3.11)

Let B be a fully tangential tensor field. Then

n · divSB = divS(B
�n︸︷︷︸

= 0

)− B : gradSn,

and (3.7) yields the important identity

n · divSB = B : K for B fully tangential. (3.12)

By (3.6), the superficial velocity gradient gradSv has both tangential and normal parts:

PgradSv = (gradSv)tan and n ⊗ [(gradSv)�n],
and the symmetric part of PgradSv represents the superficial rate of stretch D:

D = 1
2 (PgradSv + (gradSv)�P). (3.13)

Since v is the restriction to the interface of the bulk velocity v, (3.2)1 yields gradSv = (gradv)P. It, therefore,
follows that D admits the simple alternative representation

D = PDP, (3.14)

where D = 1
2 (gradv + (gradv)�) is the rate of stretch in the body.

Finally, for B a tangential and symmetric superficial tensor field,

B : gradSv = B : D. (3.15)

4 Integral identities

4.1 Interfacial Reynolds relation

Basic to what follows is the Reynolds–Slattery transport relation for a surface At that convects with the body
[4,5]:

d

dt

∫

At

f da =
∫

At

( ḟ + f divSvtan − f K V ) da. (4.1)

Here, as mentioned in Footnote 3, ḟ is the material time-derivative of f .
Since D is symmetric (3.11) and (3.15) imply that

P : D = P : (PgradSv)
= divSv (4.2)

= divSvtan − K V, (4.3)

which allows us to rewrite (4.1) in the more concise form

d

dt

∫

At

f da =
∫

At

( ḟ + f P : D) da. (4.4)

(By (4.2), the term f P : D in (4.4) can be replaced by f divSv.)
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4.2 Surface divergence-theorem

The surface divergence theorem for scalar fields f and tangential vector fields g asserts that, at any fixed time
and any subsurface A of the deformed boundary with outward unit normal m [6,7],

∫

∂A
f m ds =

∫

A
(gradS f + f K n) da,

∫

∂A
g · m ds =

∫

A
divSg da.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.5)

Let B be a superficial tensor field, and let h be a superficial vector field. Then the surface divergence
theorem asserts that for any subsurface A of S

∫

∂A
Bm ds =

∫

A
divSB da,

∫

∂A
Bm · h ds =

∫

A
(h · divSB + B : gradSh) da.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.6)

These forms of the surface divergence theorem are based on (4.5): to derive the relations in (4.6), we simply
let a be an arbitrary constant vector and work with left sides

∫

∂A
(B�a) · m ds and

∫

∂A
(B�h) · m ds,

using (4.5)2.

5 Boundary pillboxes

Consider once again the convecting subsurface At of the deformed boundary St = ∂Bt discussed in Sect. 4.1.
We now view At as a boundary pillbox of infinitesimal thickness containing a portion of the boundary. The
primary advantage of this view is that it allows us to isolate the physical processes in the material on the two
sides of the boundary. Suppressing the argument t , the geometric boundary of A consists of its boundary curve
∂A. But A viewed as pillbox has a pillbox boundary consisting of (Fig. 1):

• A surface A with unit normal n; A is viewed as lying in the environment.
• A surface −A with unit normal −n; −A is viewed as lying in the body adjacent to the boundary.
• A “lateral surface” represented by ∂A with outward unit normal m tangent to S.

A ∂A

A

S
−A

Fig. 1 Pillbox corresponding to a subsurface A of the boundary S = ∂B of the region B of space occupied by the (deformed)
body at some arbitrarily chosen time. Whereas n is oriented into the environment, −n is oriented into the body. The outward unit
normal on the lateral face ∂A of the pillbox is denoted by m
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6 Force and moment balances for the interface

We write the following:
• T for the (Cauchy) stress in the body at the interface
• tenv for the environmental traction exerted by the environment on the body
• T, a superficial tensor field, for the stress within the interface

Consider a boundary pillbox A = At at some fixed time t . Then tenv represents the traction exerted on the
pillbox surface A, while T(−n) = −Tn is the traction exerted by the body on pillbox surface −A. The force
exerted on A by the environment and by the body is given by

∫

A
(tenv − Tn) da.

Further, Tm represents a traction, measured per unit length, that acts along the boundary curve ∂A. The surface
stress on the portion of the interface lying within the pillbox is thus given by

∫

∂A
Tm ds (6.1)

We neglect inertia of the interface. Balance of forces for the pillbox A therefore requires that
∫

A
(tenv − Tn) da +

∫

∂A
Tm ds = 0. (6.2)

Similarly, if we let

r(x) = x − 0,

then balance of moments for A requires that
∫

A
r × (tenv − Tn) da +

∫

∂A
r × Tm ds = 0. (6.3)

If we apply the surface divergence theorem (4.6)1 to the term in (6.2) involving the surface stress T, we
find that

∫

A
(tenv − Tn + divST) da = 0,

and, since the subsurface A of S is arbitrary, we arrive at the local force balance for the interface

tenv − Tn + divST = 0. (6.4)

Consider next balance of moments (6.3). Let a an arbitrary constant vector, let a× denote the tensor
defined by (a×)b = a × b for every vector b, and note that, since gradSr = P,

gradS(a × r) = (a×)(gradSr)P = (a×)P.
Then, by (4.5)2 and (6.4),

a ·
∫

∂A
r × Tm ds =

∫

∂A
(a × r) · Tm ds

=
∫

A
[divST · (a × r)+ T : gradS(a × r)] da

=
∫

A
[a · (r × divST)+ T : ((a×)P)] da

= −a ·
∫

A
r × (tenv − Tn) da +

∫

A
T : [(a×)P] da. (6.5)
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Next, since T is a superficial tensor, T = TP and hence

T : [(a×)P] = (TP) : (a×) = T : (a×)
so that, by (6.3) and (6.5),

∫

A
T : (a×) da = 0.

Therefore, since A is arbitrary, T : (a×) = 0 for every a. But any skew tensor may be written in the form a×;
thus T is symmetric:

T = T�. (6.6)

It is convenient to define the body shear τ and the environmental shear τ env through

τ = (Tn)tan,

τ env = (tenv)tan,

}

(6.7)

for then we may use (2.4)1, (3.12), and (3.9) to decompose the local force balance into tangential and normal
components

τ − τ env = PdivST = divST + (T : K)n,
n · Tn − n · tenv = n · divST = T : K.

}

(6.8)

7 Standard forms of the first two laws for the interface

Throughout this section At is an arbitrary boundary pillbox, as discussed in Sect. 5, so that

At ⊂ St = ∂Bt

and At convects with the body.

7.1 Global forms of the energy balance and entropy imbalance for a pillbox that convects with the body

We write:

• ε and η for the internal energy and entropy of the interface, measured per unit area
• ϑ for the absolute temperature of the body at the interface
• ϑenv for the absolute environmental temperature at the interface (generally ϑ �= ϑenv)
• q for the conventional heat flux in the body at the interface
• qenv for the heat flow into the body from the environment
• q, a tangential vector field, for the heat flux within the interface

Then

d

dt

∫

At

ε da and
d

dt

∫

At

η da (7.1)

represent temporal changes in the net internal energy and the net entropy of the pillbox. Further, there are flows
q · n and q · n/ϑ of heat and entropy into the pillbox from the body across the surface −At , flows qenv and
qenv/ϑenv into the pillbox from the environment across the surface At , and flows −q · m and −q · m/ϑ into the
pillbox from the remainder of the interface. The net flows of heat and entropy into the pillbox At , therefore,
have the forms

∫

At

(qenv + q · n) da −
∫

∂At

q · m ds and
∫

At

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂At

q · m

ϑ
ds. (7.2)

Our next step is to determine the power expended on the pillbox by the environment and the body. We
write
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• venv for the environmental velocity, which is the velocity of the environmental material at the interface.

Then consistent with the discussion given in the paragraph containing (6.2), we assume that: (i) the power
expended on the pillbox by the environment and by the body is given by

∫

At

(tenv · venv − Tn · v) da; (7.3)

(ii) that the traction Tm acting on the pillbox At along ∂At expends power in concert with the tangential
velocity vtan,6 so that

∫

∂At

Tm · vtan ds (7.4)

represents the power expended by the standard surface stress on the portion of the interface lying within the
pillbox.

In view of the foregoing developments, the energy balance and entropy imbalance for the pillbox At read

d

dt

∫

At

ε da =
∫

At

(qenv + q · n) da −
∫

∂At

q · m ds +
∫

At

(tenv · venv − Tn · v) da +
∫

∂At

Tm · vtan ds (7.5)

and

d

dt

∫

At

η da ≥
∫

At

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂At

q · m

ϑ
ds, (7.6)

respectively.

7.2 Local forms of the energy balance and entropy imbalance. Local free-energy imbalance

Applying the surface divergence theorem in the form (4.6)2 to the right-most term in the energy balance (7.5)
yields, since T is tangential and, by (6.6), symmetric,

∫

∂At

Tm · vtan ds =
∫

∂At

Tm · v ds =
∫

At

divS(Tv) ds =
∫

At

(v · divST + T : gradSv
︸ ︷︷ ︸

T:D
) ds. (7.7)

Thus, applying the Reynolds–Slattery transport relation in the form (4.4) with f = ε to the energy balance
(7.5), we find that

∫

At

(ε̇ + εP : D) da =
∫

At

(qenv + q · n − divSq + tenv · venv − Tn · v + T : D + v · divST) da. (7.8)

Similarly, applying (4.4) with f = η to the entropy imbalance (7.6), we find that
∫

At

(η̇ + ηP : D) da ≥
∫

At

[ qenv

ϑenv
+ q · n

ϑ
− divS

( q

ϑ

)]
da. (7.9)

Since At is arbitrary, (7.8) and (7.9) yield the local energy balance

ε̇ + εP : D = qenv + q · n − divSq + tenv · venv − Tn · v + T : D + v · divST (7.10)

and the local entropy imbalance

η̇ + ηP : D ≥ qenv

ϑenv
+ q · n

ϑ
− divS

( q

ϑ

)
. (7.11)

6 Bear in mind that, because T is a tangential tensor field, Tm is a tangential vector field.
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The energy balance (7.10) can be further simplified. In view of (2.4)3, (2.5), (3.12), and (6.8),

tenv · venv − Tn · v = (tenv)tan · (venv)tan − (Tn)tan · vtan + (n · tenv − n · Tn)V

= τ env · [(venv)tan − vtan] − vtan · divST − V n · divST,

= τ env · [(venv)tan − vtan] − v · divST, (7.12)

and, using this identity, (7.10) takes the form

ε̇ + εP : D = qenv + q · n − divSq + τ env · [(venv)tan − vtan] + T : D. (7.13)

Finally, subtracting ϑ times (7.11) from (7.13) while making use of the identity

divS
( q

ϑ

)
= 1

ϑ
divSq − 1

ϑ2 q · gradSϑ, (7.14)

we arrive at the free-energy imbalance

ψ̇ + ηϑ̇ ≤ qenv

ϑenv
(ϑenv − ϑ)− 1

ϑ
q · gradSϑ + τ env · (venv − v)tan + (T − ψP) : D, (7.15)

where

ψ = ε − ϑη (7.16)

denotes the free energy of the interface.

7.3 Summary of basic equations

The general relations at the boundary interface consist of the balances

tenv − Tn = −divST,
ε̇ + εP : D = qenv + q · n − divSq + τ env · (venv − v)tan + T : D.

}

(7.17)

for force and energy, with T tangential and symmetric, and the free-energy imbalance

ψ̇ + ηϑ̇ ≤ qenv

ϑenv
(ϑenv − ϑ)− 1

ϑ
q · gradSϑ + τ env · (venv − v)tan + (T − ψP) : D. (7.18)

These relations are supplemented by the thermodynamic identity

ψ = ε − ϑη (7.19)

and the condition

v · n = venv · n = V (7.20)

ruling out cavitation.

8 Constitutive equations for the interface

In applications the balances (7.17) are generally augmented by constitutive equations characterizing the inter-
action of the body and the environment. These constitutive equations must be consistent with the free-energy
imbalance (7.18).

Interfacial elasticity, while important, is better left to a separate investigation: its inclusion would require the
introduction of additional kinematics associated with surface strain and hence with a reference configuration;
cf., e.g., Gurtin and Murdoch [8]. We therefore limit our discussion to situations in which the elasticity of the
interface is negligible.7

7 Even so—with the exception of the constitutive relation (8.8)2 for the dissipative stress Tdis, a relation most often associated
with fluid interfaces—all of our results apply to both solids and fluids.
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8.1 State relations. Energy balance revisited

Consistent with our neglect of interfacial elasticity, we assume that the free-energy, temperature, and entropy
of the interface are related through the “state relations"

ψ = ψ̂(ϑ), η = η̂(ϑ) = −dψ̂(ϑ)

dϑ
. (8.1)

These relations reduce the free-energy imbalance (7.18) to a dissipation inequality

�
def= τ env · (venv − v)tan + Tdis : D

︸ ︷︷ ︸
�mec

+ qenv

ϑenv
(ϑenv − ϑ)− 1

ϑ
q · gradSϑ ≥ 0 (8.2)

in which

Tdis
def= T − ψP (8.3)

is the dissipative surface stress, � is the dissipation, and

�mec
def= τ env · (venv − v)tan + Tdis : D (8.4)

is the mechanical dissipation.
By (7.16), the relations (8.1) give rise to a subsidiary constitutive relation

ε = ε̂(ϑ) = ψ̂(ϑ)+ ϑη̂(ϑ) (8.5)

for the internal energy of the interface. As a consequence of this relation and (8.1),

dε̂(ϑ)

dϑ
= ϑ

dη̂(ϑ)

dϑ
, (8.6)

and hence ε̇ = ϑη̇; thus if we subtract ψP : D from both sides of (7.17)2 and use (7.16), we arrive at an
alternative form for the energy balance:

ϑ(η̇ + ηP : D) = qenv + q · n − divSq + τ env · (venv − v)tan + Tdis : D. (8.7)

8.2 Constitutive relations for the dissipative fields

Guided by the dissipation inequality (8.2), we consider constitutive relations for the environmental traction τ env,
the dissipative surface stress8 Tdis, the environmental heat flow qenv, and the surface heat flux q. Specifically,
we assume that these fields are linear functions of their conjugate quantities (venv − v)tan, D, ϑenv − ϑ , and
gradSϑ , with corresponding moduli possibly dependent on temperature:

τ env = β(ϑ)(venv − v)tan,
Tdis = 2α(ϑ)D + λ(ϑ)(trD)P,
qenv = κ(ϑ)(ϑenv − ϑ),
q = −ϕ(ϑ)gradSϑ.

⎫
⎪⎬

⎪⎭
(8.8)

Hereβ(ϑ) is a slip viscosity,α(ϑ) and λ(ϑ) represent (interfacial) fluid viscosities, κ(ϑ) is a heat-flow modulus,
and ϕ(ϑ) is the interfacial conductivity. A simple calculation shows that the constitutive relations (8.8) render
the dissipation (8.2) and the mechanical dissipation (8.4) of the forms

�=2α(ϑ)|D0|2 + [λ(ϑ)+ α(ϑ)](trD)2+β(ϑ)|(venv − v)tan|2+κ(ϑ)(ϑenv − ϑ)2+ϕ(ϑ)|gradSϑ |2, (8.9)

and

�mec = 2α(ϑ)|D0|2 + [λ(ϑ)+ α(ϑ)](trD)2 + β(ϑ)|(venv − v)tan|2, (8.10)

8 Cf. Scriven [9], Slattery [5], and Edwards et al. [10].
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with

D0 = D − 1
2 (trD)P

the deviatoric stretch-rate. Thus, since the tensor fields (trD)P and D0 may be specified independently, the
dissipation inequality (8.9) is satisfied if and only if the moduli satisfy

α(ϑ) ≥ 0, λ(ϑ)+ α(ϑ) ≥ 0, β(ϑ) ≥ 0, κ(ϑ) ≥ 0, ϕ(ϑ) ≥ 0.

Importantly, the constitutive relation (8.8)2 for the dissipative stress Tdis is frame-indifferent. To see this,
let Q be a rotation satisfying

Qn = n.

It then follows that

QPQ� = Q(1 − n ⊗ n)Q�

= QQ� − Qn ⊗ Qn

= 1 − n ⊗ n

= P.

Thus,

QP = PQ and PQ� = Q�P. (8.11)

Thus, invoking the relation (3.14) for D in terms of the rate of stretch D in the body, and bearing in mind that
D is frame-indifferent,

QDQ� = QPDPQ�

= PQDQ�P

= PDP

= D,

and it follows from (8.8)2 that

QTdisQ� = Tdis (8.12)

for all rotations about the tangent plane to S (at any point). This establishes the frame-indifference of the
constitutive equation (8.8)2 for the dissipative stress Tdis.

Analogous arguments yield the frame-indifference of the constitutive equations (8.8)1 and (8.8)4 for the
environmental shear τ env and the superficial heat flux q.

9 Boundary conditions for the traction on—and the heat flow out of—the body

The force and energy balances (6.4) and (8.7) augmented by the interfacial constitutive equations provide
boundary conditions for the body. In discussing these conditions, the environmental velocity venv and tempe-
rature ϑenv are presumed known a priori; by (2.5), the former requirement necessitates that the normal velocity
V = v · n = venv · n is also known a priori.

Consider the force balance (6.4). This balance is most conveniently expressed in terms of its normal and
tangential parts as given in (6.8). By (3.8), (6.8)1, (8.3), (8.8)2, the normal interfacial force balance takes the
form

n · Tn − n · tenv = [
ψ̂(ϑ)+ λ(ϑ)(trD)

]
K + 2α(ϑ)K : D. (9.1)

This equation represents a generalization of the classical Young–Laplace equation [11,12] to account for
interfacial viscosity. Note the presence of the full curvature tensor K. Similarly, the definition (8.3) of the
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dissipative surface stress and the constitutive equations (8.8)1,2 for the environmental traction and for this
stress reduce the force balance (6.4)2 to a boundary condition for the tangential bulk traction τ = (Tn)tan:

τ = β(ϑ)(venv − v)tan + gradSψ̂(ϑ)+ PdivS(2α(ϑ)D + λ(ϑ)(trD)P). (9.2)

The presence of the terms involving the superficial stretch-rate D render the conditions (9.1) and (9.2) most
appropriate for a fluid; if we assume that the viscosities vanish, λ(ϑ) = α(ϑ) ≡ 0, then we arrive at interface
conditions

n · Tn − n · tenv = ψ̂(ϑ)K and τ = β(ϑ)(venv − v)tan + gradSψ̂(ϑ)

appropriate for a solid. When surface stress and surface free energy are neglected the balance (9.2) reduces to
Navier’s [13] slip law

τ = β(ϑ)(venv − v)tan.

Consider next the energy balance (8.7). It is convenient to introduce the interfacial specific heat

c(ϑ)
def= dε̂(ϑ)

dϑ
, (9.3)

which, by (8.6), may be expressed in the form

c(ϑ) = ϑ
dη̂(ϑ)

dϑ
. (9.4)

The identity (4.2), the energy balance (8.7), the relation (8.10) for the mechanical dissipation, and the consti-
tutive relations (8.1)2 and (8.8)3,4 for the entropy, environmental heat flow, and superficial heat flux then yield
a boundary condition

q · n = κ(ϑ)(ϑ − ϑenv)+ c(ϑ)ϑ̇ + ϑ η̂(ϑ)divSv − divS(ϕ(ϑ)gradSϑ)− �mec (9.5)

for the bulk heat flow at the interface. These conditions, being in the form of partial differential equations, are
nonclassical. By (8.10) the mechanical dissipation �mec is quadratic in the rate of stretching D and interfacial
slip (venv − v)tan and might, therefore, be negligible when these quantities are sufficiently small; when we
neglect �mec, we arrive at a much simpler expression

q · n = κ(ϑ)(ϑ − ϑenv)+ c(ϑ)ϑ̇ + ϑ η̂(ϑ)divSv − divS(ϕ(ϑ)gradSϑ)

for the bulk heat flow at the interface.
When all but the first of the terms on the right side of (9.5) are neglected, (9.5) specializes to Newton’s

law [14] of cooling

q · n = κ(ϑ)(ϑ − ϑenv).

If, more generally, we allow the modulus κ to be a function κ(ϑ, ϑenv) of both bulk and environmental
temperatures, then Newton’s law of cooling includes Kirchhoff’s [15] law of radiation

q · n = k(ϑ4 − ϑ4
env),

where k > 0 is a constant.
The boundary conditions discussed above couple the interface to the environment.

10 Simple boundary conditions for nondissipative environments

In applications one is often confronted with simple boundary conditions in which interfacial dissipation va-
nishes and the interface itself has meager structure. To derive such boundary conditions

• we begin anew from Sect. 7.3, dropping the discussions in Sect. 8 on constitutive equations and Sect. 9 on
boundary conditions.
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10.1 Restrictive hypotheses. Zero-dissipation conditions

An important and useful class of boundary conditions is based on the following assumptions

� = 0, T = ψP, ψ = constant. (10.1)

The first of (10.1) renders the interface dissipationless; the remaining assumptions endow the interface with
constant free energy (surface tension) and, furthermore, imply that

Tdis = 0 (10.2)

and that

η ≡ 0 and ε = ψ. (10.3)

As a consequence of (10.1), the free-energy imbalance (7.18) reduces to the zero-dissipation condition

� = τ env · (venv − v)tan + qenv

ϑenv
(ϑenv − ϑ) = 0, (10.4)

a condition we satisfy via the relations

τ env · (venv − v)tan = 0,
qenv(ϑenv − ϑ) = 0.

}

(10.5)

We refer to (10.5) as the uncoupled zero-dissipation conditions. An important consequence of (10.1) and
(10.5) is that the force and energy balances (7.17) have the simple forms

Tn − ψK n = tenv,
q · n = −qenv.

}

(10.6)

(The energy balance reduces to εP : D = T : D, which by (10.4)2 and (10.3)2 holds trivially.) Note that the
force balance (10.6)1 is independent of surface tension ψ on any flat subsurface of the boundary, since the
total curvature K vanishes on flat subsurfaces.

Hereafter, we suppress the argument t . It is most convenient to state boundary conditions for an arbitrary
subsurface A of the deformed boundary B (at some arbitrarily given time). Depending on the physical circum-
stances one is trying to characterize: A may equal ∂B; or A may be a proper subsurface of ∂B, allowing for
the prescription of other conditions on ∂B\A.

10.2 Simple boundary conditions

Our uncoupling of the zero dissipation conditions allows us to consider, separately:

(i) simple mechanical boundary conditions, which are restrictions on T and v consistent with

τ env · (venv − v)tan = 0,
Tn − ψK n = tenv;

}

(10.7)

(ii) simple thermal boundary conditions, which are restrictions on ϑ and q consistent with

qenv(ϑenv − ϑ) = 0,
q · n = −qenv.

}

(10.8)

Note that (10.7) provides two mechanical conditions, while (10.8) provides two thermal conditions. But expe-
rience has shown that exactly one mechanical boundary condition and exactly one thermal boundary condition
is needed for the solution of coupled thermomechanical boundary-value problems. Indeed, the extra conditions
in (10.7) and (10.8) are essentially irrelevant: each extra condition should be considered as an equation for an
unused environmental field. This view is clarified in more detail below.

We begin by stating some simple mechanical boundary conditions that are widely used in the formulation
and solution of boundary-value problems.
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• Velocity condition This boundary condition requires that

v = venv on A, (10.9)

with environmental velocity venv prescribed on A. When venv = 0, so that

v = 0 on A, (10.10)

then the velocity condition is referred to as a zero-slip condition and the surface A is said to be fixed.

Boundary conditions, such as (10.9), are best explained within the rubric of boundary-value problems.
For a boundary-value problem the velocity condition would be viewed as one in which the environmental
velocity venv is given a priori, a view that begs the question as to the status of the environmental traction
tenv. This traction would be determined, if needed (and generally it is not!) from the resulting solution using
(10.7)2. Granted this, both of the equations (10.7) would be satisfied. A similar discussion applies to each of
the boundary conditions discussed below. It is readily shown that, for each such mechanical condition, each of
the environmental fields not discussed may be determined from the bulk fields v, T, ϑ , and q so as to ensure
satisfaction of the balance and uncoupled zero dissipation conditions stated in (10.7); and similarly for the
simple thermal boundary conditions (10.8).

• Traction condition This boundary condition requires that

Tn − ψK n = tenv on A, (10.11)

with environmental traction tenv prescribed on A. When tenv = 0, so that

Tn = ψK n on A, (10.12)

then the traction condition is referred to as a free-surface condition.
• Mixed condition9 This boundary condition requires that

(Tn)tan = τ env

v · n = Venv

}

on A, (10.13)

with environmental shear τ env and normal environmental velocity

Venv
def= venv · n

prescribed on A. When τ env = 0, so that

(Tn)tan = 0 on A, (10.14)

then the traction condition is referred to as a zero-shear condition. In this case the body may slide freely
with respect to the environmental material.

We next list two choices for the thermal boundary conditions, each of great importance.

• Temperature condition This boundary condition requires that

ϑ = ϑenv on A, (10.15)

with environmental temperature ϑenv prescribed on A. When ϑenv = constant, then the surface A is said to
be in thermal equilibrium.

• Heat flow condition This boundary condition requires that

q · n = −qenv on A, (10.16)

with environmental heat flow qenv prescribed on A. When qenv = 0, so that

q · n = 0 on A, (10.17)

then this condition is referred to as a flux-free condition and the surface A is said to be thermally isolated.

9 There is a second mixed condition, of little importance, in which the normal environmental traction and the tangential
environmental velocity are prescribed.
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11 Addendum: an alternative formulation of the first two laws

11.1 Migrating boundary pillboxes

In the materials-science literature surface tension is often viewed as a scalar tensile force that expends power in
conjunction with temporal changes in surface area. On the other hand, in our discussion of the first two laws in
Sect. 7.1 surface tension was tacitly included as part of the total surface stress T, so that, by (7.4), the traction
corresponding to this surface tension necessarily expends power in conjunction with the tangential material
velocity vtan. In this section we present an alternative formulation of the first two laws that is consistent with
the materials-science view of surface tension, but at the same time equivalent to the formulation presented
in Sect. 7.1. This alternative formulation—developed by Gurtin [16] to treat phase transformations—is based
on the use of interfacial subsurfaces A(t) that (in contrast to the boundary pillboxes At of the type discussed
in Sect. 5) need not convect with the body: such subsurfaces A(t) of St have boundary curves ∂A(t) that
generally migrate relative to the material. Throughout what follows

• we view such subsurfaces A(t) as migrating boundary pillboxes.

Consider an arbitrary migrating boundary pillbox A(t). Let V∂A(x, t) denote the scalar normal velocity of
the boundary curve ∂A(t) in the direction of its outward unit normal m(x, t); cf. (2.2). Bearing in mind that
∂A(t) generally migrates relative to the material, we refer to the relative normal velocity

V mig
∂A

def= V∂A − v · m (11.1)

as the migrational velocity of ∂A(t); V mig
∂A represents the rate at which ∂A(t) evolves with respect to the

deforming surface St (or, said another way, the rate at which ∂A(t) evolves relative to ∂Bt ); in contrast, when
∂A(t) convects with St it follows that V∂A = v · m and V mig

∂A = 0.
Important to what follows is our assumption that ∂A(t) be allowed to migrate arbitrarily within the interface.

Granted this, V∂A and hence V mig
∂A = V∂A − v · m may be arbitrarily specified; we therefore assume, without

loss in generality, that

V mig
∂A is arbitrary. (11.2)

The arbitrary nature of V mig
∂A necessitates a modified version of the Reynolds–Slattery transport theorem

[3]: for A(t) an arbitrary time-dependent subsurface of the interface St ,

d

dt

∫

A(t)
ϕ da =

∫

A(t)

(
ϕ̇ + ϕ divSvtan − ϕK V

)
da +

∫

∂A(t)
ϕV mig

∂A ds. (11.3)

11.2 Global forms of the energy balance and entropy imbalance for a migrating boundary pillbox

Classically, the first and second laws for a migrating boundary pillbox A(t) have the forms

d

dt

∫

A(t)
ε da −

∫

∂A(t)
εV mig

∂A ds =
∫

A(t)
(qenv + q · n) da −

∫

∂A(t)
q · m ds

+
∫

A(t)
(tenv · venv − Tn · v) da +

∫

∂A(t)
Tm · vtan ds (11.4)

and

d

dt

∫

A(t)
η da −

∫

∂A(t)
ηV mig

∂A ds ≥
∫

A(t)

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂A(t)

q · m

ϑ
ds. (11.5)

In what follows, we derive the classical relation σ = ψ identifying surface tension with interfacial free-energy.
Moreover, we identify a new quantity, the latent heat of migration Q, which we show to have the simple form
Q = ϑη—the quantity −Q, therefore, coincides with the entropic free-energy, a quantity ubiquitous in
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statistical mechanics. To achieve this, we begin with the first two laws for a migrating boundary pillbox A(t)
in their elemental form [16]:

d

dt

{
internal energy

of A(t)
}

=
{

heat flow

into A(t)
}

+
{

power expended

on A(t)
}

,

d

dt

{
entropy

of A(t)
}

≥
{

entropy flow

into A(t)
}

.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11.6)

These statements of the basic thermodynamic laws may seem platitudes, but they are not. For example, (11.6)
as stated cannot explicitly accommodate the inflows

∫

∂A(t)
εV mig

∂A da and
∫

∂A(t)
ηV mig

∂A da. (11.7)

of energy and entropy induced by the migration of ∂A(t): in the present formulation such inflows are charac-
terized implicitly by effective flows of heat and entropy induced by the migration of interfacial material across
∂A(t). Specifically, the formulation we present here is based on a nonclassical treatment of the migrating
boundary curve ∂A(t)—a treatment that separately characterizes expenditures of power and flows of heat and
entropy associated with the transfer of material across ∂A(t) due to its migration.

Turning to a description of the expended power, we consider the surface stress T as the sum of a surface
stress S that does not involve surface tension and a stress σP due to a scalar surface tension σ :

T = σP + S. (11.8)

We assume that the total surface stress T is consistent with the force and moment balances for the interface as
established in §6, but we no longer assume that the total stress T expends power over the tangential component
of the material velocity vtan (cf. (7.4)); in fact, in our current view the tractions σm and Sm have dissimilar
power-conjugate velocities.

Based on the primitive view of surface tension as a force that performs work in conjunction with changes
in surface area, we suppose that the surface tension acting on the pillbox A(t) along ∂A(t) expends power in
conjunction with temporal changes in the local area induced by the migration of ∂A(t). The normal velocity
V∂A of the boundary curve ∂A(t) represents this rate, measured per unit length; therefore,

∫

∂A(t)
σV∂A ds

represents the power expended by surface tension on the portion of the interface lying within the pillbox. On
the other hand, we assume that the traction Sm should be power-conjugate to the tangential material velocity
vtan; therefore,

∫

∂A(t)
Sm · vtan ds

represents the power expended by the surface stress on the portion of the interface lying within the pillbox.
Thus the sum

∫

∂A(t)
σV∂A ds +

∫

∂A(t)
Sm · vtan ds (11.9)

represents the power expended by the total traction Tm along ∂A(t). Next, by (2.4)2 and (11.1), the power
expended by surface tension admits a decomposition into standard and migrational parts.

∫

∂A(t)
σV∂A ds =

∫

∂A(t)
σv · m ds +

∫

∂A(t)
σV mig

∂A ds

=
∫

∂A(t)
(σvtan) · m ds

︸ ︷︷ ︸
standard power

+
∫

∂A(t)
σV mig

∂A ds

︸ ︷︷ ︸
migrational power

. (11.10)
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Thus we can rewrite (11.9) in the form

∫

∂A(t)

Tm
︷ ︸︸ ︷
(Sm + σm) ·vtan ds

︸ ︷︷ ︸
standard power

+
∫

∂A(t)
σV mig

∂A ds

︸ ︷︷ ︸
migrational power

. (11.11)

We have yet to include the power expended on the upper and lower faces of the pillbox; since these faces are
locally stationary the integrand of this power expenditure is simply (7.3) with ∂At replaced by ∂A(t); thus,
by (11.11), the net power expended on the pillbox A(t) is given by

∫

A(t)
(tenv · venv − Tn · v) da +

∫

∂A(t)
Tm · vtan ds +

∫

∂A(t)
σV mig

∂A ds. (11.12)

Consider next the flows of heat and entropy. We let qmig denote the migrational heat flow measured per
unit length and, consistent with standard discussions, let qmig/ϑ denote the corresponding migrational entropy
flow, so that

∫

∂A(t)
qmig ds and

∫

∂A(t)

qmig

ϑ
ds, (11.13)

represent net flows of migrational heat and entropy across ∂A(t). Next, the migrational heat flow qmig should
vanish when the migrational velocity vanishes—in fact, consistent with (11.7), qmig should be proportional to

the migrational velocity V mig
∂A of ∂A and hence of the form

qmig = QV mig
∂A .

The migational flows of heat and entropy across ∂A(t) are therefore given by
∫

∂A(t)
QV mig

∂A ds and
∫

∂A(t)

QV mig
∂A
ϑ

ds; (11.14)

We make no other assumptions regarding the migrational flows of heat and entropy. We refer to the scalar field
Q as a latent heat of migration, because QV mig

∂A represents an effective heat flow induced by the migration of
the boundary curve ∂A(t).

As a consequence of (11.14), the net flows of heat and entropy into the pillbox A(t) have the forms
∫

A(t)
(qenv + q · n) da −

∫

∂A(t)
q · m ds

︸ ︷︷ ︸
standard heat flow

+
∫

∂A(t)
QV mig

∂A ds

︸ ︷︷ ︸
migrational heat flow

and
∫

A(t)

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂A

q · m

ϑ
ds

︸ ︷︷ ︸
standard entropy flow

+
∫

∂A

QV mig
∂A
ϑ

ds

︸ ︷︷ ︸
migrational entropy flow

.

The energy balance and entropy imbalance for a migrating boundary pillbox A(t) are, therefore, given by

d

dt

∫

A(t)
ε da

︸ ︷︷ ︸
internal-energy rate

=
∫

A(t)
(qenv + q · n) da −

∫

∂A(t)
(q · m − QV mig

∂A ) ds

︸ ︷︷ ︸
heat flow

+
∫

A(t)
(tenv · venv − Tn · v) da +

∫

∂A(t)
(Tm · vtan + σV mig

∂A ) ds

︸ ︷︷ ︸
power expended

(11.15)
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and

d

dt

∫

A(t)
η da

︸ ︷︷ ︸
entropy rate

≥
∫

A(t)

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂A(t)

q · m − QV mig
∂A

ϑ
ds

︸ ︷︷ ︸
entropy flow

. (11.16)

Importantly,

• the migrational versions (11.15) and (11.16) of the first two laws reduce to the standard versions (7.5) and
(7.6) when A(t) = At , so that V mig

∂A = 0.

The migrational formulation of the first two laws is therefore consistent with the standard formulation.

11.3 Surface tension equals interfacial free-energy. Latent heat of migration equals the negative
of the entropic free-energy

Our next step is to determine the precise form of the latent heat of migration Q. Applying the transport relation
(11.3) with ϕ = ε and ϕ = η to (11.15) and (11.16), we find that

∫

A(t)

(
ε̇ + εdivSvtan − εK V

)
da =

∫

A(t)
(qenv + q · n) da −

∫

∂A(t)
q · m ds

+
∫

A(t)
(tenv · venv − Tn · v) da +

∫

∂A(t)
Tm · vtan ds +

∫

∂A(t)
(Q + σ − ε)V mig

∂A ds (11.17)

and
∫

A(t)
(η̇ + ηdivSvtan − ηK V ) da ≥

∫

A(t)

( qenv

ϑenv
+ q · n

ϑ

)
da −

∫

∂A(t)

q · m

ϑ
ds +

∫

∂A(t)

(Q − ϑη)V mig
∂A

ϑ
ds.

(11.18)

At this point we use the presumption that ∂A(t) be allowed to evolve arbitrarily, so that (11.2) is satisfied. The
integrals in (11.17) and (11.18) involving the term V mig

∂A must therefore vanish,
∫

∂A(t)
(Q + σ − ε)V mig

∂A ds = 0,
∫

∂A(t)

(Q − ϑη)V mig
∂A

ϑ
ds = 0,

for all V mig
∂A , so that

Q + σ − ε = 0, Q = ϑη. (11.19)

The relation

Q = ϑη (11.20)

shows that the latent heat of migration Q coincides, modulo sign, with a quantity referred to in statistical
mechanics as the entropic free-energy. The relation Q = ϑη also has a formal interpretation: when material
is added to a pillbox across its boundary, the entropy transferred, η ds, induces a transfer of heat of amount
Q ds = ϑη ds, or more simply dQ = ϑdη, a relation ubiquitous in classical thermodynamics.

Finally, by (11.19), recalling the definition (7.16) of interfacial free energy ψ = ε − ϑη, we arrive at the
classical result: surface tension equals interfacial free-energy,

σ = ψ. (11.21)

The results (11.20) and (11.21) show that the assumed forms (11.14) for the migrational flows of heat
and entropy across ∂A(t) were not chosen capriciously. Indeed, using (11.20) and (11.21) in (11.17) and
(11.18) and utilizing the modified Reynolds–Slattery transport theorem (11.3) yields the classical statements
(11.4) and (11.5) of the first two laws for a migrating boundary pillbox. Thus, granted (11.20) and (11.21),
(11.17) and (11.18) are equivalent to (11.4) and (11.5).
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