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Abstract In the context of the first- and second-order theories of consistent-order extended thermodynamics,
a systematic approach is established for analyzing the temperature jump at the boundary through studying
one-dimensional stationary heat conduction in a rarefied gas at rest. Thereby an approach to the free boundary-
value problem in general is explored. Boundary values of temperature are assumed to be in the form of power
expansion with respect to the Knudsen number, based on which analytical expressions of the temperature
jump as well as entropy production at the boundary are derived explicitly. Dependencies of these two bound-
ary quantities on both the Knudsen number and accommodation factor are also extensively discussed. The
present analysis is expected to be the basis for the study of higher-order theories of consistent-order extended
thermodynamics.

Keywords Consistent-order extended thermodynamics · Rarefied gas · Temperature jump · Entropy
production at the boundary

PACS 05.70.Ln, 47.45.-n, 51.10.+y

1 Introduction

Extended thermodynamics (ET) [1,2] is a theory of nonequilibrium phenomena in macroscopic physical sys-
tems that is valid even beyond the assumption of local equilibrium—the assumption that thermodynamic
properties of a subsystem that is sufficiently large microscopically but sufficiently small macroscopically can
be described well by the same relationships as those of a globally equilibrium system. Therefore ET may be
required when there are steep gradients and rapid changes taking place in nonequilibrium phenomena, which
are constantly observed nowadays in modern technology such as nanotechnologies and space technologies.
ET is a natural generalization of thermodynamics of irreversible processes based on the local equilibrium
assumption [3] by introducing many field variables in addition to the ordinary thermodynamic fields such
as mass density, momentum density and energy density into its well-posed basic field equations. In order to
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deeply understand its mathematical structure and physical implications and to find clues to its further improve-
ment, extended thermodynamic study of rarefied gases is crucially important because here we already have a
well-established basic equation, that is the Boltzmann equation [4–6]. We also have the advantage of referring
to ingenious methods developed so far: Chapman–Enskog method [4,5,7], Grad’s moment method [8,9], and
some newly proposed methods [10,11].

In extended thermodynamics of rarefied gases, there generally still remains the problem concerning bound-
ary values imposed on the basic field equations, which actually takes on two aspects. One is the so-called
uncontrollable boundary-value problem, that is, how to pose the appropriate boundary condition for most of
the fields which are uncontrollable experimentally and are difficult to be understood intuitively. Another is
related to possible jumps of physical quantities at the boundary between the system under consideration and
its environment. These jumps indicate a free boundary-value problem in the sense that the related boundary
values are, in general, not given at the beginning of our analysis. Both aspects are entangled with each other.
In order to formulate and solve such a boundary-value problem, it is important to develop a systematic method
by which the solution for the field equations and the jumps can be simultaneously derived and calculated in a
consistent manner. It is worth emphasizing that there is essentially the same problem in the Chapman–Enskog
method, Grad’s moment method, and some newly proposed methods mentioned above.

Many studies have been made on determining the jumps of physical quantities at the boundary, or more
generally boundary properties. For general references see, for example, monographs written by Chapman and
Cowling [4], by Cercignani [5], and by Sone [6]. Beskok and Karniadakis [12] presented a second-order model
for jumps; Lockerby and Reese [13] used the Burnett equations to compute second-order boundary conditions.
Studies based on Grad’s moment methods and extended thermodynamics were also made [14–17]. The results
obtained so far mostly rely on numerical computation. For example, one typical procedure uses the method
[14,15], based on which a set of basic relations can be established to provide the jumps. Nevertheless, due
to the nonlinearity of these relations only numerical solutions have been available, which obviously cannot
help us solve, in a systematic manner, the boundary-value problem, which always involves both jumps and
uncontrollable values. There are also analytical studies [16,17] where the difficulty of the derivation of the
jumps has been greatly reduced by using the assumption of an ideal wall. That is, it is assumed that there
is no entropy production at the interface between the wall and the gas. This assumption, however, has its
limitations. Indeed, according to the present analysis, one can safely adopt the concept of an ideal wall only
when thermodynamic states are very near equilibrium (see Sect. 4.2).

In the present paper we study analytically the jump of temperature at the boundary on the basis of consis-
tent-order extended thermodynamics (COET) [18]. By studying one-dimensional stationary heat conduction
in a rarefied gas at rest (see Fig. 1), we try to gain a deep insight into the systematic approach to the free
boundary-value problem in general. Moreover, as a measure of irreversibility in the process occurring at the
boundary with the temperature jump, the entropy production there is also of physical importance. We will
provide a specific confirmation to the positivity of this quantity in the context of COET by using our analytical
derivation of the temperature jump. As we will see, COET has a good theoretical structure to carry out the
systematic analysis of these boundary processes owing to its key concept called order. In our recent work [19],
taking into account the concept carefully, we constructed a consistent solution of the field equations for the
same heat conduction problem in a power-series form with respect to the space coordinate.

The present analysis is based on the first- and second-order COET, from which we take the advantage
that there is no uncontrollable boundary-value problem entangled. In contast to the first impression we may
have that the results from the first- and second-order COET seem to be trivially simple, we can grasp several
important points for the purpose mentioned above, which can be summarized as follows:

1) An analytical expression of the temperature jump in a power expansion form with respect to Knudsen
number is derived explicitly. This expression will afford us a sound basis for further study of the third-order
theory, or higher-order theories where we will encounter the uncontrollable boundary-value problem as
well. A preliminary study in the case of the third-order COET has been reported recently [20].

2) An analytical expression for the entropy production at the boundary is also explicitly derived. On the basis
of this expression, we make clear that the positivity of such a quantity is guaranteed within the validity
range of our analysis, and is closely related to the proper sign of temperature jump at the boundary (see
Sect. 4.2). The validity of the concept of an ideal wall is also studied explicitly.

3) The analytical results obtained here are compared with the results derived from Ohwada’s numerical sim-
ulations [21]. Quantitatively good agreement between them strongly indicates the validity and usefulness
of COET.
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Fig. 1 One-dimensional heat conduction experiment (heat flux q) between rigid walls with temperatures TL and TR (TL < TR)

2 The first- and second-order COET for the heat conduction problem

COET [18] was proposed as a revised version of ET [1]. COET makes use of combinations of ordinary moments
in ET as its field variables, and each of these combinations, called a G-moment, may be assigned an order of
magnitude that is a measure of the importance of the moment in a physical process of nonequilibrium phenom-
ena under consideration. As a result, closure of the hierarchical moment equations is automatically achieved.
Similar ideas were also adopted in recent developments for transport equations of rarefied gases [10,11].

In the context of COET, a simplified form of the kinetic equation known as the Bhatnagar–Gross–Krook
(BGK) equation [22] may be adopted, where a relaxation time τ is introduced into the collision term. For a prob-
lem of stationary one-dimensional heat conduction in a rarefied gas at rest, every G-moment can be expressed
by the terms containing expressions of the type [τ(dθ/dx)]n and/or τ n(dnθ/dxn), which are regarded as of
order n [18]. Here θ is the temperature field that depends only on the x-coordinate (θ ≡ kT/m, where T is the
kinetic temperature of the gas, k is the Boltzmann constant and m is the mass of an atom). If an irreversible
process is deemed to be steep of order n, the necessary number of the G-moments is known and the field
equations are closed by omitting all terms of order higher than n. In such a manner, COET gives us a sequence
of field equations of increasing order that starts from the zero-order theory for equilibrium.

The nonequilibrium begins at the first-order theory, which is composed of the following three equations [18]:

1st order

0 = dP
dx ,

0 = dG1,1
dx ,

G1,1 =
√

5
2 Pτ dθ

dx

(1)

with three independent variables: pressure P , temperature θ and the first-order moment G1,1, which is pro-

portional to the heat flux q such that G1,1 = −
√

2
5 q .

The system for the second-order theory is enlarged by introducing the second-order moments G2,0, G1,2,
G3,0 and G2,2 such that [18]

2nd order

0 = dP
dx

,

0 = dG1,1

dx
,

G1,1 =
√

5
2 Pτ dθ

dx
,





(A)

G2,0 = 7√
3

G1,1τ
dθ

dx
,

G1,2 = −4
√

7
15 G1,1τ

dθ

dx
,

G3,0 = −√
14θG1,1τ

dθ

dx
,

G2,2 = 2
√

21
5 θG1,1τ

dθ

dx
.





(B)

, (2)
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Obviously, this system of equations can be split into two parts (A) and (B) as indicated above, where part (A),
the same as Eq. (1), is closed for the variables P , θ and G1,1. Once part (A) is solved, part (B) provides us
with the other quantities.

From Eqs. (1) and (2), we may conclude that both theories predict a constant pressure P that may be fixed
by a boundary value, a constant heat flux G1,1 due to the energy balance and a Fourier-type temperature field
θ . The boundary values for θ , i.e. θL and θR at the left and right sides respectively, determine the specific forms
of both G1,1 and θ(x) as follows:

G1,1 =
√

5

2
Pτ

θR − θL

2L
(3)

and

θ(x) = θR − θL

2L
x + θR + θL

2
, (4)

where 2L is the length of the domain. Note that in Eq. (3), τ introduced in the BGK model generally depends
on temperature [23], and so does the heat conductivity. However we assumed τ is a constant in the derivation
of the above equations, which should be only valid for a small temperature difference. In such a case, Eq. (3)
indicates a constant heat conductivity and then we obtain straight lines for the temperature field in Fig. 2.
On the other hand, generally, the study of the third- and even higher-order theories which is constructed by
introducing higher-order modification terms into the Fourier’s law above becomes more complicated—not
only is the general solution for the basic equations difficult to properly obtain [19], but also the uncontrollable
boundary-value problem occurs, which is still unclear at present. We therefore restrict ourselves to studying
Eqs. (3) and (4) as the first step.

The remaining problem is to determine explicitly the boundary values for θ , which is far from trivial. And
we now clearly recognize the essential difference of temperature fields derived from first- and second-order
theories. In fact, as we will see in Sect. 3.1, the boundary values θL and θR of the first-order theory are different
from those of the second-order theory because of the difference between their distribution functions f . They
are, respectively, given by

f 1st =
(

1 + G1,1

P
√

θ
ϕ1,1

)
fE (5)

and

f 2nd =
(

1 + G1,1

P
√

θ
ϕ1,1 + G2,0

Pθ
ϕ2,0 + G1,2

Pθ
ϕ1,2 + G3,0

Pθ2 ϕ3,0 + G2,2

Pθ2 ϕ2,2

)
fE , (6)

where ϕr,l denotes the orthonormal irreducible Hermite polynomials in Ci of the atomic velocity, with r
the number of traces and l the number of free indices [18]. Gr,l is the corresponding moment defined by

Gr,l = m
√

θ
2r+l ∫

ϕr,l f dC. fE = P/θ

m
√

2πθ
3 e− C2

2θ is the phase density at equilibrium. The distribution function

f 2nd for the second-order theory obviously involves additional second-order terms.

3 Formulations for the temperature jump and entropy production at the boundary

In this section we analyze the temperature jump and the entropy production at the boundary on the assumption
of a Maxwellian boundary condition, i.e. atoms are reflected at the wall either specularly or diffusively with
velocities obeying the Maxwellian distribution (thermalization). By introducing an accommodation factor λ,
whose meaning is self-evident from Eq. (7), the phase density at the wall f̂ is expressed as [14,15]

f̂ =
{

λ f w + (1 − λ) f (−n1C1) : n1C1 > 0

f (n1C1) : n1C1 ≤ 0,
(7)

where C1 is the x-component of the velocity of an atom, and n1 denotes the x-component of the unit normal
vector to the wall pointing inside the gas, so that we have the condition n1C1 > 0 for the reflected atoms from
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the wall and n1C1 ≤ 0 for the incident atoms on the wall. In Eq. (7), for simplicity, the other velocity compo-
nents are not shown explicitly. The phase density f refers to that of the gas in front of the wall, which reads
Eqs. (5) and (6) for the first- and second-order theories, respectively. While the phase density f w represents
the Maxwellian of the thermalized particles:

f w = ρw

m
√

2πθw
3 e− C2

2θw (8)

with mass density ρw and a given wall temperature θw (θw ≡ kT w/m, where T w is the thermodynamic
temperature of the wall, i.e. TL at the left side and TR at the right side, as shown in Fig. 1).

3.1 Temperature jump at the boundary

In order to obtain the jump of temperature, we first establish the jump conditions, which can be derived by
applying the conservation laws of mass and energy at the boundary as follows:

m
∫

C1 f̂ dC = 0, (9)

1

2
m

∫
C2C1 f̂ dC = 1

2
m

∫
C2C1 f dC, (10)

where f̂ takes the form of Eq. (7). By inserting f in Eq. (6) for the second-order theory as well as f w in
Eq. (8) into Eqs. (9) and (10), the jump conditions are reduced, after some calculations, to be

√
1

2π
ρw

√
θw =

(√
1

2π
P − G2,0

4
√

15πθ
+ G1,2

2
√

21πθ
− G3,0

4
√

70πθ2
+ G2,2

4
√

21πθ2

)√
1

θ
, (11)

√
2

π
λρw

√
θw

3 =
√

2

π
λP

√
θ − 1

2

√
5

2
G1,1n1(2 − λ)

+λ

(√
3

5π

G2,0

2
−

√
3

7π

G1,2

2
+ G3,0

2
√

70πθ
− G2,2

4
√

21πθ

)√
1

θ
, (12)

where both θ and Gr,l should be evaluated at the boundary.
Elimination of the density ρw from Eqs. (11) and (12), and utilizing the relations in Eq. (2) for reduction,

we obtain

θL − θw
L =

√
5π
4

(2−λ)
λ

G1,1
√

θL
P −

(
θw

L
5θL

+ 9
10

)
G2

1,1

P2 ,

θR − θw
R = −

√
5π
4

(2−λ)
λ

G1,1
√

θR
P −

(
θw

R
5θR

+ 9
10

)
G2

1,1

P2 .

(13)

Introducing Eq. (3) for G1,1 as well as the dimensionless quantities according to

Kn = τ

L/
√

kT0/m
, θ̂ = θ

kT0/m , (14)

where Kn is the Knudsen number and T0 ≡ TL+TR
2 , we may slightly rewrite Eq. (13) in a dimensionless form as

(θ̂L − θ̂w
L ) = 5

8

√
π
2

(2−λL )
λL

Kn(θ̂R − θ̂L)

√
θ̂L − 5

8

(
θ̂w

L

5θ̂L
+ 9

10

)
K 2

n (θ̂R − θ̂L)2 ,

(θ̂R − θ̂w
R ) = − 5

8

√
π
2

(2−λR)
λR

Kn(θ̂R − θ̂L)

√
θ̂R − 5

8

(
θ̂w

R

5θ̂R
+ 9

10

)
K 2

n (θ̂R − θ̂L)2.

(15)

Equation (15) provides us with the relations for the boundary values of temperature θ̂ (or temperature
jump) based on the second-order theory. It is noticeable that: (1) in the case of the first-order theory, the
second-order terms on the right-hand side of these relations play no role; (2) under the special conditions that
only the first-order term is remained and that λL = λR = 1, the above set of relations recovers that derived
in [14,15] based on Grad’s 13-moment phase density; (3) as indicated by this equation, besides θ̂w

L and θ̂w
R ,
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two parameters influence the temperature jump, that is, the accommodation factor λL(R) and Knudsen number
Kn . Specifically, for Kn → 0, the difference between the gas temperatures at the wall θL(R) and the wall
temperatures θw

L(R), that is, the temperature jump vanishes. While for λL(R) → 0, gas temperatures at both

sides θ̂L and θ̂R become equal as
θw

R +θw
L

2 , being independent of the Knudsen number, which just indicates an
adiabatic wall. Same limiting behaviors were also demonstrated by the numerical solutions derived in [15].

As Eq. (15) is nonlinear with respect to θ̂L and θ̂R it is, in general, difficult to obtain explicit expressions for
the temperature jump as a function of the wall temperatures, even in the first-order case. Although the implicit
result Eq. (15) can easily be solved numerically, we emphasize the importance of its analytical solution which
is consistent with the order of the theory adopted. We believe that an explicit analytical result will play an
essential role in the construction of a systematic formalism of boundary-value problems that may contain two
types of boundary values, as we mentioned at the beginning of this paper; we can then understand more deeply
the mathematical structure of ET itself. Therefore, although the first- and second-order theories that we are
considering here only require the determination of jumps, we expect that the present study will be a sound
basis for the study of higher-order theories with uncontrollable boundary-value problems [20].

In order to solve Eq. (15) analytically we may assume the temperature jump to be analytic with respect to
Knudsen number. This point seems to be also supported by numerical results [14,15,21]. In such a case we
propose the following expansions in Knudsen number

θ̂1st
L = θ̂w

L + α1Kn,

θ̂1st
R = θ̂w

R + β1Kn
(16)

and

θ̂2nd
L = θ̂w

L + α1Kn + α2 K 2
n ,

θ̂2nd
R = θ̂w

R + β1Kn + β2 K 2
n ,

(17)

respectively for first- and second-order theories with coefficients αi and βi (i = 1, 2). Naturally, the tempera-
ture jump should be identical to each other on the level of the first order. Notice that the above expansions are
performed for boundary quantities—in the present case, temperature jump. Such expansions do not conflict
with the order concept used in the derivation of the field equations in COET. Inserting these expansions into
Eq. (15), we obtain

α1 = 5
√

π/2
√

θ̂w
L (θ̂w

R −θ̂w
L )(2−λL )

8λL
,

β1 = − 5
√

π/2
√

θ̂w
R (θ̂w

R −θ̂w
L )(2−λR)

8λR

(18)

and

α2 = 1
256λ2

LλR
(θ̂w

L − θ̂w
R )

[
176(θ̂w

R − θ̂w
L )λ2

LλR + 25π(2 − λL)

×
(

2
√

θ̂w
L θ̂w

R (2 − λR)λL + (3θ̂w
L − θ̂w

R )(2 − λL)λR

)]
,

β2 = 1
256λ2

RλL
(θ̂w

L − θ̂w
R )

[
176(θ̂w

R − θ̂w
L )λ2

RλL − 25π(2 − λR)

×
(

2
√

θ̂w
L θ̂w

R (2 − λL)λR + (3θ̂w
R − θ̂w

L )(2 − λR)λL

)]
.

(19)

Now, the boundary values θ̂L(R) have been explicitly expressed in terms of the wall temperatures θ̂w
L(R)

as well as the parameters of Knudsen number Kn and the accommodation factors λL and λR . By using these
analytical expressions above, we may conveniently discuss the general dependence of the temperature jump
on these parameters.

3.2 Entropy production at the boundary

We now analyze entropy production at the boundary with the results of temperature jump obtained in the
preceding subsection.
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By taking into account the continuity condition of the normal component of heat flux q at the boundary
and assuming the entropy flux in the solid wall to be heat flux divided by the thermodynamic temperature of
the wall, i.e., q/TL(R), the entropy production rate σ per unit area at the boundary can be obtained according
to the following relations:

σL = hL − q
TL

,

σR = q
TR

− h R,
(20)

respectively, for the left and right sides, where the entropy flux h is determined by the kinetic theory of gases
[8], i.e.,

h = −k
∫

C1ln

(
f

y

)
f dC, (21)

with 1
y the smallest element in the one-body phase space. Keeping terms up to and including O(3), h can be

specified as

h = k

m

(
−

√
5

2

G1,1

θ
− 37

5
√

10

G3
1,1

P2θ2 − 2

√
7

15

G1,1G1,2

Pθ2 + 2√
3

G1,1G2,0

Pθ2

)
. (22)

Then by using the relations in Eq. (2) and introducing a dimensionless entropy production defined by σ̂ =
σ

(
P

√
k

mT0

)−1
, we finally obtain

σ̂L =
√

5
2

Ĝ1,1

θ̂L (θ̂w
L )

(θ̂L − θ̂w
L ) + 47

10

√
2
5

Ĝ3
1,1

θ̂2
L

,

σ̂R = −
√

5
2

Ĝ1,1

θ̂R(θ̂w
R )

(θ̂R − θ̂w
R ) − 47

10

√
2
5

Ĝ3
1,1

θ̂2
R

,

(23)

where G1,1 follows from Eq. (3), and θ̂L(R) from Eqs. (17)–(19). The omission of the second terms in the
right-hand side of above expressions gives us the entropy production compatible to the first-order theory. As
shown in the next section, positivity of entropy production is surely satisfied.

Clearly, entropy production at the boundary is also affected by both the Knudsen number and the accom-
modation factor through θL and θR . Specifically, for λ → 0, vanishing entropy production independent of
Knudsen number should be expected, since G1,1 vanishes due to the identical θL and θR in such a limiting
case [see the discussion (3) after Eq. (15)].

Here let us discuss the ideal wall briefly. Inserting Eqs. (3), (17)–(19) into Eq. (23), and with the condition
of vanishing entropy production at the boundary, we easily derive the temperature jumps 
θ̂L(= θ̂L − θ̂w

L )

and 
θ̂R(= θ̂R − θ̂w
R ) to be

�θ̂L = �θ̂R = −47

40
(θ̂w

R − θ̂w
L )2 K 2

n . (24)

It is remarkable that both jumps are equal to each other.

4 Typical results and discussions

4.1 Results for specific parameters

With the aid of the analytical expressions in the preceding section, we may conveniently calculate the temper-
ature jump and entropy production for specific wall temperatures θ̂w

L , θ̂w
R and parameters Kn , λL and λR . For

simplicity, a simpler case with λL = λR ≡ λ is studied here.
Figure 2 shows the temperature profiles for three Knudsen numbers derived from the second-order

theory with the boundary values given by Eqs. (17)–(19), where x̂ = x
L . The classical Fourier’s law
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Fig. 2 Temperature profiles in the second-order theory of COET and the classical Fourier’s law (θ̂w
L = 0.86, θ̂w

R = 1.14 and
λ = 0.826 )

θ̂ = θ̂w
R +θ̂w

L
2 + θ̂w

R −θ̂w
L

2 x̂ is also depicted for comparison. Due to the limit of the applicability range of sec-
ond-order theory, only small Knudsen numbers are considered here and hereafter in the present paper.

Although the temperature profiles according to the second-order theory of COET are straight lines as that
of classical Fourier’s law, they have jumps at the boundaries as listed in Table 1. Here, in order to investigate
the validity of the expansion (17), numerical values obtained directly from Eq. (15) are also presented for
comparison. The difference is, as naturally expected, small for relatively small Knudsen numbers. Moreover,
we may also compare the column with Kn = 0.1546 in Table 1 with Ohwada’s data obtained by numerical
simulations [21]. For proper comparison, Knudsen numbers in both data should be properly converted to each
other: For Ohwada’s system of hard sphere molecules, Knudsen number is related to the heat conductivity γ

by K Ohwada
n = 32

75

√
2
π

γ
2P L

√
mT0

k [4]. While our Knudsen number, being compatible with BGK equation, is
proportional to the relaxation time τ [see Eq. (14)1 where τ can be properly adjusted to the heat conductivity

by Fourier’s law expressed as Eq. (3)] such that Kn = 2γ
5L P

√
mT0

k . As a result, ratio K Ohwada
n
Kn

≈ 0.4255 may

be followed. For Kn = 0.1546, Ohwada obtained θ̂numerical
L = 0.886 and θ̂numerical

R = 1.109, with which,
obviously, our data coincide well.

Inserting the data of θ̂L and θ̂R in Table 1 into Eq. (23), we can further estimate the values of entropy
production at the boundary as shown in Table 2 for four Knudsen numbers, where the data for Kn = 0.1546
are listed in order to compare them with our recent data based on the third-order theory: σ̂L = 0.00161 and
σ̂R = 0.00103 [19]. Both sets of values also agree with each other well.

4.2 Kn and λ dependencies of the temperature jump and entropy production at the boundary

Owing to the analytical expressions obtained in Sect. 3 for both the temperature jump and entropy produc-
tion at the boundary we can make clear explicit dependencies of the quantities on Knudsen number and the
accommodation factor. In this subsection their typical results are shown.

Table 1 The boundary values of temperature θ̂ in the second-order theory of COET (θ̂w
L = 0.86 , θ̂w

R = 1.14 and λ = 0.826 )

Kn 0.05 0.1 0.1546 0.2

θ̂L 0.873 0.882 0.889 0.892

θ̂R 1.125 1.114 1.106 1.103

θ̂direct
L 0.873 0.884 0.893 0.900

θ̂direct
R 1.125 1.113 1.102 1.094

Table 2 Entropy production rate at the boundary in the second-order theory of COET (θ̂w
L = 0.86, θ̂w

R = 1.14 and λ = 0.826)

Kn 0.05 0.1 0.1546 0.2

σ̂L 0.000274 0.000879 0.00167 0.00233
σ̂R 0.000180 0.000577 0.00108 0.00147
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Fig. 3 Knudsen number Kn and accommodation factor λ dependencies of the temperature jumps at the boundary (θ̂w
L = 0.86

and θ̂w
R = 1.14)

Firstly, Fig. 3 shows the dependencies of the temperature jumps, i.e., 
θ̂L(= θ̂L −θ̂w
L ) and 
θ̂R(= θ̂R −θ̂w

R )
on Knudsen number Kn under λ = 1 and their dependencies on the accommodation factor λ under Kn = 0.1.
It is evident from Fig. 3 that the temperature jump at the left side is positive while that at the opposite side is
negative, under the premise of θ̂w

R > θ̂w
L . On the other hand, magnitudes of both jumps monotonously increase

with the increase of Knudsen number, while decrease with the increase of the accommodation factor. The same
tendency has been obtained in numerical work [15].

Secondly, Fig. 4 presents the dependencies of the entropy production at the boundary (σ̂L and σ̂R) on Kn
and λ. As a fundamental requisite of the second law of thermodynamics, the entropy production in any case
is positive. Moreover, this quantity whether on the left or on the right, increases in magnitude with increasing
Knudsen number, while decreasing with increasing accommodation factor. In addition, σ̂L is always bigger
than σ̂R , which may be accepted as another necessary consequence of the prescribed condition θ̂w

R > θ̂w
L .

The sign of the temperature jump and the positivity of entropy production in the case of small Knudsen
number can be understood by taking a close look at the leading term [the first term of O(1)] in Eq. (13) (or
Eq.(15)) for temperature jump and that in Eq. (23) for entropy production at the boundary. If θ̂w

R > θ̂w
L (or

TR > TL as in Fig. 1), the heat flux should point from right to left, which is equivalent to G1,1 > 0. As a
consequence, the temperature jumps appear to be positive at the left side while negative at the right side, as
shown in Table. 1 and Fig. 3, and then entropy production arises positively at both sides, as shown in Fig. 4. It is
therefore clear that this positivity is closely related to the proper sign of the temperature jump at the boundary.

Finally, it is noticeable from Figs. 3 and 4 that the magnitude of the entropy production tends to vanish
more quickly than that of the temperature jump when Kn → 0. In fact, the leading term of σ̂L(R) in Eq. (23)
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Fig. 4 Knudsen number and accommodation factor dependencies of the entropy production at the boundary (θ̂w
L = 0.86,
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should be of O(K 2
n ) while that of the temperature jump given by Eq. (15) is of O(Kn). This result implies an

interesting fact that if the system under consideration is very near equilibrium so that the first-order theory of
COET is sufficient for the description of the process, then the entropy production is negligible even though
there exists a nonzero temperature jump. Therefore the assumption of an ideal wall adopted, for example, in
[16,17] is reasonable only when the system is very near equilibrium.

5 Summary

We have explored a systematic approach to the temperature jump by studying one-dimensional stationary heat
conduction in a rarefied gas at rest. By assuming a power expansion with respect to the Knudsen number like
Eqs. (16) and (17), we have obtained analytical expressions for the temperature jump for first- and second-order
theories of COET, based on which we also calculated the entropy production at the boundary. The general
dependencies of both boundary quantities on the Knudsen number and the accommodation factor have been
extensively discussed. Owing to the systematic structure of this approach, it may be easily extrapolated to the
higher-order theory of COET where we will encounter the uncontrollable boundary-value problem. We may
expect that the present analysis provides us with a sound basis to study such a crucial problem in extended
thermodynamics.
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