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Abstract The Kohn-Müller model for the formation of domain patterns in martensitic shape-memory al-
loys consists in minimizing the sum of elastic, surface and boundary energy in a simplified scalar setting,
with a nonconvex constraint representing the presence of different variants. Precisely, one minimizes

Jε,β(u) = β‖u0‖2
H1/2((0,h))

+
∫

(0,l)×(0,h)

|∂x u|2 + ε|∂y∂yu|

among all u : (0, l) × (0, h) → R such that ∂yu = ±1 almost everywhere. We prove that for small ε

the minimum of Jε,β scales as the smaller of ε1/2β1/2l1/2h and ε2/3l1/3h, as was conjectured by Kohn
and Müller. Together with their upper bound, this shows rigorously that a transition is present between a
laminar regime at ε/ l � β3 and a branching regime at ε/ l � β3.

Keywords Solid-solid phase transformations · Pattern formation · Nonlinear elasticity · Calculus of
variations

PACS 64.70.Kb · 62.20.-x · 02.30.Xx

1 Introduction

Fine structures arise in many problems in material sciences where a nonconvex bulk energy density
with multiple minima is accompanied by boundary conditions, or forcing terms, which favor a convex
combination of the minima. In the theory of elasticity and magnetism, this typically results in lamellar
patterns (Fig. 1), which can refine close to the boundary (Fig. 2). Such a refinement of the oscillatory
pattern toward the boundary was first proposed by Landau back in 1938, in work on the intermediate
state of type-I superconductors [1, 2]. Similar patterns were discussed for magnetic domains by Lifshitz
in 1944 [3], and later by Hubert [4]. The first mathematical results in this direction have been obtained
by Kohn and Müller in 1992–1994 [5, 6] for the case of shape-memory alloys. Their work originated
a large amount of mathematical investigations of related pattern-formation problems in materials; for
example, similar domain branching has been demonstrated in models of uniaxial ferromagnets [7, 8],
thin-film blistering [9–12], diblock copolymers [13, 14], flux domain structures in the intermediate state
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Fig. 1 Sketch of the laminar pattern in for shape-memory alloys. a Subdivision of the two-dimensional domain. b Three-
dimensional representation of the deformation

Fig. 2 Branching construction for the model of domains in shape-memory alloys. a Subdivision of the domain into the
different pieces where u is affine. b Three-dimensional representation of the deformation

of type-I superconductor plates [15], and dislocation walls in crystal plasticity [16]. Asymptotic self-
similarity of the minima was proven for a simplified version of the Kohn-Müller model, in [17]. Exper-
imental tests were performed in [18]; the results were however, due to high scatter of the data and to
the restricted range in which the parameters could be varied, compatible with both the 1/2 and the 2/3
scaling laws.

Shape-memory alloys are materials undergoing a solid-solid martensitic phase transition from a high-
symmetry phase at high temperature to a low-symmetry one at low temperature [19–21]. The transfor-
mation is diffusionless and preserves the crystal structure; in the framework of nonlinear elasticity, each
material point can choose between a finite number of the low-symmetry variants, which correspond to
different spontaneous strains. If macroscopic deformation is penalized, for example by boundary condi-
tions or by interfaces to other grains in polycrystals, a fine mixture of the different phases is expected.
The microstructures typically observed have, at least locally, a laminar structure, as illustrated in Fig. 1.
This can be understood as a consequence of the fact that the gradient of a continuous piecewise smooth
function can jump from a value A ∈ R

3×3 to another one B �= A across a regular interface only if the
jump is of rank one, i.e., if A− B = a ⊗n, where n is the normal to the interface. Therefore, the direction
of the interface n is determined by the spontaneous strains A and B.

This simple argument shows that some directions are preferred for the interfaces, but does not give
any insight into the length scale of the microstructure, or the specific pattern. A more precise picture
is obtained including a singular perturbation, corresponding to the energy of domain boundaries, and
a term penalizing strong deviations from affine boundary values, representing the elastic energy of the
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neighboring material. Consider for example, in the domain (0, 1)2, the laminar pattern illustrated in
Fig. 1, which contains N interfaces along the preferred direction. The energy of the interfaces is given
by their length, i.e., N , multiplied by a surface energy density ε. The oscillations on the boundary are
penalized by a term measuring the distance of the deformation from affine boundary data, which (in any
L p norm) scales as 1/N . One obtains

E ∼ εN + β
1

N
,

where β is a material parameter representing an elastic modulus (a more precise discussion of the second
term is given below). Minimization in N gives N ∼ (β/ε)1/2 and E ∼ (εβ)1/2. This simple construction
scheme, which in the case of magnetic domains goes back to Landau [22], has for many years been
the basis of the theoretical understanding of microstructure in shape-memory alloys [19, 23, 24]. The
relevance of the more complex, two-dimensional branched pattern was first pointed out by Kohn and
Müller [5, 6], who investigated the issue mathematically within a simple scalar model, see Sect. 2. They
could prove that with rigid boundary conditions the branched pattern is always favorable (even more, in
this case there is no laminar pattern with finite energy). For the more realistic case of a soft boundary
condition, i.e., for the model given in (1) below, they conjectured a transition between the laminar and
the branched pattern with varying material parameters, and substantiated the conjecture with a rigorous
upper bound and a heuristic lower bound. The present work completes this analysis, by providing the
remaining lower bound.

2 Model and main result

In the antiplane-shear, thin-wall model by Kohn and Müller [5, 6] one focusses on a scalar component of
the deformation, u : (0, l) × (0, h) → R, assumes that uy is the order parameter, and that the two phases
can be identified by uy = 1 and uy = −1, respectively, (we write briefly uy = ∂yu, and analogously ux ,
uyy). For each fixed x , the number of interfaces between the two phases is the number of jumps of uy ,
which we write as ∫ h

0
|uyy |dy.

This quantity is equivalent to the BV norm of the function uy(x, ·) : (0, h) → {−1, 1}, which can be
defined by ∫ h

0
|uyy |dy := sup

{∫ h

0
uy(x, y)ϕ′(y)dy : ϕ ∈ C1

c ([0, h], [−1, 1])
}

,

see, e.g., [25] for a detailed presentation. Variations of the displacement with x are penalized by a purely
elastic term, of the form u2

x . A boundary term accounts for the energetic cost of elastic deformation of
the material located outside the domain (0, l) × (0, h), which has to match continuously with u on the
boundary, and achieve zero deformation at infinity. Physically, this represents either a different material,
or different grains in a polycrystal, or regions which have not undergone the phase transformation. For
simplicity one focusses on the x = 0 boundary, and considers an “outside” deformation v : (−∞, 0) ×
(0, h) → R, with elastic energy

Eel(v) :=
∫ 0

−∞

∫ h

0
|∇v|2 dxdy .

For any given u, one considers the minimum of Eel(v) among all v such that u = v at x = 0 (in the sense
of traces). This minimum is, by definition, the squared homogeneous H1/2 norm of the trace u0 of u,

‖u0‖2
H1/2((0,h))

= inf{Eel(v) : v(0, ·) = u0(·)}.

See the Appendix for more details on the H1/2 norm, see [5, 6] for a more detailed motivation of the
model.
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The Kohn-Müller problem is obtained combining the mentioned terms and reads: For given ε, β > 0,
minimize

Jε,β(u) := β‖u0‖2
H1/2((0,h))

+
∫

(0,l)×(0,h)

u2
x + ε|uyy | dxdy (1)

among all u ∈ W 1,2((0, l) × (0, h), R) with |uy | = 1 a.e.. Here u0(y) = u(0, y) in the sense of traces, ε
represents the wall energy, and β the relative strength of the material at x < 0 with respect to the one at
x > 0. Kohn and Müller conjectured that, for small ε, the minimum of Jε,β scales as

J0(ε, β) := min(ε1/2β1/2l1/2, ε2/3l1/3) h,

in the sense that
cJ0(ε, β) ≤ min Jε,β(u) ≤ c′ J0(ε, β) (2)

for some universal constants c, c′ > 0. The validity of (2) would imply that a transition is present
between the regime ε/ l � β3, where the one-dimensional laminar construction is optimal, and the
regime ε/ l � β3, where the branched construction is optimal.

Besides existence, the upper bound in (2) was proven in [6]. The first term was obtained via the lam-
inar construction discussed above and illustrated in Fig. 1, the second one via the branched construction
illustrated in Fig. 2. However, in [6] the lower bound was only proven for a modified functional J̃ , where
the squared H1/2 norm is replaced by h1/2 times the L2 norm of u0 (unsquared). The two functionals are
equivalent provided that

‖u0‖2
H1/2 ∼ h1/2‖u0‖L2 .

This corresponds to the interpolation inequality

‖u0‖2
H1/2 ≤ ‖u0‖L2 ‖u′

0‖L2

being sharp for u0, since by the side condition uy = ±1 a.e. one expects the L2 norm of u′
0 to be h1/2 (the

mentioned interpolation inequality is derived in (9) below). In [6] heuristic arguments were given in this
direction, building upon the fact that the interpolation is sharp for approximately periodic functions. We
prove here the lower bound in (2), which implies a posteriori the correctness of the heuristic argument
by Kohn and Müller for the scaling of the minimal energy. Our proof is in many respects analogous to
the one used in [16] for a related problem in plasticity, and was first presented in [26].

Theorem 1 There is a universal constant c > 0 such that for any ε, β, l, h > 0 and any u ∈ W 1,2

((0, l) × (0, h)) with uy = ±1 a.e. one has

Jε,β(u) ≥ c min(ε1/2β1/2l1/2, ε2/3l1/3, β) h.

3 Proof

The idea of the proof is to divide the domain into horizontal stripes (0, l) × (y, y + λ), whose width λ is
given by the maximal width of a layer in the domain. In each stripe, at least one of the following holds:
either (i) there is at least one long interface (thereby making the singular perturbation large), or (ii) the
elastic energy is large, or (iii) the trace is approximately affine with slope one, rendering the boundary
term large. Balancing these three terms will give the desired lower bound. Here and below c and c′ denote
universal constants, which might change from line to line.

Point (iii) will be treated via the following lemma.

Lemma 1 There is a universal constant c > 0 such that for any λ > 0, any u : (0, λ) → R, and any
constant ū ∈ R, one has

‖u(y) − y − ū‖L1((0,λ)) + ‖u(y)‖2
H1/2((0,λ))

≥ cλ2.
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Proof By scaling ũ(y) = λu(y/λ) it is sufficient to prove the statement for λ = 1, and adding a constant
to u and ū we can assume that

∫ λ

0 u dy = 0. We proceed by contradiction. If the thesis were false, there
would be sequences u j ∈ L1, ū j ∈ R such that u j − ū j → y in L1((0, 1)), and u j → 0 in H1/2((0, 1)).
The latter implies u j → 0 in L1((0, 1)), a contradiction.

Proof (of Theorem 1) By scaling ũ(x, y) = hu(x/h, y/h), ε̃ = ε/h, l̃ = l/h, it suffices to prove the
result for the case h = 1. We fix some λ ∈ (0, 1), and choose an interval I = (y, y + λ) ⊂ (0, 1) so that
the slice energy satisfies

EI := β‖u0‖2
H1/2(I)

+
∫

(0,l)×I
u2

x + ε|uyy | ≤ 2λE

where E = Jε,β(u) is the total energy. This is always possible since the squared H1/2 norm is super-
additive, see (8) below. We next exploit the fact that for a fixed x , the number of jumps of the function
uy(x, ·) must be an integer. Precisely, for a.e. x ∈ (0, l), the function uy(x, ·) is a function of bounded
variation which takes values ±1, hence∫

{x}×I
|uyy | ∈ N for a.e. x, (3)

see e.g., [25]. If the integral in (3) is nonzero for almost every x ∈ (0, l), then

EI ≥ lε. (4)

Otherwise, there is a set of positive measure N ⊂ (0, l) such that either

u(x, y) = ū(x) + y on N × I (5)

or u(x, y) = ū(x)− y on N ×I, for some ū : N → R. In the following, we assume for definiteness that
the first option holds (the other case is clearly equivalent). For a.e. x ∈ (0, l) we have

‖u0(·) − u(x, ·)‖L1(I) ≤ ‖∂x u‖L1((0,l)×I)

≤ (lλ)1/2‖∂x u‖L2((0,l)×I) ≤ (EIlλ)1/2.

Combining with (5) we obtain

‖u0(y) − y − ū‖L1(I) ≤ (EIlλ)1/2,

for some ū ∈ R. Lemma 1 implies

‖u0(y) − y − ū‖L1(I) + ‖u0(y)‖2
H1/2(I)

≥ cλ2,

which gives

(EIlλ)1/2 + EI
β

≥ cλ2. (6)

Combining (4) and (6), and using that E ≥ EI/(2λ), we get that for any λ ∈ (0, 1)

E ≥ c min

(
lε

λ
, βλ,

λ2

l

)
.

If ε is small, in the sense that

ε ≤ min

(
β

l
,

1

l2

)
,

we can choose

λ = max

((
lε

β

)1/2

, l2/3ε1/3
)
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and obtain
E ≥ c min((lεβ)1/2, l1/3ε2/3).

Otherwise, we choose λ = 1, and get

E ≥ c min

(
lε, β,

1

l

)
.

In this minimization, only the middle term is relevant. Indeed, the first one is – for these values of ε –
always larger than one of the other two. Further, the energy is an increasing function of l. In particular,
if some u is admissible for a value of l > 1/β, then its restriction is admissible for l ′ = 1/β, and its
energy is no larger. Therefore we can put l = 1/β in the above estimate (this corresponds to using only
the values of x ∈ (0, 1/β) in (3) and the following discussion). We conclude

E ≥ c min((lεβ)1/2, l1/3ε2/3, β).

The constructions showing optimality of the first and second term have been discussed above and are
illustrated in Figs. 1 and 2, and correspond, respectively, to a laminar and to a branched microstructure.
The third term is optimal in the regime of very small β, where the material decouples from the boundary
condition, and corresponds to a trivial affine deformation, such as u(x, y) = y.

Appendix A: Some properties of the H1/2 norm

We recall below the definition and the basic properties of the H1/2 norm, following the lines of the Appendix to [6].
The homogeneous H1/2 norm of a function u : (a, b) → R is defined as the infimum of the elastic energy Eel(v)

defined in the Introduction among all v : (−∞, 0) × (a, b) → R such that u = v at x = 0 (in the sense of traces).
Precisely,

‖u‖2
H1/2((a,b))

:= inf

{∫ 0

−∞

∫ b

a
|∇v|2 dxdy : v(0, y) = u(y)

}
. (7)

This norm is subadditive, in the sense that for all c ∈ (a, b) we have

‖u‖2
H1/2((a,c)) + ‖u‖2

H1/2((c,b))
≤ ‖u‖2

H1/2((a,b))
. (8)

To see this, consider any function v : (−∞, 0) × (a, b) → R entering the infimum in the definition (7), for ‖u‖2
H1/2((a,b))

.
Then, the restriction of v to (−∞, 0) × (a, c) → R is one of the test functions entering the definition of ‖u‖2

H1/2((a,c))
, and

analogously on the other interval. Since

∫ 0

−∞

∫ c

a
|∇v|2 dxdy +

∫ 0

−∞

∫ b

c
|∇v|2 dxdy =

∫ 0

−∞

∫ b

a
|∇v|2 dxdy ,

the claimed (8) follows.
The minimization entering (7) can be performed explicitly using Fourier series. In order to have a simple, classical

treatment in the case that u is smooth, we first embed it in a periodic setting; for notational simplicity we do this only
on the interval (0, h). Then it suffices to extend u to an even, 2h-periodic function. Precisely, we set u(−y) = u(y) for
y ∈ [0, h], and u(y + 2hZ) = u(y) for y ∈ [−h, h]. If the original u is continuous, then the extension is continuous and
periodic. The same can be done, working at fixed x , to any v : (−∞, 0) × (0, h). The condition v(0, y) = u(y) is clearly
preserved by the extension.

Let now vk(x) be the Fourier coefficients of the function v(x, ·) on the interval (−h, h), i.e., be such that

v(x, y) =
∑
k∈Z

eiπky/hvk(x) ,

and analogously uk . Since v is real and even in y, we have v−k = vk ∈ R. Plancherel’s formula gives

1

2

∫ h

−h
v2(x, y) dy = h

∑
k∈Z

|vk |2(x) ,
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for any x . Applying this to the gradient of v we obtain

Eel(v) = 1

2

∫ 0

−∞

∫ h

−h
|∇v|2 dxdy = h

∫ 0

−∞

∑
k∈Z

π2k2

h2
|vk |2(x) + |v′

k |2(x)dx .

This way the different wavelengths k decouple. The resulting one-dimensional variational problems can be explicitly
solved. Incorporating the boundary condition vk(0) = uk , the minimizer is v̄k(x) = ukeπ |k| x/h . The H1/2 norm can
therefore be written as

‖u‖2
H1/2((0,h))

= inf {Eel(v) : v(0, ·) = u(·)} = π
∑
k∈Z

|k||uk |2 .

Finally, using the Cauchy-Schwartz inequality and Plancherel’s formula for the L2 norms of u and its derivative, we obtain
the interpolation inequality

π
∑
k∈Z

|k||uk |2 = π
∑
k∈Z

(|k||uk |) · |uk |

≤
(

h
∑
k∈Z

|uk |2
)1/2 (

h
∑
k∈Z

π2k2

h2
|uk |2

)1/2

= ‖u‖L2((0,h)) ‖u′‖L2((0,h)) . (9)
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