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Abstract. Murdoch (J. Elasticity 60, 233–242, 2000) showed that restrictions imposed upon re-
sponse functions by material frame-indifference are the consequences of five distinct aspects of
observer agreement (that is, of ‘objectivity’) and involve only proper orthogonal tensors. Accord-
ingly it is unnecessary to invoke the ‘principle of invariance under superposed rigid motions’ (in
the sense of ‘one observer, two motions’), which imposes a restriction upon nature. Liu (Con-
tinuum Mech. Thermodyn. 16, 177–183, 2003, and Continuum Mech. Thermodyn. 17, 125–133,
2005) has challenged, misinterpreted and misrepresented the content of both Murdoch’s work
and this work. Here all criticisms of Liu are answered, his ‘counter-examples’ are used to amplify
the tenets of Murdoch’s work, and a key modelling issue in the controversy is indicated. Further,
the response function restrictions for a given observer, derived on the basis of considering other
observers, are shown to be independent of possible differences in the scales of mass, length, and
time employed by other observers.
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1 Introduction

In classical macroscopic physics material behaviour is assumed in principle to be independent of its observa-
tion. However, since information concerning such behaviour is only available by observation/measurement, an
observer-based formulation of this principle is required before its implications can be examined. To this end it
is customary to postulate a ‘principle of material frame-indifference’ which according to Truesdell and Noll [4,
Sect. 14] asserts that

‘the response of a material is the same for all observers.’ MFI

The manner in which this principle imposes restrictions upon response functions has been the subject of lengthy
controversy (see, for example, [5–9]). There are essentially two viewpoints, one of which can be based solely upon
observer agreement (‘objectivity’), and the other involves aspects of observer agreement together with invariance
of material response with respect to superposed rigid body motions (‘isrbm’). The significant difference between
these viewpoints is that the latter imposes an a priori restriction upon nature while the former does not. In
particular, the latter viewpoint excludes possible response that is sensitive to rotation of material relative to an
(hence any) inertial frame. Such sensitivity has been given theoretical support in the context of gas dynamics [10],
and has been invoked to describe superfluid helium behaviour [11], and turbulence [12]. Further, ‘isrbm’ seems
to be inconsistent with models of magneto-elastic phenomena [13]. Accordingly the status of isrbm as a general
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principle for macroscopic behaviour is questionable. The apparent growing acceptance of isrbm as a principle
which stands or falls with that of material frame-indifference led Murdoch [1] to argue that considerations of
objectivity alone suffice to obtain standard restrictions upon response functions. In [1] five distinct aspects O.1-
5 were listed, of which O.4 and O.5 together constitute a statement of MFI based upon observer consensus.
Allowing the selection of distinct response functions by different observers, it was shown by example how
corresponding functions for any pair of observers must be related, and how this results in restrictions upon
any given response function which involve only proper orthogonal tensors. From this perspective constitutive
dependence upon local material spin with respect to inertial frames is admissible1.

Liu [2, 3] is severely critical of [1] and this note. Specifically, he claims to have exposed errors in logical
reasoning, disagrees on how any one observer is able to consider the motions of others, regards O.4 as ‘imprac-
tical’, ‘innocuous’, ‘superfluous’ and ‘vaguely stated’, and holds that the arguments employed run ‘against the
rational spirit deeply cherished in modern continuum mechanics’. In studying these claims the reader should be
aware that the term ‘objective considerations’ is interpreted differently by Liu and Murdoch. (The letter codified
these from the outset in [1] as O.1–5.) To see how such misunderstanding colours Liu’s criticism, consider the
preamble in Sect. 4 of [2] in which he stated that Murdoch claimed in [1] to have obtained ‘standard restrictions’
on the basis of (Euclidean) objectivity alone, ‘without invoking the form-invariance of the principle of MFI’.
Murdoch made no such claim: his arguments were based on (Euclidean) objectivity (which derives from O.1–3)
together with O.4–5. Thus MFI was invoked by Murdoch, albeit with a different interpretation (namely O.4–5)
from that of Liu. Accordingly, far from exposing a logical flaw, Liu did not appreciate the basic assumptions upon
which the arguments of [1] were based, despite these being explicitly invoked. In the same vein, Liu2 takes issue
with [1] over a perceived failure to recognise ‘the mathematical implication of the3 condition of objectivity’.
Since the arguments of [1] specifically, and intentionally, omit the condition to which he refers (such ‘condition’
rules out the possibility of material response which is sensitive to the spin of a body relative to an (any) inertial
frame, and thus imposes a restriction upon nature), it is hardly surprising that its implication is not explored
in [1]. Liu’s ‘implication’ is that the response function(s) for any observer O∗ is (are) uniquely determined by
the response function(s) chosen4 by a given observer, O say. This may come as a surprise to O∗, who may not
be in communication with O. Liu’s interpretation of objectivity is thus consistently authoritarian in mandating
restrictions both upon nature and observers.

It is the purpose of this work to draw attention to the different interpretations of MFI involved in the controversy,
to discuss the differing viewpoints on how relative motions of observers enter the arguments, to use the ‘counter-
examples’ of [2] to amplify the tenets of [1], and to indicate a key modelling issue in the controversy. Additional
remarks are made on the invariance of the results of [1] to possible selection of different scales of mass, length,
and time by different observers.

Before addressing Liu’s criticisms in detail it is instructive to examine several interpretations of the above-cited
statement of MFI:

I.1 The response function(s) of a material is (are) the same for all observers.
I.1′ (Liu [2], Sect. 3.2) The constitutive function of an objective quantity must be

independent of the frame.
I.2 (Murdoch [1], Sect. 2.2, O.4, 5) Observers are able to agree upon the nature and

responses of any given ideal material, no matter what be their relative
motions.

Since observers may not be in communication when formulating constitutive relations for an ideal material which
are to model the macroscopic behaviour of a specific material of interest, and may not employ the same physical
units, interpretation I.1/I.1′ is a priori questionable. Liu codifies I.1′ as ‘form-invariance’ which, together with
the objective nature of displacements, (Cauchy) stresses etc., is equivalent to isrbm (see [9]). Accordingly form-
invariance is at odds with the material behaviour addressed in [10–13]. Given that any form of words employed to
delineate frame-indifference is open to misinterpretation, the essence of the concept is best elicited by considering

1 This is the viewpoint of Noll, who has pointed out to Müller (see [10]) that such dependence does not violate material frame-
indifference. [Personal communication, December 1983]

2 See [3], Abstract.
3 My italics.
4 The possibility of choice can arise in, for example, the selection of a reference configuration for an elastic body and/or scales

of mass, length, and time.
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particular examples. While this was undertaken in [1] in respect of viscous fluids, elastica, and simple materials
with memory, the ‘counter-examples’ of [2] are excellent in elucidating how I.2 works in practice.

2 Liu’s criticisms

2.1 Preamble

Any scientist who wishes to model aspects of the behaviour of a particular material system must formulate consti-
tutive relations which suffice to describe the behaviour of interest. In selecting appropriate response functions to
be employed in these relations such scientist/observer should take account of how any other observer would de-
scribe the same behaviour, for only by so doing can meaningful communication between observers be envisaged
in regard to this behaviour, and a body of science established. Such account requires assumptions concerning
other observers, specifically what agreement would be possible were communication to be established. In [1]
observers were assumed to be able to agree upon:

O.1. mathematical ideas and results, and relevant physical concepts,
O.2. inertial frames,
O.3. time lapses between events, and distances between simultaneous events,

and, no matter what be the relative motion of the observers,
O.4. the nature of any given ideal material, and
O.5. all possible responses of an ideal material.

As a consequence of O.3. there is, at any instant t, an isometry αt between space E perceived by an observer
O and space E∗ as regarded by another observer O∗. This isometry involves an orthogonal tensor Qt which
maps V onto V∗, where V(V∗) denotes the three-dimensional vector space used by O(O∗) to describe vectorial
quantities. Specifically, if x,y ∈ E then

y∗ − x∗ = Qt(y − x), (2.1)

where y∗ := αt(y) and x∗ := αt(x).
Agreement upon the notions of force (O.1. and O.2.), normals and areas associated with surfaces (O.1.), and
tractions and stresses (O.1. and O.2.) leads to standard relations. In particular

T∗(x∗, t) = Qt T(x, t)QT
t , (2.2)

where T(x, t)(T∗(x∗, t)) denotes the value of the Cauchy stress tensor at point x(x∗) at instant t for O(O∗).

Remark 1. Concerning (2.2) there is no disagreement between [1] and [2], although (following Noll [14]) a
conceptual distinction is made in [1] between V and V∗. It should be noted that this distinction means detQt is
undefined: see [1], Remark 2.

2.2 Criticism 1: the manner in which a given observer considers other observers

The key criticism concerns relative motions of O and O∗. Specifically Liu asserts (in [2], Sect. 4.2 after (4.6))

L.1. ‘...by definition, any two observers (i.e., two frames of reference) are related by a (one
and only one) relative motion of time-dependent rigid transformation...’

A related criticism in ([2], last paragraph of Sect. 1)

L.2. ‘...the question of whether the Euclidean transformation5 should involve general or
only proper orthogonal tensors has always been regarded as a question of choice and should
only be decided by experiments. This assertion was also disputed in Murdoch [1] in the claim
that only proper orthogonal transformations had been proved to be allowed.’

To appreciate the arguments of [1] it is necessary to consider how an observer O, faced with devising constitutive
relations, can consider how any other observer O∗ would regard the behaviour he/she is describing, in any
conceivable motion of O∗ with respect to O. As a consequence of O.4. and O.5., whatever relation(s) O selects

5 That is, relation (2.1) herein.
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which model the behaviour in question, he/she can appreciate how O∗ could specify relations governing the
same behaviour (O.4.), and contemplate agreement about all possible behaviour of interest with O∗, no matter
what be their relative motions at any given instant (O.5). As a consequence O is able to deduce restrictions
upon his/her response functions which guarantee satisfaction of O.4. and O.5. In the foregoing considerations no
contact with other observers is involved. Indeed, observer O∗, and his/her motions are hypothetical. Accordingly
it is possible to contemplate any number of relative motions of O∗ with respect to O. Liu (see third paragraph
in Sect. 2 of [3]) regards such considerations as metaphysical, and ‘beyond our comprehension6’despite the
rôle played by ‘thought experiments’ throughout science. Indeed, Liu’s relation (2) in [3], giving the stress as a
function of the history of the motion of a body, could similarly be regarded as metaphysical since the body can
only undergo one motion in its ‘lifetime’. In [1] restrictions on response functions were obtained for viscous
fluids, elastica, simple materials, and materials whose response functions depended upon objective field values.
These restrictions involve only proper orthogonal tensors Q on space V as a consequence of any given observer
being able to distinguish between right- and left-handed screws (an aspect of O.1.). If not, such an observer
would be unable to detect the difference between optically-active sugar solutions which rotate plane polarised
light in opposing senses. For such a solution O∗ must thus be expected to be aware of the corresponding sense
of rotation at any instant t, no matter what be the relative motion of O and O∗ (O.4.). If O envisages two such
motions with Qt (see (2.1)) values of Q1 and Q2, say, this awareness implies that QT

2 Q1 be proper orthogonal
(this is proved in [1], Remark 3). It is combinations of form QT

2 Q1 that enter into restrictions upon response
functions in [1]. An even simpler, but essentially-equivalent, example would be that of a carpenter screwing a
right-handed or left-handed screw into a piece of wood. The very fact that this activity is understood by readers
of this article involves an implicit assumption that any single observer would appreciate the nature of the screw
no matter how he/she moves relative to the carpenter. Of course, this observer can actually undergo only one
such motion. However, surely there is no disputing that were this observer to be undertaking any other motion
relative to the carpenter (within sight of the screw!) then his/her conclusion about the nature of the screw would
be unchanged? Notice that this conclusion is quite independent of notions of material symmetry (see [3], Remark
2).

While the foregoing disposes of L.1., statement L.2. indicates that Liu did not apparently notice the difference
between the orthogonal transformation (from V into V∗) Qt in (2.1) and tensors of form Q = QT

2 Q1 discussed
above. Specifically (see [1], Remark 2 and Remark 1 herein), the conceptual distinction between V and V∗

means det Qt is not defined (and so no claim of Qt being ‘proper orthogonal’ was advanced in [1]), while the
tensors Q which appeared in the standard restrictions upon response functions derived in [1] were orthogonal
transformations from V into itself, and were proved to be proper orthogonal on the basis of the foregoing argument
concerning screws.

Remark 2. Distinguishing between V and V∗ is helpful in making precise arguments. If the distinction is not
made, and observers choose Cartesian co-ordinate systems, then O and O∗ may select systems with the same
orientation (that is, both right-handed or both left-handed) in which case detQt = +1 in (2.1). If O and O∗

select systems with different orientations, then detQt = −1 in (2.1). Notice, however, that combinations QT
2 Q1

of such tensors yield det (QT
2 Q1) = +1. Accordingly L.2. remains an invalid criticism.

2.3 Criticism 2: The manner in which observers agree upon the nature of a given material

In his introduction Liu [2] states

L.3: ‘Essentially, the principle of material frame-indifference merely7 states that the7 constitutive function of
an “objective” quantity should be independent of observers.’

Just how and why two observers, not necessarily in contact, would or could select the same response function for
such a quantity is not clear8. Imposition of L.3. is rendered unnecessary by the reasoning in [1] which invokes

6 See [3], Sect. 2, before Remark 1.
7 My emphasis.
8 Indeed, since different observers may employ different scales of mass, length, and time, it is difficult to conceive how this might

be possible.
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O.5, together with O.4 and the objective nature of the quantity delivered by the function in question, to obtain
the restriction upon any response function utilised by O.

We now explore the mathematical formulation of L.3. Confining attention to the Cauchy stress tensor in a
purely mechanical context, Liu considers constitutive relations of the form9

T(X, t) = Fφ(χt, X, t). (2.3)

Here T(X, t) denotes the stress at instant ‘t’ for an observer O/frame φ and material point X , and Fφ is the
response function. Frame-indifference is taken to imply satisfaction of (7) of [3] with

Fφ∗ = Fφ. (2.4)

There are two aspects of the foregoing that differ significantly from the viewpoint of [1]:
(a) Relation (2.4) does not make sense if ‘space’ E as perceived by observer O is distinguished from that, E∗

say, as apparent to observer O∗ (that is, if Noll’s neo-classical space-time is adopted). This is because the first
argument of Fφ(Fφ∗) is associated with regions in E (E∗), and hence the domains of Fφ and Fφ∗ differ. In
Remark 3 of [3] Liu argues that his viewpoint ‘can easily be adapted to ...essentially equivalent one in neo-
classical space-time’. This is difficult to envisage in view of the foregoing. On the other hand the arguments
of [1], involving different relative motions of observer pairs, can be used to derive Liu’s material objectivity
relation ((3.5) of [2]) and hence prove that responses of materials of form (2.3) satisfy isrbm. That is, Liu’s result
follows from O.4 and O.5 without assumption (2.4).
(b) While very general, (2.3) cannot be directly compared with established constitutive relations which relate
field values amenable to measurement/observation. In particular one deals with the stress T(x, t) as a function
of location x in E , not a function of material point X . The key to identifying material points and locations, in
the case of simple materials, is for an observer to select a reference configuration, κ say, which establishes a
bijection between B (the set of material points which constitute the ‘body’) and E . Relation (2.3) can then be
expressed as

T(x, t) = Fφ,κ(χt
κ, x̂, t), (2.5)

where
x̂ = κ(X) and x = χ(X, t) =: χκ(x̂, t). (2.6)

The response function Fφ,κ clearly depends upon the choice of κ. For Murdoch selection of reference configu-
ration is a matter of choice for any given observer (see [1], Remark 6), while Liu requires a common configuration
(only possible since he identifies E∗ with E) in order to be able to utilise (2.4) in (7) of [3].

The difference in viewpoints is particularly clear in the case of elastica. For Murdoch an elastic body is one
in which, for any observer O, the stress is a function of the deformation gradient with respect to a reference
configuration, κ say, of his/her choice. Thus in standard notation,

T = T̂κ(F). (2.7)

Another observer O∗ will, as a consequence of O.4, describe the behaviour as

T∗ = T
∗
µ∗(F∗), (2.8)

where µ∗ is his/her choice of reference configuration, and F∗ is the corresponding deformation gradient. Given
that O and O∗ may not be in communication, there is no reason to suppose that κ and µ∗ are related in any other
way than by a differentiable bijection10 (unknown to O and O∗ if they are not in communication)

λ := µ∗ ◦ κ−1. (2.9)

From (2.2), (2.7) and (2.8)
T

∗
µ∗(F∗) = Qt T̂κ(F)QT

t , (2.10)

9 See (3.1) of [2] and (2) of [3]. These relations differ: the latter involves the explicit dependence of Fφ upon t, as here in (2.3),
while the former does not. This is presumably because the first argument relates to a one-parameter family of regions ‘occupied’ by
the body in space as perceived by φ over all times in the ‘past’, without explicit indication of the ‘current’ instant, ‘t’: that is, (3.1)
of [2] has been amended to acknowledge this fact.

10 Selection of a reference configuration κ by O identifies a fixed region Bκ in E: Bκ is the region ‘occupied’ by the body in
this configuration. To each geometrical point in Bκ corresponds a unique ‘material point’ of the body. Likewise selection of µ∗ by
O∗ involves a fixed region B∗

µ∗ in E∗. Map λ identifies the locations of material points in the two reference configurations and is
time-independent.
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where (see [1], (3.37))

F∗ = Qt FH−1 (2.11)

with

H := ∇λ. (2.12)

Thus

T̂κ(F) = QT
t T

∗
µ∗(Qt FH−1)Qt. (2.13)

By O.5. this relation holds for all invertible F and all relative motions of O∗ and O. Consider two conceivable
relative motions in which at instant t Qt takes the values Q1 and Q2 and the deformation gradient for O is F0.
Then from (2.13)

T̂κ(F0) = QT
1 T

∗
µ∗(Q1 F0 H−1)Q1

= QT
1 T

∗
µ∗(Q2(QT

2 Q1 F0)H−1)Q1

= QT
1 {Q2 T̂κ(QT

2 Q1 F0)QT
2 }Q1. (2.14)

The last step follows from (2.13) with F := QT
2 Q1 F0. Writing

Q := QT
2 Q1, (2.15)

(2.14) yields

T̂κ(QF0) = QT̂κ(F0)QT . (2.16)

The arbitrary nature both of F0 and possible relative motions of O∗ and O imply that (2.16) should hold for all
deformation gradients F0 and all proper orthogonal tensors Q (see Sect. 2.2).

Remark 3. The standard restriction (2.16) has been derived without any restriction upon the choice of reference
configuration by O∗. The foregoing should not be confused with formally similar computations which correspond
to a change of reference configuration by O. If µ is another reference configuration chosen by O then the
corresponding response function T̂µ must satisfy, for all deformation gradients Fµ,

T̂µ(Fµ) = T = T̂κ(Fκ). (2.17)

Here the deformation gradients Fκ and Fµ with respect to κ and µ, respectively, are related by

Fµ = FκK, where K := ∇(κ ◦ µ−1). (2.18)

Accordingly

T̂µ(F) = T̂κ(FK−1) (2.19)

for all deformation gradients F computed with respect to µ, and hence the response function T̂µ is uniquely
determined by T̂κ. The different natures of H (see (2.12)), an invertible linear map from V onto V∗, and K
(see (2.18)2), an invertible linear map from V onto V , has been rendered precise by distinguishing between
‘space’ as perceived by different observers in the manner of Noll [14]11. It is relation (2.19) which is used to
categorise the symmetry group of the material for O with respect to configuration κ. In [1] (preceding (3.35)) it
was remarked that in selecting a reference configuration it is natural for an observer to choose a configuration
assumed by the body at some given instant. Of course, two different observers not in communication cannot be
expected to choose the same instant: in such case H in the foregoing is unrestricted. If the same instant were to
be selected then H would be an orthogonal map from V onto V∗. The latter case was considered in Murdoch [15]
for simplicity, and cited incorrectly in Sect. 4.3 of Liu [3] as evidence that H must be orthogonal. The general
situation addressed in [1] was first presented as Remark 3 in Murdoch [16].

11 Having made such distinction it becomes impossible to adopt L.3. in this context, since the domains of T̂κ and Tµ∗ differ,
being invertible linear transformations on V and V∗, respectively.
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3 Liu’s ‘counter-examples’

3.1 Preamble

By ‘counter-example’ Liu means a candidate model of material behaviour consistent with O.1–5 but not
‘isrbm’/‘form-invariance’. It is not clear just why Liu feels the need to add to the list of established and physically-
motivated models in [10–13] which share this characteristic, unless it is to emphasise that requirements O.1–5
are less restrictive than those of Euclidean objectivity together with ‘isrbm’/‘form-invariance’. Of course, satis-
faction of O.1–5 by a candidate model is no guarantee that the model describes any actual behaviour, but only
that objective considerations do not preclude such possibility12. However, it requires but a single example of
actual behaviour consistent with O.1–5 but not with ‘isrbm’ to expose the failure of ‘isrbm’ as a ‘principle’.

3.2 ‘Counter-example’ 1 (Liu [2], Sect. 4.1)

T = λ(e .De)1 + µD =: T̃(D, e). (3.1)

Here, for a particular observer, O say, T is the stress tensor, D is the symmetric part of the velocity gradient,
and e is a unit vector fixed in the reference frame adopted by O. The necessity of knowing both D and e in
obtaining T is here emphasised by writing the combination as T̃(D, e) in contrast to Liu who in [2] regards
this expression to be a function T̂(D) of D alone, presumably since by hypothesis e is fixed for observer O.
However, also by hypothesis, Liu states e is objective, so that at instant t another observer O∗ will regard this
vector as13 e∗(t) := Qt e. The stress response function is thus a tensor-valued function of an objective tensor
field value D and an objective vector e. The implications for T̃ of O.4 and O.5 follow in the manner of Sect. 3.2
of [1] concerning constitutive dependence upon objective field values14: specifically, it follows that any such
response function T̃(D, e) must satisfy

T̃(QDQT ,Qe) = QT̃(D, e)QT (3.2)

for all proper orthogonal tensors on V . It is a simple matter to verify that T̃(D, e) delivered by (3.1) does
indeed satisfy (3.2). Accordingly the material in question is consistent with all objective considerations O.1–5.
Of course, this is a matter quite distinct from whether such a material exists. The particular peculiarity of this
candidate model is that it selects a distinguished class of observers, namely O together with any other observer
O′ who may undergo arbitrary translatory motions, but not rotate, relative to O. Then for such an O′ the relevant
vector

e′ = Q0 e, (3.3)

where Q0 is a fixed orthogonal map from V into V ′ and hence e′ is a fixed unit vector for O′. For any other
observer O∗ the relevant vector e∗ varies with time.

Remark 4. It is natural to ponder the physical plausibility of model (3.1) since it is not ruled out by O.1–5. Given
that the only distinguished frames in classical mechanics are inertial, one is led to consider O above as an inertial
observer. The model could reflect a possible oriented, spatially uniform and temporally constant (for inertial
observers), microstructure reminiscent of nematic liquid crystals. Were such a material to exist it would be useful
in compass design. Of course in practice one is faced with devising a model which represents actual behaviour,
and employs O.1–5 to refine candidate models to guarantee observer consensus and thus ensure candidacy for
physical legitimacy. Said differently, any proposal to adopt (3.1) in practice would be motivated by a physical
interpretation of e.

Remark 5. From (2.2) and (3.2) one easily obtains

T∗ = λ(e∗.D∗e∗)1∗ + µD∗, (3.4)

12 The same can be said if a model satisfies Euclidean objectivity plus isrbm. For example, T = µD, where µ is constant,
corresponds to a material in which the stress vanishes in the absence of motion, no matter what be the density.

13 The time-dependence of e∗ forces O∗ to regard T∗ to be a function both of D∗ and e∗ (see (3.4) and (3.5)): this is particularly
evident if O∗ writes (3.4) in standard Cartesian co-ordinate format for which the basis vectors define fixed directions in E∗.

14 Here one has a special case in which, for any given observer, at any given instant, there is a dependence on a spatially-constant
objective vector field.
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where
D∗ := Qt DQT

t , e∗ := Qt e, and 1∗ := Qt QT
t (3.5)

denotes the identity on V∗ (see [1], (2.3)). Hence T∗ is a function of the symmetric part D∗ of the velocity
gradient, as computed by O∗, and e∗. Notice that formally, from (3.1),

T̃(D∗, e∗) = λ(e∗.D∗e∗)1 + µD∗. (3.6)

However, T̃(D∗, e∗) does not make sense since we have consistently distinguished15 V∗ from V: the domain of
T̃ in (3.1) is (Sym V)× (Unit V), where Sym V denotes the space of symmetric linear transformations on V and
Unit V represents the set of unit vectors in V , while D∗ ∈ Sym V∗ and e∗ ∈ V∗. If such distinction is not made
then (3.4) and (3.6) coincide and I.1 of Sect. 1 would be satisfied. Liu regards (3.1) and (3.4) as frame-dependent
relations, and hence at variance with his version I.1′ (see Sect. 1). To try to appreciate this viewpoint one may
regard (3.4) as a special case of

T∗ = T̂(D∗,Qt; e), (3.7)

with (3.1) and the relation for O′ with corresponding vector e′ given by (3.3) yielding

T = T̂(D,1; e) and T′ = T̂(D′,Q0; e). (3.8)

From this viewpoint the constitutive function common to all observers is T̂(. , . ; e) and the response depends
upon the instantaneous orientation of the observer frame of reference with respect to a ‘fixed’ frame. Such a
viewpoint is, however, misleading: the dependence upon Qt and e in (3.7) is upon the composite variable Qt e,
as manifest in (3.6). One meets similar confusion in the literature when material response depends upon spin
W+S relative to an (any) inertial frame. (Here W denotes the skew part of the velocity gradient and S the spin
of the observer frame with respect to any inertial frame.) If the dependence is written as a function of both W
and S then the response appears to be frame-dependent. Of course, in combination W + S this is not the case.

3.3 ‘Counter-example’ 2 (Liu [2], Example 2 of Sect. 5)

Liu considers a possible model of elastic behaviour of the form

T = s0 1 + s1 B + s2 Be ⊗ Be =: Tκ(B, e), (3.9)

where s0, s1 and s2 are constants and B := FFT , where F denotes the gradient of the deformation from a
reference configuration and e is a fixed vector in the frame of the observer. As in the ‘counter-example’ of (3.2),
e is said to be objective.

As in the foregoing subsection, dependence of T upon both an objective tensor-valued field B and vector e
has been made explicit by writing Tκ(B, e) rather than T̂κ(F) or T̃κ(B) for the constitutive expression. The
discussion of Sect. 3.2 may be repeated save only for replacing D by B and T̃ by Tκ. Accordingly the material
satisfies the analogue of (3.2) but is frame-dependent in the manner of (3.7) and (3.8).

Remark 6. The candidate constitutive relations (3.1) and (3.9) are similar in that they could describe the behaviour
of materials which have a one-dimensional microstructure invariant relative to inertial frames and modelled in
such a frame by16 e. Subjecting a body composed of such material to a superposed rigid body motion would alter
the orientation of the body but not that of its microstructure. Accordingly it is not surprising that the change in
stress does not correspond to a corresponding rotated version of the original stress: that is, that isrbm is violated.
On the other hand, an observer who walks round the body sees both the body and its microstructure suffer an
apparent rigid body motion, with consequent corresponding rotation of the stress field. This is the essence of the
disagreement between the theses of [1] and [2], namely whether isrbm should be interpreted in the ‘one observer,
two motions’ sense (Liu) or ‘one motion, two observers’ interpretation (Murdoch). In the former it is the body
that is rotated relative to the rest of the material universe, while the latter corresponds to one observer putting
himself/herself in the shoes of another observer walking round the body for whom both the body and the rest of
the material universe appear to rotate together.

15 It should be noted that such distinction renders L.3 in Sect. 2.3 a priori meaningless in general and hence should worry anyone
who wishes to emulate the rigour and clarity of Noll: see [14].

16 Such behaviour is analogous to that observed in Helium II where the microstructure corresponds to a vortex structure.
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3.4 Example 3 (Liu [2], Example 1 of Sect. 5)

Liu cites the example of a transversely-isotropic elastic material given by

T = s0 1 + s1 FFT + s2 Fn ⊗ Fn. (3.10)

Here n is a fixed vector in the reference configuration. It is not clear why this example is introduced, unless merely
to contrast its superficial similarity with relation (3.9). It is, however, useful to see how (3.10) is considered from
the viewpoint of [1].

The nature of the material modelled by (3.10), for the purposes of observer agreement O.4., is that

(i) it is an elastic material (that is, the stress is a function of the deformation gradient with respect to a choice
of reference configuration),

(ii) there is a choice of reference configuration, κ say, with respect to which it is transversely-isotropic, and
(iii) the stress is the sum of three terms: the first a constant scalar multiple of the identity, the second a constant

scalar multiple of FFT (where F denotes the deformation gradient with respect to the configuration κ of
(ii)), and the third a constant scalar multiple of the tensor product of Fn with itself, where n is either unit
vector parallel to the axis of symmetry in κ.

Such agreement means that if observer O adopts relation (3.10) as his/her model then any other observer O∗

will take the corresponding stress field to be

T∗ = s∗
0 1∗ + s∗

1 F∗(F∗)T + s∗
2 F∗ m∗ ⊗ F∗m∗, (3.11)

where m∗ is a unit vector parallel to the axis of symmetry in a reference configuration µ∗ with respect to which
the material is transversely isotropic. Here (see [1], Sect. 3.3)

F∗ = Qt FH−1, (3.12)

where H denotes the gradient of the bijective map λ which identifies material points in κ with those in µ∗. (Notice
that H is an invertible linear map from V into V∗.) We now use (3.12) and (2.2) to explore how µ∗,m∗, s∗

0, s
∗
1

and s∗
2 must be related to κ,n, s0, s1 and s2.

From (3.11), (2.2) and (3.10)

s∗
01

∗ + s∗
1F

∗(F∗)T + s∗
2F

∗m∗ ⊗ F∗m∗ = T∗ = Qt TQT
t

= Qt(s01 + s1FFT + s2Fn ⊗ Fn)QT
t . (3.13)

However, use of (3.5)3 and (3.12) yields

s∗
01

∗ + s∗
1F

∗(F∗)T + s∗
2F

∗m∗ ⊗ F∗m∗

= s∗
0Qt QT

t + s∗
1Qt(FH−1)(FH−1)T QT

t + s∗
2Qt(FH−1m∗ ⊗ FH−1m∗)QT

t . (3.14)

From (3.13) and (3.14), specifically equating the right-hand sides of these relations, pre-multiplying by QT
t and

post-multiplying by Qt, and noting (see [1], (2.3)1) QT
t Qt = 1,

s01 + s1FFT + s2Fn ⊗ Fn = s∗
01 + s∗

1(FH−1)(FH−1)T + s∗
2FH−1m∗ ⊗ FH−1m∗. (3.15)

Agreement on all possible responses (O.5) means (3.15) must hold for all invertible F with positive determinant.
Setting first F = 1 and then F = α1 (α > 0, α �= 1) yields

s01 + s11 + s2n ⊗ n = s∗
01 + s∗

1H
−1H−T + s∗

2H
−1m∗ ⊗ H−1m∗ (3.16)

and
s01 + α2{s11 + s2n ⊗ n} = s∗

01 + α2{s∗
1H

−1H−T + s∗
2H

−1m∗ ⊗ H−1m∗}. (3.17)

Thus α2× (3.16) – (3.17) gives
(α2 − 1)s0 = (α2 − 1)s∗

0,

whence
s∗
0 = s0. (3.18)

Accordingly (3.15) reduces to

s1FFT + s2Fn ⊗ Fn = s∗
1FH−1H−T FT + s∗

2FH−1m∗ ⊗ FH−1m∗. (3.19)
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Pre-multiplication by F−1 and post-multiplication by F−T yields

s1 1 + s2 n ⊗ n = H−1(s∗
1 1∗ + s∗

2m
∗ ⊗ m∗)H−T . (3.20)

Relations (3.18) and (3.20) are necessary and sufficient conditions for observer agreement. The time-independent
tensor H−1 (which maps V∗ into V) admits a polar decomposition

H−1 = VR (3.21)

where17

V ∈ Sym+V and R ∈ Orth(V∗,V). (3.22)

Using (3.21), (3.20) becomes
s1 1 + s2 n ⊗ n = s∗

1V
2 + s∗

2Vm ⊗ Vm, (3.23)

where
m := ±Rm∗. (3.24)

Relation (3.20) holds provided (3.23) is satisfied, with H delivered via (3.21) for any R. Clearly (3.23) is satisfied
by V = 1, m = n, s∗

1 = s1 and s∗
2 = s2. It follows that any isometric map λ of the reference configuration κ

selected by O, into space E∗ as perceived by any other observer O∗ (which will accordingly have a gradient RT

with value in Orth (V,V∗)), will serve as a reference configuration for O∗ with (see also (3.18)) the same material
constants as for O and (see (3.24)) with m∗ = ±RT n. Of course, this result is not surprising. However, other
non-trivial possibilities exist. For brevity we merely list two other cases, but note that a complete and systematic
characterisation of solution pairs (V,m), with corresponding values of s∗

1 and s∗
2 delivered these results.

Case 1: V = α1 (α > 0), m = ±n; s∗
1 = s1/α2, and s∗

2 = s2/α2. This corresponds to map λ being the
composition of a dilatation, with scaling factor α−1, of the body in configuration κ with an arbitrary isometry
having gradient RT . Of course (see (3.24)), m∗ = ±RT n.

Case 2: Let e1, e2, e3 denote any orthonormal basis with e1 = n, and suppose s1 and (s1 + s2) have the same
sign (see Remark 7 below). Then for arbitrary positive λ1, λ3, we can have

V = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3,

where λ2
2 = s1λ

2
1/(s1 + s2), m = ± e3, s∗

1 = (s1 + s2)/λ2
1, and s∗

2 = s1(λ−2
3 − λ−2

2 ). Here µ∗ is obtained
from κ via three simple stretches (two of which are related) of magnitudes λ−1

1 in the n direction and λ−1
2 , λ−1

3
in mutually orthogonal directions transverse to the axis of symmetry defined by n, followed by an arbitrary
isometry having gradient RT . Here m∗ = ±RT m = ±RT e3 defines the axis of symmetry in µ∗.

Remark 7. In configuration κ the material described by (3.10) has residual stress
(s0 + s1)1 + s2 n ⊗ n. A deformation with gradient F = αn ⊗ n + β(e2 ⊗ e2 + e3 ⊗ e3), here e2, e3
are as in Case 2 – yields a zero stress for choice α = (−s0/(s1 + s2))1/2 and β = (−s0/s1)1/2. That is, it
is possible to find a stress-free configuration provided s1 and s1 + s2 have the same sign and s0 and s1 have
opposite signs.

Remark 8. In Sect. 4.3 of [3] Liu criticises the foregoing analysis since it apparently embodies ‘a denial of
the assumption of free choice of reference configuration’. This criticism is misconceived. While any choice of
reference configuration serves to describe elastic behaviour, the existence of any specific material symmetry
will delineate a distinguished class of such configurations in which this symmetry is evident.18 The transverse
isotropy of material (3.10) was supposed to have been recognised by both O and O∗ in our analysis, together
with its specific form (see (i)–(iii)). As a consequence it was possible for O to delineate all possible reference
configurations that could be selected by O∗ so as to agree on the symmetry and on the form of (3.10). A simpler
example is provided by Liu in footnote 6 of [3], namely

T = s1 B for O and T∗ = s∗
1 B∗ for O∗. (3.25)

17 Sym+V denotes the set of symmetric positive-definite tensors on V and Orth(V∗, V) the set of orthogonal tensors from V∗ onto
V .

18 Selection of such configurations in practice can be difficult: see, for example, Jones [17] in which the problem of identifying
principal material directions for orthotropic materials is discussed on pages 41 and 55. Notice that the very practice of selection runs
counter to Liu’s insistence on a common reference configuration.
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Here O and O∗ have recognised the existence of configurations with respect to which the material is isotropic,
and each has chosen a reference configuration which reflects this symmetry.19 From (2.2), (3.12) and (3.25) we
have

s∗
1(QFH−1)(QFH−1)T = s∗

1 F∗(F∗)T = s∗
1 B∗

= T∗ = QTQT = s1 QBQT = s1 QFFT QT . (3.26)

Consequently

s∗
1 H−1H−T = s1 1. (3.27)

It follows that H = αR for any orthogonal tensor R from V into V∗ and any α ∈ R
+, in which case s∗

1 = α2 s1.
Accordingly the recognition of isotropy by O and O∗ in their selection of reference configurations means these
configurations must be related by dilatations and/or rotations.

Remark 9. In Sect. 5 of [3] Liu incorrectly claims that O.1-5 do not suffice to exclude material response of the
form

T(x, t) = T̂(x, t). (3.28)

That is, for any observer O the stress at a given point x ∈ E and time20 t is an explicit function21 of both x and
t. O.4 requires that for any other observer O∗ the stress is given by

T∗(x∗, t∗) = T̆∗ (x∗, t∗). (3.29)

If x0 ∈ E is a fixed point and in (2.1) we set y = x0 and c∗(t) := αt(x0) then

x∗ = c∗(t) + Qt(x − x0). (3.30)

Hence from (2.2) and (3.28)–(3.30),

T̆∗(c∗(t) + Qt(x − x0), at + b) = Qt T̂(x, t)QT
t . (3.31)

From O.5 this is to hold for all possible relative motions of O∗ and O. In particular consider O and O∗ at relative
rest. That is, c∗(t) = c∗ (any fixed point in E∗) and Qt = Q0 (any orthogonal transformation from V into V∗).
Thus (3.31) becomes

T̆∗(c∗ + Q0(x − x0), at + b) = Q0 T̂(x, t)QT
0 . (3.32)

The right-hand side of (3.32) does not change as different choices of c∗ are made. Thus T̆∗ does not depend
upon its first argument. Similarly, different choices of time origin by O∗, corresponding to arbitrary choice of
b, do not change the right-hand side of (3.32) and hence T̆∗ does not depend upon its second argument. Thus
T̆∗ is constant. Now (3.32) implies T̂ must be independent of its arguments, so that from (3.28) and (3.29) both
T and T∗ are constant linear transformations, T0 and T∗

0 say. However, (2.2) requires that for general relative
motions

T∗
0 = Qt T0 QT

t (3.33)

so that T∗
0 does depend upon t. This contradiction implies that the initial hypothesis must be false. That is,

material response of form (3.28) is ruled out (by O.4 and O.5). The reductio ad absurdum nature of the foregoing
argument seems not to have been recognised by Liu who confuses the hypothesis (3.28) in this logical argument
with the assumption of arbitrary relative motions contained in O.4, 5.

19 Only via such selection can dependence upon F be reduced to one upon B. Notice that the matter is not entirely trivial since the
material has no ‘natural’ (that is, stress-free) configuration.

20 On selecting a time scale and origin observer O can associate a time t ∈ R with any given instant. From O.3 (specifically
agreement on time lapses) the corresponding time for O∗ is t∗ = at + b. Here a, b ∈ R : a > 0 is a specific constant associated
with (if a �= 1) a different choice of time units and b is arbitrary, corresponding to choice of time origin.

21 In distinction to implicit dependence as, for example, a viscous fluid for which
T(x, t) = T̂(ρ(x, t(),D(x, t)): see [1], (3.17)1.
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4 A key modelling issue

As indicated in (a) of Sect. 2.3, Liu’s general form (2.3) of the constitutive relation for Cauchy stress can be shown
(by the reasoning of [1], which invokes O.4 and O.5 and accordingly different hypothetical relative motions of
observer pairs) to imply isrbm for the response of such a material. This is to be contrasted with Liu’s postulation
of ‘form invariance’ (2.4), which is equivalent to isrbm modulo the generally-accepted relation (2.2). At this
point the reader may wonder what the fuss is all about, since (2.3) is very general, and isrbm is satisfied. The
problem stems from how O.4 is to be regarded when (2.3) holds for an inertial observer Oin/frame φin. There
are two ways to proceed.
P.1. Disregard the inertial nature of Oin, reason as above, and deduce satisfaction of isrbm by Fφin , or
P.2. note the special character of inertial frames (O.2) and accordingly (via O.4) take the constitutive relation
for an arbitrary observer O∗ to be

T∗(X, t) = Fφ∗((χt
in)∗, X, t), (4.1)

where (χt
in)∗ is the motion with respect to an inertial frame chosen by O∗. Invocation of O.5 does not now imply

that isrbm holds for Fφin but only that this response function be invariant under Galilean transformations.
The foregoing is exemplified by the history of confusion associated with the dependence of stress upon spin

(skew part of the velocity gradient) derived in the kinetic theory of gases and attributed to Burnett [18]. Failure to
recognise that Burnett’s equations were derived in an inertial frame led many authors (see, for example, [5], [19],
[20]) to note incompatibility with isrbm and conclude that material frame-indifference (identified as isrbm) could
not be a principle, but rather a useful approximation. Truesdell [21] argued that the form and approximative nature
of the Burnett equations could not be regarded as constitutive relations in the sense of continuum mechanics.
Müller [10] alone recognised that the spin-dependence was that upon spin relative to an (hence any) inertial
frame, so demonstrating that in this context procedure P.2 must be adopted. The Burnett equations are Galilean
invariant and hence consistent with O.4, 5. Müller’s general form of these equations is also consistent with O.4,
5: see Remark 11 in [1].

An entirely analogous situation has arisen in the phenomenological description of Helium II in which the
balance of linear momentum for the superfluid involves a diffusive force density Fsn which accounts for the
differing motions of superfluid and normal fluid (see [11], p.189). Independently, Hall and Bekarevich & Kha-
latnikov derived an explicit relation for Fsn which involves superfluid spin (see (3.15)–(3.17) in [11]) and
consequently violates isrbm. However, interpreting such spin as that with respect to an (any) inertial frame22

results in a constitutive relation for Fsn in complete accord with O.4, 5.

Remark 10. The foregoing distinction between P.1 and P.2 highlights the crucial nature of O.4 in the controversy
over the implications of material frame-indifference, in contrast to Liu’s dismissive view of this assumption.

5 Scales of mass, length, and time

Two observers cannot in general be expected to select the same scales of mass, length, and time. This implies
that the foregoing requires modification. Specifically, agreement between O and O∗ upon distances between
simultaneous events results in the modification of (2.1) to

y∗ − x∗ = αQt(y − x). (5.1)

Here α is the dimensionless factor necessary to convert length units employed by O to those adopted by O∗. Of
course, there will be a different scaling factor for each category of physical quantities which have the same mass
M , length L, and time T , dimensions. In particular suppose β is the factor relevant to ML−1T−2 quantities (e.g.
tractions). Thus if t(t∗) denotes the traction field on a surface with unit normal field n (n∗) and the corresponding
stress field is T (T∗) for observer O (O∗) then

t∗ = βQt t and n∗ = Qt n (5.2)

22 To many physicists the appearance of spin in constitutive relations only makes sense with this interpretation. This may explain
why many researchers have no problems with the cited relations (3.15)–(3.17), in contrast to continuum mechanicians who subscribe
to isrbm: see [22].
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at any instant ‘t’. (Of course, ‘unit normal vectors’ are dimensionless and no scaling factor is involved in (5.2)2.)
Since

t = Tn and t∗ = T∗n∗ (5.3)

it follows (since n is any unit vector) that
T∗ = βQt TQT

t . (5.4)

Revisiting the arguments of [1], and taking due account of the foregoing (and appropriate scaling factors when
calculating spatial and temporal derivatives of relations between quantities associated with O and O∗), it can be
shown that the restrictions imposed upon the response function(s) relevant to O involve only proper orthogonal
tensors Q on V . Essentially this is because in all cases Q is of the form (αQ2)−1(αQ1), with Q1 and Q2
orthogonal maps from V into V∗: that is, Q = QT

2 Q1 as in [1]. Thus the standard restrictions upon response
functions for any given observer O remain unchanged as a consequence of the arguments advanced in [1], no
matter what choices of units of mass, length, and time are made by other observers.

6 Concluding remarks

It is not always clear just what viewpoint is adopted by those who subscribe to the isrbm interpretation of material
frame-indifference23 in respect of the spin (relative to inertial frames) that appears to play a rôle in determining
the behaviour of gases [10], superfluid helium [11], turbulence [12] and the lack of ‘form-invariance’ associated
with modelling magneto-elastic phenomena [13]. An extreme viewpoint is to deny any possibility of spin-
dependence, and hence call into question any theories associated therewith.24 Another is to regard this version
of material frame-indifference as an approximation which is very good for most materials. While clearly any
statement of the principle cannot be exact in an ultimate sense (since all behaviour is modified by the process
of observation, codified in its quantum-mechanical description) the viewpoint here advanced has addressed and
(modulo acceptance of O.1–5) resolved issues which have caused confusion. Specifically, the viewpoint here
advanced

(i) is systematic in delineating what is entailed in reaching observer consensus and provides a rationale for
obtaining restrictions upon any candidate response function(s)25,

(ii) does not require different observers to employ the same response functions26 in modelling any specific
behaviour nor to adopt the same scales of mass, length, and time,

(iii) leads to standard restrictions on response functions in terms only of proper orthogonal tensors,
(iv) in delivering the standard restrictions on response functions obtained in [1] for elastic and viscous fluids (and

simple materials in general), has shown that the responses of these materials satisfy isrbm as a consequence
of O.1-5 rather than via an a priori assumption of isrbm as a ‘principle’ (indeed the arguments deliver isrbm
for all materials considered by Liu), and,

(v) for materials with a constitutive dependence upon motion history relative to inertial frames (for example,
spin relative to such frames), requires only that the response functions be Galilean invariant.

23 Interestingly, Bertram and Svendsen [23] did not regard isrbm to be a general principle for all materials. However, they did not
address restrictions upon response functions which do not satisfy isrbm.

24 Sceptics should consult [11], Sect. 3(e) for theories which describe vortex motion in Helium II, particularly the interpretation
of isrbm in the last paragraph. That ‘spin’ therein should more properly be that with respect to inertial frames was given support in
[22] (see Eq. (1.3)).

25 Liu criticises the lack of a mathematical formulation of O.4, 5. Given the impossibility of foreseeing all possible future models
it is difficult to see how such might be drafted. Liu’s own formalism, while general, does not include any microstructural features
as required to describe liquid crystalline behaviour nor address constitutive relations of form (4.1).

26 A variety of response functions were explicitly given in Sect. 3.4 which model, for different observers, the material exemplified
by Liu in (3.10). Accordingly this is a counter-example to I.1′.
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