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Abstract. A kinematics framework is developed for materials with two fiber families that are
not necessarily orthogonal or mechanically equivalent. These two latter conditions represent
important subclasses that are analyzed. To succinctly define the strain, six scalar strain attributes
are developed that have direct physical interpretation. In the hyperelastic limit, this approach
allows the Cauchy stress t to be expressed as the sum of six response terms, almost all of which
are mutually orthogonal (i.e. 14 of the 15 inner products vanish). For small deformations, the
response terms are entirely orthogonal (i.e. all 15 inner products vanish). Experimental advantage
is demonstrated for finite strain hyperelastic materials by showing that common tests, for the first
time, can directly determine terms in the strain energy function of two fiber composites.
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1 Introduction

Materials reinforced with two families of fibers have tremendous utility in industry, engineering, medicine,
and science. Some undergo finite strain (e.g. tires and hoses) while others do not (e.g. epoxy reinforced with
carbon fiber cloth). The latter example is very elastic whereas soft biotissues (e.g. arteries) are visco-elastic.
Unfortunately, it is because of this wide range of behaviors that the strain in such materials is not defined
consistently. Infinitesimal elasticity uses the engineering strain tensor, finite elasticity uses invariants of the right
Cauchy-Green deformation tensor C, and visco-elasticity must utilize the velocity gradient in addition to strain
measures. However, it is shown herein (via demonstration) that an intrinsic, kinematics framework exists for
materials with two distinct fiber directions.

In addition, this framework offers distinct advantage for defining the constitutive behaviors of such materials.
Based on the results of Criscione et al. (2002), it is now evident that the conventional approach to anisotropic
finite elasticity (as in Spencer, 1984) is experimentally intractable. To see why, recall that the Cauchy stress t is
conventionally given by

t =
1
J

7∑
i=1

∂W

∂Ii
Ăi , (1.1)
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where J = det(F) and with the left Cauchy-Green deformation tensor, B = FFT ,

Ă1 = 2B , Ă2 = 2
(
I1B − B2) , Ă3 = 2I3I , (1.2)1−3

Ă4 = 2I4m1 ⊗ m1 , Ă5 = 2I4 (Bm1 ⊗ m1 + m1 ⊗ Bm1) , (1.2)4−5

Ă6 = 2I6m2 ⊗ m2 , Ă7 = 2I6 (Bm2 ⊗ m2 + m2 ⊗ Bm2) . (1.2)6−7

The unit vectors m1 and m2 represent the current directions of the reference orientations M1 and M2. Equiva-
lently, m1 and m2 are respectively FM1 and FM2 with normalization to yield unit magnitude. W is the strain
energy potential function and it is a function of I1−7, the invariants or integrity basis. The scalar partial deriva-
tives of W , the ∂W/∂Ii, are called response functions, and they specify the constitutive behavior of a particular
hyperelastic material.

As shown in Criscione (2003), it is experimentally ill-conceived to determine ∂W/∂I1 and ∂W/∂I2 for
rubber because the response terms (i.e. ∂W/∂I1Ă1 and ∂W/∂I2Ă2) are highly covariant. By highly covariant,
we mean that the absolute value of the inner contraction Ă1 : Ă2 is nearly equal to the product of the magnitudes,
|Ă1||Ă2|, which is the maximum possible value. It directly follows that (1.1) is experimentally ill-conceived as
well. Worse yet, most of the tensors in (1.2) are highly covariant. As shown in Criscione (2003), it is necessary
to minimize covariance in order to minimize the propagation of experimental error.

Another drawback of the conventional invariants is the need to use a different set of invariants for 2-fiber
materials depending on whether the fibers are (1) orthogonal or (2) mechanically equivalent (see Green and
Adkins, 1960). In particular, for case (1) the fiber directions are used to define invariants of C. For case (2), the
fiber bisectors are used.

This paper is the fourth in a series of articles that report scalar strain attributes1 with minimal covariance in
hyperelasticity. For isotropy see Criscione et al., 2000; for transverse isotropy see Criscione et al., 2001; and for
laminae composed of one family of fibers see Criscione et al., 2002. In contrast to the conventional invariants,
the six scalar strain attributes ξ1−6 developed herein are: (1) similarly defined for all two-fiber materials, (2)
physically descriptive of the strain, (3) related in a one-to-one fashion to the components of C when defined
relative to reference material directions, and (4) yield mostly orthogonal response terms in the hyperelastic limit.

Because of condition (3) and the principle of material frame indifference (i.e. W = W (C) for hyperelastic
materials, see Gurtin, 1981), the strain energy function W is expressible as2:

W = W (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6). (1.3)

This expression is valid for all 2-fiber, hyperelastic materials whether their behavior is orthotropic or more
fully anisotropic (i.e. fibers are neither orthogonal nor mechanically-equivalent). If the material behavior is
orthotropic, then it is shown in Sect. 7 how to refine the general class of (1.3) so that W is invariant under the
group of symmetry transformations that is possessed by particular materials. For orthogonal fibers, there are
mirror-symmetry planes with normals in the fiber directions; whereas for mechanically equivalent fibers, there
are mirror-symmetry planes with normals in the directions of the fiber bisectors. For materials with fiber families
that are orthogonal AND mechanically equivalent, our approach allows both sets of symmetry constraints to be
combined forthwith to yield a highly refined subclass of (1.3).

2 An intrinsic, local deformation gradient

Let the unit vectors M1 and M2 be the separate fiber directions in the reference configuration. Moreover, let the
material have two distinct fiber directions in the sense that M1 and M2 are not parallel (i.e.M1·M2 is not ±1).

1 As in Criscione et al. (2002), we use the word ‘attribute’ instead of ‘invariant’ because some of our strain attributes are not
invariant under the symmetry group of orthotropy.

2 We are liberal in our usage of W to represent arbitrary strain energy functions. For example, W (I1, I2) means “W is an arbitrary
function of I1 and I2” and W (ξ1, ξ2) means “W is an arbitrary function of ξ1 and ξ2”. The functional forms may differ such that
W does not depend on ξ1 and ξ2 in precisely the same way that W depends on I1 and I2.
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If the unit vectors m1 and m2 respectively represent the current directions of M1 and M2 then

m1 =
FM1√

M1 · CM1
, m2 =

FM2√
M2 · CM2

. (2.1)

Although M1 and M2 are not necessarily orthogonal, their bisectors are always orthogonal, and we define
an orthonormal triad in the reference configuration as follows:

MA =
M1 + M2√

2 + 2M1 · M2
, MB =

−M1 + M2√
2 − 2M1 · M2

, N = MA × MB . (2.2)

The unit vector N is orthogonal to the plane containing the fibers3, and MA bisects M1 and M2 whereas MB

bisects -M1 and M2. Such use of the bisectors as the axes for analysis goes back at least to Rivlin (1955),
although Spencer (1984) preferred not to use them.

The fibers themselves may not define a sense for M1 and M2. Nonetheless, being vectors, a sense for M1
and M2 must be chosen. Upon doing so, MA and MB are uniquely defined in the reference configuration.
Since a change in sense of M1 or M2 would cause 90◦ shifts in MA and MB , it is anticipated that a sense will
be chosen such that MA and MB will have forthright representations in the structure of interest. For example,
consider a hose that is composed of concentric lamina, each of which is reinforced with two families of helically
wound fibers of equal but opposite pitch. Moreover, let the pitch be different for the separate laminae. If the
sense of M1 and M2 are chosen in each of the laminae so that M1 and M2 have similar projections on the long
axis, then MA will be parallel to the axis whereas MB will be parallel to the hoop direction.

For the current configuration we define an orthonormal triad similar to (2.2) as follows:

mA =
m1 + m2√

2 + 2m1 · m2
, mB =

−m1 + m2√
2 − 2m1 · m2

, n = mA × mB . (2.3)

As above,n is orthogonal to the plane containing the fibers, andmA bisectsm1 andm2 whereasmB bisects −m1
and m2. However, neither of the bisectors represents a material line segment, whereby mA is not necessarily
parallel to FMA. Nonetheless, note that the handedness4 of (n,mA,mB) and (N,MA,MB) is identical, and
that mA

∼= MA, mB
∼= MB , and n ∼= N whenever F ∼= I.

Since they have the same handedness, the orthonormal systems (N,MA,MB) and (n,mA,mB) can be
related by a rigid rotation. We define Q such that QTQ = I, det(Q) = 1, and

n = QN, mA = QMA, mB = QMB . (2.4)

To an observer whose rotation is given by Q, the fiber bisectors and the normal to the fiber plane appear fixed,
i.e. relative to this rotating frame n = N, mA = MA, and mB = MB . Moreover, the observed deformation
gradient only has six independent components. In particular, two components must vanish, and an identity exists
amongst the other seven. Toward this end, the deformation seen by such a rotating observer is

f = QTF . (2.5)

It should be evident that f and F induce the same Lagrangian strain because fT f = FTF = C = U2.
The two vanishing components of f arise because the reference fiber plane and the deformed fiber plane have

the same normal. A reference normal is related to a current normal as follows:

n =
F−TN
|F−TN| . (2.6)

Whereby with use of (2.4) and (2.5), we obtain,

N =
f−TN
|f−TN| . (2.7)

3 It is straightforward to show that N points in the M1×M2 direction.
4 In particular, n · mA × mB = N · MA × MB .
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Substitution of N above into N · fMA and N · fMB confirms that these components must vanish, and f is of
the following form:

[f ]N,MA,MB
=


 fNN 0 0
fAN fAA fAB
fBN fBA fBB


 . (2.8)

The remaining constraint on f arises because f must be such that the fiber bisectors remain unchanged. In order
to derive this constraint, it is helpful to express M1 and M2 as

M1 = cosΘMA − sinΘMB , M2 = cosΘMA + sinΘMB , (2.9)

wherein Θ ∈ (0, π2 ) is half of the angle subtended5 by M1 and M2. This is a straightforward geometric
result of (2.2) and note that Θ is defined in the reference configuration (i.e. it does not depend on F) and that
cos 2Θ = M1 · M2. Appendix A shows that (2.4) and (2.5) require that

fBA = f−1
AAfABfBB tan2Θ . (2.10)

We now factor f into distinct modes of deformation that correspond to the six scalar strain attributes that we
will utilize. Toward this end, it is helpful to make the following definitions:

J = fNN (fAAfBB − fABfBA) , α = J−2/3(fAAfBB − fABfBA) , (2.11)1−2

β = (f−1
BBfAA)1/2 , γ = J−1/3α−1/2(β−1fAB + βfBA) , (2.11)3−4

ψAN =
fANfBB − fBNfAB
fAAfBB − fABfBA

, ψBN =
fBNfAA − fANfBA
fAAfBB − fABfBA

. (2.11)5−6

Together with the constraint (2.10), the above six scalars specify the seven non-vanishing components of f as
follows:

fNN = J1/3α−1 , fAA = J1/3α1/2β(1 + γ2s2c2)1/2, fBB = J1/3α1/2β−1(1 + γ2s2c2)1/2 , (2.12)1−3

fAN = J1/3α1/2β
((

1 + γ2c2s2
)1/2

ψAN + γc2ψBN

)
, fAB = J1/3α1/2βγc2 , (2.12)4−5

fBN = J1/3α1/2β−1
(
γs2ψAN +

(
1 + γ2c2s2

)1/2
ψBN

)
, fBA = J1/3α1/2β−1γs2 , (2.12)6−7

wherein c = cosΘ and s = sinΘ. With this change in variables, f can be factored as follows:

[f ]N,MA,MB
=

J1/3


α−1 0 0

0
√
α 0

0 0
√
α




1 0 0

0 β 0
0 0 β−1




1 0 0

0
√

1 + γ2γs2c2 γc2

0 γs2
√

1 + γ2s2c2




 1 0 0
ψAN 1 0
ψBN 0 1


 . (2.13)

Equivalently, in coordinate-free notation, with the above order preserved

f = J1/3fαfβfγfψ , (2.14)

wherein the tensors fα, fβ , fγ , and fψ are

fα = α−1N ⊗ N + α1/2(MA ⊗ MA + MB ⊗ MB) , (2.15)1
fβ = N ⊗ N + βMA ⊗ MA + β−1MB ⊗ MB , (2.15)2

fγ = N ⊗ N + (1 + γ2c2s2)1/2(MA ⊗ MA + MB ⊗ MB) + γ(s2MB ⊗ MA + c2MA ⊗ MB) , (2.15)3
fψ = I + ψANMA ⊗ N + ψBNMB ⊗ N . (2.15)4

5 Herein we do not consider materials wherein the fiber families are colinear (i.e. the angle subtended by M1 and M2 is zero or
π).
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With scalar multiplication by J1/3 representing the dilatation, the tensors fα, fβ , fγ , and fψ are isochoric or
purely distortional deformations. Figure 1 depicts the four distinct actions of fα, fβ , fγ , and fψ which comprise
the distortion. Note that fα uniformly changes the area ratio of the fiber plane, fβ perturbs the angle subtended
by the fibers, fγ differentially changes the lengths of the fibers, and fψ shears one fiber plane over an adjacent
fiber plane.

Physically, the kinematic parameters are; J = det(f) = det(F) is the volume ratio, α is the area ratio of the
fiber plane due to distortion (i.e. that which is not due to dilatation J), β is a pure shear stretch in the fiber plane
that makes the angle subtended by m1 and m2 more acute if β > 1 or less acute if β < 1, γ is a shear strain in
the fiber plane that differentially changes the lengths of m1 and m2 yet does not perturb the angle subtended by
m1 and m2, ψAN is the tangent of a shear angle in the (N,MA) plane, and ψBN is the tangent of a shear angle
in the (N,MB) plane.

3 An intrinsic set of scalar strain attributes

The six scalars {J, α, β, γ, ψNA, ψNB} are the kinematic parameters that form the basis for our set of six strain
attributes. First, to develop expressions for these kinematic parameters we need an equation for F. Toward this
end, note that (2.5) and (2.14) yield,

F = QJ1/3fαfβfγfψ . (3.1)

With use of (2.4) and (2.15) we obtain

F = J1/3



α−1n ⊗ N +

√
α
√

1 + γ2s2c2
(
βmA ⊗ MA + β−1mB ⊗ MB

)
+

√
αβ

(
γc2mA ⊗ MB +

(√
1 + γ2s2c2 ψAN + γc2ψBN

)
mA ⊗ N

)
+

√
αβ−1

(
γs2mB ⊗ MA +

(
γs2ψAN +

√
1 + γ2s2c2 ψBN

)
mB ⊗ N

)

 . (3.2)

The kinematic parameters as defined in (2.11) can now be obtained directly from F as follows:

J = n · FN ((mA · FMA) (mB · FMB) − (mA · FMB) (mB · FMA)) = det(F) , (3.3)1
α = J−2/3 ((mA · FMA) (mB · FMB) − (mA · FMB) (mB · FMA)) , (3.3)2
β = (mB · FMB)−1/2(mA · FMA)1/2 , (3.3)3
γ = J−1/3α−1/2(β−1mA · FMB + βmB · FMA) , (3.3)4

ψAN =
(mA · FN) (mB · FMB) − (mB · FN) (mA · FMB)

(mA · FMA) (mB · FMB) − (mB · FMA) (mA · FMB)
, (3.3)5

ψBN =
(mB · FN) (mA · FMA) − (mA · FN) (mB · FMA)

(mA · FMA) (mB · FMB) − (mB · FMA) (mA · FMB)
. (3.3)6

The scalars J, α, and β are stretch-like (i.e. unity when F=I), yet we prefer arguments for the strain energy
function that are strain-like (i.e. null when F=I). Consequently, the set of strain attributes utilized herein is as
follow:

ξ1 = lnJ, ξ2 = 3 lnα, ξ3 = 2 lnβ, ξ4 = γ, ξ5 = ψAN , ξ6 = ψBN . (3.4)

The coefficients in the ξ2 and ξ3 definitions are chosen so that linear and quadratic terms in W have meaningful
representations for infinitesimal deformations (see Sect. 5). Upon inspection of (3.4), (2.5), and (2.13), it should
be evident that a physically realizable F is obtained for all possible values of the ξi that are real. In other words,
all of the strain attributes have domains that are (−∞,∞). More importantly, the domain of any one of them is
entirely unaffected if the others are held at prescribed values. In contrast, the domain constraints of each of the
principal invariants of C are non-linear functions of the other invariants (see Criscione et al., 2000).

Upon recalling the physical interpretations at the end of Sect. 2, note that ξ1 is the volume strain; ξ2 is the
area strain of the fiber plane due to distortion (i.e. that which is not due to dilatation); ξ3 indicates change of the
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Fig. 1. This sequence depicts the separate actions of the distinct parts of f which bring the reference configuration (top-left) to the
strained configuration (bottom-left). The two fiber directions (M1 is solid and M2 is dashed) are shown in each panel with the senses
only indicated in the reference. Also shown in the reference are MA, MB , and N which are respectively, the bisector of M1 and
M2, the bisector of −M1 and M2, and the normal to the fiber plane. Although not drawn in the other configurations, the bisectors of
the fibers and the normal to the fiber plane are colinear with those shown in the reference – this is the view of an observer that rotates
by Q, see Sect. 2. fψ shears adjacent fiber planes along one another yet leaves the fiber planes themselves undistorted. fγ distorts
the fiber planes in a manner that differentially changes the lengths of the fibers (here M1 is elongated and M2 is shortened) while
keeping the angle subtended by the fibers constant. fβ changes the angle subtended by the fibers by differentially stretching MA

and MB (here the angle subtended by M1 and M2 is decreased). Note that fβ will uniformly change the lengths of M1 and M2 so
that the ratio of M1 length to M2 length is as induced by fγ . fα uniformly changes the area ratio of the fiber plane and acts normal
to the fibers so as to be isochoric. Note that uniform area change does not perturb the ratio of fiber lengths or the angle subtended by
them. The prior panels in the sequence all have the same volume, and any dilatation is accomplished by scalar multiplication with
J1/3 as shown

angle subtended by m1 and m2 (i.e. the angle is more acute if ξ3 > 0 and less acute if ξ3 < 0); ξ4 indicates
how the fiber lengths have been changed differentially (i.e. M2 · CM2 is greater than M1 · CM1 if ξ4 > 0
and vice-versa if ξ4 < 0, see (B.2)4 in Appendix B); ξ5 represents shear strain in the (N,MA) plane; and ξ6
represents shear strain in the (N,MB) plane.

It is important that this set of strain attributes forms a complete set. By a complete set we mean that the
strain attributes uniquely define C provided M1 and M2 are given (which uniquely specify MA, MB , and Θ).
Appendix B develops the one-to-one relationship6 between ξ1−6 and C. Furthermore, with M1 and M2 defined
by (2.9), then (B.1) yields the following inner products of M1 ⊗ M1, M2 ⊗ M2, and M1 ⊗ M2 with C,

M1 · CM1 = J2/3α
(
β2c2 + β−2s2

) (√
1 + γ2s2c2 − γsc

)2
, (3.5)1

M2 · CM2 = J2/3α
(
β2c2 + β−2s2

) (√
1 + γ2s2c2 + γsc

)2
, (3.5)2

M1 · CM2 = J2/3α
(
β2c2 − β−2s2

)
. (3.5)3

Note that the squares of the fiber stretches (i.e. M1 ·CM1 and M2 ·CM2) each have four separate factors. The
effects of pure dilatation (J) and distortional area change of the fiber plane (α) do not depend onΘ because these
two deformations stretch all material segments in the fiber plane by the same amount. In contrast, the effects of
the pure shear and simple shear in the fiber plane (i.e. the effects of β and γ, respectively) depend on Θ. The β
factor affects the stretch of M1 and M2 equally whereas the γ factor does so differentially. To see this, use (3.5)

6 Given C, the ξi are uniquely defined, and given the ξi, C is uniquely defined.
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to obtain √
M1 · CM1

√
M2 · CM2 = J2/3α

(
β2c2 + β−2s2

)
, (3.6)1√

M2 · CM2√
M1 · CM1

=

√
1 + γ2s2c2 + γsc√
1 + γ2s2c2 − γsc

. (3.6)2

Note that the product of the fiber stretches does not depend on γ whereas their ratio only depends on the shear
associated with γ. The current angle subtended by the fibers is 2θ and

cos 2θ =
M1 · CM2√

M1 · CM1
√

M2 · CM2
=
β2 cos2Θ − β−2 sin2Θ

β2 cos2Θ + β−2 sin2Θ
. (3.7)

Given thatΘ is a reference quantity, the current angle only depends on β in the sense that the motions associated
with J, α, γ, ψAN , and ψBN will not perturb θ whatsoever. Moreover, θ = Θ iff β = 1 because we do not
consider materials wherein M1 and M2 are colinear (i.e. we do not consider materials with cos2Θ = 0 or
sin2Θ = 0). If β > 1 then cos 2θ > cos 2Θ (i.e. θ < Θ) and vice-versa. Similarly, θ > Θ iff β < 1.

Small strain limit with large rotations: Firstly use (2.1–2.3) to determine the reference and current bisectors,
then to first order, the strain attributes are

ξ1 = mA · FMA + mB · FMB + n · FN − 3 , (3.8)1
ξ2 = mA · FMA + mB · FMB − 2n · FN , (3.8)2
ξ3 = mA · FMA − mB · FMB , (3.8)3
ξ4 = mB · FMA + mA · FMB , (3.8)4
ξ5 = mA · FN , (3.8)5
ξ6 = mB · FN . (3.8)6

These equations can be verified via substitution of F with (3.2) followed by use of (3.4) and neglecting higher
order terms in ξ1−6. The fiber strains are, to first order,

√
M1 · CM1 − 1 =

ξ1
3

+
ξ2
6

+
ξ3
2

cos 2Θ − ξ4
2

sin 2Θ , (3.9)1√
M2 · CM2 − 1 =

ξ1
3

+
ξ2
6

+
ξ3
2

cos 2Θ +
ξ4
2

sin 2Θ . (3.9)2

These equations were obtained by substituting (3.4) into (3.5)1,2, neglecting high order terms, and approximating√
(1 + x) with 1 + x/2.

4 Strain-power

To derive an expression for t for hyperelasticity we use the stress power and an expression for the velocity
gradient to derive an expression for the strain-power (i.e. the time derivative of strain energy). This method is
analogous to those in Criscione et al. (2001) and Criscione et al. (2002). To begin, conservation of strain energy
yields

Ẇ = Jt : ḞF
−1
. (4.1)

To develop an expression for the velocity gradient ḞF
−1

in terms of the ξ̇i, differentiation of F in (3.1) with
respect to time yields

Ḟ =

(
Q̇J1/3fαfβfγfψ + Q 1

3J
−2/3J̇fαfβfγfψ + QJ1/3ḟαfβfγfψ

+QJ1/3fαḟβfγfψ + QJ1/3fαfβ ḟγfψ + QJ1/3fαfβfγ ḟψ

)
. (4.2)
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Also, (3.1) gives

F−1 = J−1/3f−1
ψ f−1

γ f−1
β f−1

α QT , (4.3)

and with (2.15) we obtain

f−1
α = αN ⊗ N + α−1/2(MA ⊗ MA + MB ⊗ MB) , (4.4)1
f−1
β = N ⊗ N + β−1MA ⊗ MA + βMB ⊗ MB , (4.4)2

f−1
γ = N ⊗ N + (1 + γ2c2s2)1/2(MA ⊗ MA + MB ⊗ MB) − γ(s2MB ⊗ MA + c2MA ⊗ MB) , (4.4)3

f−1
ψ = I − ψANMA ⊗ N − ψBNMB ⊗ N . (4.4)4

Post multiplication of (4.2) by (4.3) yields

ḞF
−1

= Q̇Q
T

+ 1
3I J

−1J̇ + Q

(
ḟαf−1

α + fαḟβf−1
β f−1

α + fαfβ ḟγf−1
γ f−1

β f−1
α

+fαfβfγ ḟψf−1
ψ f−1

γ f−1
β f−1

α

)
QT . (4.5)

Since N,MA, and MB are reference directions, they are fixed and cannot change with time. Likewise, Θ
does not vary with time. Upon differentiating (2.15) with respect to time and with use of (3.4), we obtain

ḟα =
(
−α−1N ⊗ N + 1

2α
1/2 (MA ⊗ MA + MB ⊗ MB)

)
1
3 ξ̇2 , (4.6)1

ḟβ =
(
βMA ⊗ MA − β−1MB ⊗ MB

) 1
2 ξ̇3 , (4.6)2

ḟγ =
(
γc2s2

(
1 + γ2c2s2

)−1/2
(MA ⊗ MA + MB ⊗ MB) + s2MB ⊗ MA + c2MA ⊗ MB

)
ξ̇4 , (4.6)3

ḟψ = MA ⊗ N ξ̇5 + MB ⊗ N ξ̇6 . (4.6)4

Using much algebra, substitute (4.6) and (4.4) into (4.5). Then use of (2.4) yields

ḞF
−1

= Q̇Q
T

+
6∑
i=1

ξ̇iLi , (4.7)

with

L1 = 1
3I , (4.8)1

L2 = − 1
3n ⊗ n + 1

6 (mA ⊗ mA + mB ⊗ mB) , (4.8)2
L3 = 1

2 (mA ⊗ mA − mB ⊗ mB) , (4.8)3

L4 =
1√

1 + γ2s2c2

(
β2c2mA ⊗ mB + β−2s2mB ⊗ mA

)
, (4.8)4

L5 = α3/2
(
β
√

1 + γ2s2c2 mA ⊗ n + β−1γs2 mB ⊗ n
)
, (4.8)5

L6 = α3/2
(
βγc2 mA ⊗ n + β−1

√
1 + γ2s2c2 mB ⊗ n

)
. (4.8)6

Note that the Li are mostly orthogonal to one another with Li : Lj typically vanishing when i �= j. Indeed, the
only inner product that is potentially non-vanishing is L5 : L6 which vanishes nonetheless when γ is negligible.

Upon substitution of (4.7) into (4.1), we obtain the following strain-power law,

Ẇ = J
(
(L1 : t) ξ̇1 + (L2 : t) ξ̇2 + (L3 : t) ξ̇3 + (L4 : t) ξ̇4 + (L5 : t) ξ̇5 + (L6 : t) ξ̇6

)
, (4.9)
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wherein the Q term vanishes because it is skew whereas t is symmetric. Since Ẇ is an exact differential, it
should be evident that each ξi response function is simply

∂W

∂ξi
= J (Li: t) . (4.10)

Hence, if t and F are known then the response functions can be evaluated forthwith. Moreover, note from (4.8)
that the symmetric parts7 of the Li are always linearly independent in the sense that a particular sym(Li) is
never a linear combination of the others. Consequently, the six equations represented by (4.10) are six linearly
independent equations for t. These 6 equations are nontrivial (i.e. each sym(Li) is never 0, the zero tensor).
Since t only has six unknowns, a symmetric t that satisfies (4.10) is the true stress for hyperelastic materials in
static equilibrium.

5 Hyperelastic constitutive behavior

To define the true stress, let t be given by

t =
1
J

6∑
i=1

∂W

∂ξi
Ξi , (5.1)

with the Ξi kinematic tensors given as follows:

Ξ1 = I , (5.2)1
Ξ2 = −2n ⊗ n + mA ⊗ mA + mB ⊗ mB , (5.2)2
Ξ3 = (mA ⊗ mA − mB ⊗ mB) , (5.2)3

Ξ4 =

√
1 + γ2s2c2

β2c2 + β−2s2
(mA ⊗ mB + mB ⊗ mA) , (5.2)4

Ξ5 = α−3/2
(
β−1

√
1 + γ2s2c2 (mA ⊗ n + n ⊗ mA) − βγc2 (mB ⊗ n + n ⊗ mB)

)
, (5.2)5

Ξ6 = α−3/2
(
−β−1γs2 (mA ⊗ n + n ⊗ mA) + β

√
1 + γ2s2c2 (mB ⊗ n + n ⊗ mB)

)
. (5.2)6

Recall that s = sinΘ and c = cosΘ where 2Θ is the angle subtended by M1 and M2 in the reference
configuration. Upon substitution, it should be evident that t above is the true stress because it is symmetric and
it satisfies (4.10) for each i = 1 − 6.

Furthermore, the response terms are mostly orthogonal in the sense that Ξi : Ξj = 0 when i �= j except
when i = 5 and j = 6 or vice-versa. Indeed, fourteen of the fifteen inner products vanish, and

Ξ5 : Ξ6 = −2α−3 (β2c2 + β−2s2
)
γ
√

1 + γ2s2c2 , (5.3)

which is only non-negligible for large deformation with γ finite.
In addition to being mostly orthogonal, the stress response due to each strain attribute is physically distinct.

The ξ1 response is the pressure, and the ξ2 response specifies the average deviatoric stress in the fiber plane.
Whereas the ξ1 and ξ2 responses have equivalent normal stresses in mA and mB , the ξ3 response provides the
difference of the normal stresses in mA and mB . The ξ4 response specifies a simple shear stress in the fiber
plane. The ξ5 and ξ6 responses are complimentary with the ξ5 response primarily specifying simple shear stress
in the (n,mA) plane and secondarily specifying simple shear stress in the (n,mB) plane. In vice-versa fashion,
ξ6 has a primary response in the (n,mB) plane and a secondary response in the (n,mA) plane.

To further refineW , let us assume that the dependence of t on F is smooth. Whereby, (4.10) requires that the
derivatives of W be smooth because the Li smoothly vary with F. With its derivatives smooth, W is analytical
and thus expressible as a power series. Also, to make the transition from linear to nonlinear material behavior

7 The symmetric part, i.e. sym(Li), is specified because only the symmetric part can contribute to contraction with t.
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forthright, consider a form of W with the constant, linear, and quadratic terms represented directly as follows:

W = Wref +
6∑
i=1


qiξi + 1

2

6∑
j=1

gijξiξj


+G (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) , (5.4)

where Wref , qi, and gij are constants and the function8 G depends on cubic orders or higher of ξ1−6. Since
ξiξj = ξjξi there are only 21 quadratic coefficients in (5.4), and to enforce this constraint we require gij = gji.
To justify the form of W in (5.4), first consider deformation without strain such that F = Q (i.e. f = I). Since
ξ1−6 all vanish, W = Wref when F = Q. Furthermore, the ∂G/∂ξi must vanish when F = Q because G must
be at least of cubic order. Consequently, t becomes

t |(F=Q) =



q1I + q2 (−2n ⊗ n + mA ⊗ mA + mB ⊗ mB)

+q3 (mA ⊗ mA − mB ⊗ mB) + q4 (mA ⊗ mB + mB ⊗ mA)

+q5 (mA ⊗ n + n ⊗ mA) + q6 (mB ⊗ n + n ⊗ mB)


 , (5.5)

wherein mA = QMA, mB = QMB , and n = QN. It should be evident from (5.5) that the qi specify six
orthogonal components of the initial stress.

Upon noting that |ξi| � 1 for infinitesimal strain (i.e. f ∼= I), the 21 quadratic coefficients are elasticity
moduli with the function G being negligible because it has all higher order terms. To see this, let the reference
configuration be stress free and strain energy free so that Wref and the qi vanish in (5.4). Unlike classical
infinitesimal strain analyses, however, let the rotation be finite. Upon neglecting all terms higher than first order
and utilizing the condition gij = gji,

t =
6∑
i=1



g1iξiI + g2iξi (−2n ⊗ n + mA ⊗ mA + mB ⊗ mB)

+g3iξi (mA ⊗ mA − mB ⊗ mB) + g4iξi (mA ⊗ mB + mB ⊗ mA)

+g5iξi (mA ⊗ n + n ⊗ mA) + g6iξi (mB ⊗ n + n ⊗ mB)


 . (5.6)

Recall that n, mA, and mB are easily computed with (2.1) and (2.3), and the ξi for small strain are given by
(3.8).

6 Incompressibility

Since many materials that undergo finite deformation exhibit behavior that is nearly incompressible, our strain
attributes were developed with incompressibility in mind. Indeed, ξ2−6 only depend on distortion in the sense
that they do not depend on dilatation whatsoever.

With J ≡ 1, or equivalently ξ1 ≡ 0, the incompressibility constraint requires that ξ̇1 vanish. Hence, the
strain-power law (4.9) becomes,

Ẇ = J
(
(L2 : t) ξ̇2 + (L3 : t) ξ̇3 + (L4 : t) ξ̇4 + (L5 : t) ξ̇5 + (L6 : t) ξ̇6

)
. (6.1)

Since L2−6 are all deviatoric, the pressure can assume any value without perturbing W. Boundary conditions and
the equilibrium equations must be used to determine the pressure. Nonetheless, the five deviatoric unknowns of
t are uniquely determined by (4.10) with i = 2 − 6.

As in Sect. 5, let us propose a t as follows:

t = −p I +
6∑
i=2

∂W

∂ξi
Ξi , (6.2)

8 Throughout this manuscript, G(a, b, c), for example, means to consider G as a function of a, b, and c. Hence, G(d, e, f) does
not imply that G depends on d, e, and f in the precise fashion that G depends on a, b, and c. When a specific G is required, the
equation number is given.
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where the Ξ2−6 are given by (5.2)2−6 and p is the indeterminate pressure. Since (6.2) satisfies (4.10) with
i = 2 − 6, it is an admissible constitutive law for incompressible, hyperelastic materials with two distinct fiber
directions.

Following the reasoning in Sect. 5, W (ξ2, ξ3, ξ4, ξ5, ξ6) is analytical if t depends on F in a smooth manner.
For incompressible behavior it can be expressed as,

W = Wref +
6∑
i=2

(
qiξi + 1

2

6∑
j=2

gijξiξj

)
+G (ξ2, ξ3, ξ4, ξ5, ξ6) , (6.3)

where Wref , qi, and gij are constants and G depends on cubic orders or higher of ξ2−6. As before, we require
gij = gji, however, instead of 21 moduli there are only 15 because dependence on ξ1 ≡ 0 vanishes.

7 Refinement of W for material symmetries

For many materials with two families of fibers, the reference configuration has one, three, or five mirror symmetry
planes, and subsequently, the form of W is reducible. Throughout this section we define a reflection tensor P
which is a member of the symmetry group of interest and we require thatW (F) = W (FP) so that the behavior
is invariant of P. After determining how the ξi change when F → FP, a refined form of W is found. Since it is
trivial, the identity tensor is neglected in the symmetry groups here.

The first 4 symmetry groups considered are associated with orthotropy, as exemplified by two families of
mechanically equivalent fibers reinforcing an isotropic matrix. For such a material, the angle subtended by the
fiber families in the reference configuration is unconstrained. However, for the mirror symmetries of groups 5-8
below, it is necessary that the fiber families be orthogonal in the reference configuration (i.e. Θ = π/4) because
there is a mirror plane that is normal to at least one fiber direction. For these later cases, it is assumed that Θ has
been set to π/4 in the derivations and results stated.

Group 1 – Fiber plane is a mirror plane9: If the fiber plane is a mirror-symmetry plane in the reference
configuration then the reflection tensor P = (I − 2N ⊗ N) is an allowable symmetry transformation. For this
case PN = −N whereas PMA = MA, PMB = MB . With use of (2.9) it follows that PM1 = M1 and
PM2 = M2. When F → FP then C → PTCP. Upon substitution of C → PTCP into (B.2), note that J ,
α, β, and γ retain their prior values whereas ψAN and ψBN change sign. In other words, ξ1, ξ2, ξ3, and ξ4 are
invariant under the symmetry transformation P whereas ξ5 and ξ6 both change sign.

Hence, the form W (ξ1, ξ2, ξ3, ξ4, ξ25 , ξ
2
6 , ξ5ξ6) does not violate symmetry because W (F) = W (FP). In

order to prove that this form is sufficient, consider a power series expansion of W in terms of ξ5 and ξ6 with
coefficients that are functions of ξ1−4. Upon discarding all terms that violate symmetry (i.e. those that change
sign when F → FP), the aforementioned form of W is obtained. In particular, (5.4) becomes,

W =


Wref +

4∑
i=1

(
qiξi + 1

2

4∑
j=1

gijξiξj

)
+ 1

2g55ξ
2
5 + 1

2g66ξ
2
6 + g56ξ5ξ6

+G
(
ξ1, ξ2, ξ3, ξ4, ξ

2
5 , ξ

2
6 , ξ5ξ6

)

 . (7.1)

Recall that gij = gji, and instead of 21 infinitesimal elasticity moduli, only 13 are needed. If the material is
incompressible such that ξ1 ≡ 0 then (7.1) can be reduced further (simply neglect the ξ1 terms, see Sect. 6),
and only 9 moduli are needed. Since the reference configuration has a mirror symmetry plane with a normal in
N, then the stress in the reference must possess a mirror plane with normal N. Whereby, N must be a principal
direction of t when F = I, and rightfully, q5 and q6 in (5.5) vanish.

Group 2 – Plane normal to MA is a mirror plane10: For this case, the reflection tensor P = (I−2MA⊗MA)
is an allowable symmetry transformation and PMA = −MA whereas PMB = MB and PN = N. With

9 If the fibers are neither orthogonal nor mechanical equivalent, this symmetry will be the only possible one.
10 Since the fibers must be mechanically equivalent for a bisector to be normal to a mirror symmetry plane, it seems unlikely

that only this symmetry would be present. As an example of a material with only symmetry group 2, consider a material with
mechanically equivalent fibers that has an initial shear stress in the (N, MB) plane in its reference configuration, i.e. t(F = I) =
t0(N ⊗ MB + MB ⊗ N). In similar fashion, symmetry groups 3, 5, and 6 are unlikely to be solely present unless residual shear
or a processing method induces anisotropy in an otherwise isotropic matrix surrounding the fibers.
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use of (2.9), note that PM1 = −M2 and PM2 = −M1. Now with substitution of C → PTCP into
(B.2), it follows that ξ1, ξ2, ξ3, and ξ6 are invariant under P whereas ξ4 and ξ5 change sign. Hence, the form
W (ξ1, ξ2, ξ3, ξ24 , ξ

2
5 , ξ4ξ5, ξ6) is admissible. Sufficiency can be proven with a power series method analogous to

that in the above paragraph. W in (5.4) becomes,

W =


Wref +

∑
i=1,−3,6

(
qiξi + 1

2

∑
j=1,−3,6

gijξiξj

)
+ 1

2g44ξ
2
4 + 1

2g55ξ
2
5 + g45ξ4ξ5

+G
(
ξ1, ξ2, ξ3, ξ

2
4 , ξ

2
5 , ξ4ξ5, ξ6

)

 . (7.2)

As above, 13 infinitesimal elasticity moduli are needed in general, 9 for incompressible materials. Similarly,
MA must be a principal direction of t when F = I. Rightfully, q4 and q5 in (5.5) vanish.

Group 3 – Plane normal to MB is a mirror plane: The reflection tensor P = (I − 2MB ⊗ MB) is an
allowable symmetry transformation. In similar fashion, it follows that ξ1, ξ2, ξ3, and ξ5 are invariant under P
whereas ξ4 and ξ6 change sign. The form W (ξ1, ξ2, ξ3, ξ24 , ξ5, ξ

2
6 , ξ4ξ6) is sufficient, and (5.4) becomes,

W =


Wref +

∑
i=1,−3,5

(
qiξi + 1

2

∑
j=1,−3,5

gijξiξj

)
+ 1

2g44ξ
2
4 + 1

2g66ξ
2
6 + g46ξ4ξ6

+G
(
ξ1, ξ2, ξ3, ξ

2
4 , ξ5, ξ

2
6 , ξ4ξ6

)

 . (7.3)

Again, 13 infinitesimal elasticity moduli are needed in general, 9 for incompressible materials. When F = I,
MB is a principal direction of t, and rightfully, q4 and q6 in (5.5) vanish.

Group 4 – Orthotropy with mechanically equivalent fiber families: An isotropic matrix that is reinforced with
two separate fiber families that are mechanically equivalent has a symmetry group that contains all three of the
above mirror symmetries. It should be evident that the formW (ξ1, ξ2, ξ3, ξ24 , ξ

2
5 , ξ

2
6 , ξ4ξ5ξ6) is sufficient, andW

in (5.4) becomes,

W =



Wref + q1ξ1 + q2ξ2 + q3ξ3 + 1

2g11ξ
2
1 + 1

2g22ξ
2
2 + 1

2g33ξ
2
3

+ 1
2g44ξ

2
4 + 1

2g55ξ
2
5 + 1

2g66ξ
2
6 + g12ξ1ξ2 + g13ξ1ξ3 + g23ξ2ξ3

+G
(
ξ1, ξ2, ξ3, ξ

2
4 , ξ

2
5 , ξ

2
6 , ξ4ξ5ξ6

)

 . (7.4)

For this case, 9 infinitesimal elasticity moduli are needed in general, and for incompressible materials there are
only 6. Moreover, the principal directions of the initial stress must coincide with normals to the three orthogonal
mirror planes such that q4, q5, and q6 in (5.5) vanish.

Group 5 – Plane normal to M1 is a mirror plane: For this case, P = (I − 2M1 ⊗ M1) is an allowable
symmetry transformation, and it follows that PM1 = −M1 and PM2 = M2, because M1 ·M2 = 0. Moreover,
with (2.2) we obtain PMA = MB , PMB = MA, and PN = N. Although the end results are straightforward,
the derivations below are more complicated. To clarify these derivations, let ξ∗

1 , for example, be ξ1 for the
deformation FP, whereas let ξ1 without the ‘∗’ be ξ1 for the deformation F. With this notation, the effect of P
on the ξi or other kinematic quantities can be discussed in a forthright manner. Upon setting tan θ = 1, then with
use of (B.2)3 note that β∗ multiplied by β is unity. Whereby, (3.4)3 gives ξ∗

3 = −ξ3. Also, it should be evident
that ξ∗

5 = ξ6 and ξ∗
6 = ξ5 and that ξ1, ξ2, and ξ4 are invariant under P (i.e. ξ∗

1 = ξ1, ξ∗
2 = ξ2 and ξ∗

4 = ξ4).
Hence, the formW (ξ1, ξ2, ξ23 , ξ4, ξ5 +ξ6, ξ3(ξ5 −ξ6), ξ5ξ6) does not violate this symmetry. Similar to above,

for sufficiency use a power series for W expanded in terms of ξ3, ξ5, and ξ6 with coefficients that are functions
of ξ1, ξ2, and ξ4. Symmetry thus requires many coefficients to vanish, and in addition, the coefficient of ξ2n5 must
be equal to that of ξ2n6 whereas the coefficient of ξ2m+1

3 ξ2n+1
5 must be equal but opposite to that of ξ2m+1

3 ξ2n+1
6 .

Sufficiency follows upon grouping terms and using the fact that ξ2n5 + ξ2n6 , for example, can be expressed in
terms of ξ5 + ξ6 and ξ5ξ6 factors. W in (5.4) becomes,

W =



Wref +

∑
i=1,2,4

(
qiξi + 1

2

∑
j=1,2,4

gijξiξj

)
+ q5(ξ5 + ξ6) + 1

2g33ξ
2
3 + g55

(
ξ25 + ξ26

)
+g56ξ5ξ6 + g15ξ1 (ξ5 + ξ6) + g25ξ2 (ξ5 + ξ6) + g45ξ4 (ξ5 + ξ6)

+g35ξ3 (ξ5 − ξ6) +G
(
ξ1, ξ2, ξ

2
3 , ξ4, ξ5 + ξ6, ξ3(ξ5 − ξ6), ξ5ξ6

)


 . (7.5)
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Again, 13 infinitesimal elasticity moduli are needed in general, 9 for incompressible materials. With q3 = 0 and
q5 = q6 in (5.5), it can be verified that the initial stress is such that M1 (recall that θ must be π/4) is a principal
stress direction when F = I.

Group 6 – Plane normal to M2 is a mirror plane: For this case, P = (I − 2M2 ⊗ M2), PM1 = M1,
PM2 = −M2, PMA = −MB , PMB = −MA, and PN = N. With an approach similar to the above, it
should be evident that ξ∗

3 = −ξ3, ξ∗
5 = −ξ6 and ξ∗

6 = −ξ5. As above, ξ1, ξ2, and ξ4 are invariant under P.
Hence, W (ξ1, ξ2, ξ23 , ξ4, ξ5 − ξ6, ξ3(ξ5 + ξ6), ξ5ξ6) does not violate this symmetry. Sufficiency can be proven
as outlined in the previous symmetry group. W in (5.4) becomes,

W =



Wref +

∑
i=1,2,4

(
qiξi + 1

2

∑
j=1,2,4

gijξiξj

)
+ q5(ξ5 − ξ6) + 1

2g33ξ
2
3 + g55

(
ξ25 + ξ26

)
+g56ξ5ξ6 + g15ξ1 (ξ5 − ξ6) + g25ξ2 (ξ5 − ξ6) + g45ξ4 (ξ5 − ξ6)

+g35ξ3 (ξ5 + ξ6) +G
(
ξ1, ξ2, ξ

2
3 , ξ4, ξ5 − ξ6, ξ3(ξ5 + ξ6), ξ5ξ6

)


 . (7.6)

Again, 13 infinitesimal elasticity moduli are needed in general, 9 for incompressible materials. With q3 = 0 and
q5 = −q6 in (5.5), note that M2 is a principal stress direction of the initial stress.

Group 7 – Orthotropy wherein the fiber families are orthogonal: If all three planes with normals N,M1, and
M2 are planes of mirror symmetry then the behavior is orthotropic with respect to the reference configuration.
The prototypical example of this type of material is an isotropic matrix reinforced with two distinct families
of fibers that are orthogonal. It should be evident that the form W (ξ1, ξ2, ξ23 , ξ4, ξ

2
5 + ξ26 , ξ3(ξ

2
5 + ξ26), ξ5ξ6) is

invariant of these reflection symmetries. To prove sufficiency, use a power series approach as above. W in (5.4)
becomes,

W =



Wref + q1ξ1 + q2ξ2 + q4ξ4 + 1

2g11ξ
2
1 + 1

2g22ξ
2
2 + 1

2g33ξ
2
3 + 1

2g44ξ
2
4

+ 1
2g55

(
ξ25 + ξ26

)
+ g12ξ1ξ2 + g14ξ1ξ4 + g24ξ2ξ4 + g56ξ5ξ6

+G
(
ξ1, ξ2, ξ

2
3 , ξ4, ξ

2
5 + ξ26 , ξ3(ξ

2
5 − ξ26), ξ5ξ6

)

 . (7.7)

As is consistent with orthotropic symmetry, only 9 infinitesimal elasticity moduli are needed in general, 6 for
incompressible materials. Rightfully, q3, q5, and q6 in (5.5) vanish, whereby N, M1, and M2 are principal
directions of the initial stress.

Group 8 – Fiber families are orthogonal and mechanically equivalent: If the fibers are orthogonal and
mechanically equivalent in the reference configuration then the reference configuration has five mirror symmetry
planes with normals in M1, M2, MA, MB , and N. With an approach similar to those above, it follows that
W (ξ1, ξ2, ξ23 , ξ

2
4 , ξ

2
5 + ξ26 , ξ4ξ5ξ6) is sufficient, and W in (5.4) becomes,

W =

(
Wref + q1ξ1 + q2ξ2 + 1

2g11ξ
2
1 + 1

2g22ξ
2
2 + g12ξ1ξ2 + 1

2g33ξ
2
3

+ 1
2g44ξ

2
4 + 1

2g55
(
ξ25 + ξ26

)
+G

(
ξ1, ξ2, ξ

2
3 , ξ

2
4 , ξ

2
5 + ξ26 , ξ4ξ5ξ6

)
)
. (7.8)

In general, only 6 infinitesimal elasticity moduli are needed. For incompressibility, only 4 moduli are needed.
Since the initial stress must have principal directions N, M1, M2, MA, and MB , then rightfully, q3−6 in (5.5)
vanish.

8 Experimental utility

With the approach herein there is experimental advantage with regard to determining the functional form of W
for materials with two families of fibers. In particular, we show that specific terms in W can be found from
biaxial stretching on incompressible materials with orthotropic symmetry. No other hyperelasticity formulation,
to our knowledge, allows such definiteness for these materials. With prior approaches, a form for W has had
to be assumed a priori with experimental data being used to determine (with a non-linear regression method)
material parameters of the assumed form.

Biaxial stretching on orthotropic materials is presently done with the orthotropic material directions corre-
sponding to principal stretch directions. For such tests, symmetry in the current configuration constrains t to be
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coaxial to B = FFT , and only normal tractions are needed to deform the specimen. Hence, consider a sheet
of incompressible material with mechanically equivalent fibers undergoing biaxial stretch with MA and MB as
the in-plane stretching directions. Let the deformation be given by,

F = λAMA ⊗ MA + λBMB ⊗ MB + λ−1
A λ−1

B N ⊗ N . (8.1)

Whereby, mA = MA, mB = MB , and n = N. As for the kinematic parameters of (3.3): J = 1, α =
(λAλB)1/2, β = (λA/λB)1/2, γ = 0, ψAN = 0, and ψBN = 0. For this test, four arguments (ξ1, ξ4, ξ5, and
ξ6) of W vanish, and ξ2 = (3/2)(lnλA + lnλB) and ξ3 = (lnλ1 − lnλ2). As for the measured stress,

t = tAMA ⊗ MA + tBMB ⊗ MB , (8.2)

where it is assumed that the sheet surface is traction free.
To obtain expressions for the ξ2 and ξ3 response functions in terms of the measured principal stresses,

substitute (8.2) into (4.10) with i respectively set to 2 and 3. With W and G given by (7.4), we obtain

∂G(0, ξ2, ξ3, 0, 0, 0, 0)
∂ξ2

+ g22ξ2 + g23ξ3 = 1
3 (tA + tB) , (8.3)1

∂G(0, ξ2, ξ3, 0, 0, 0, 0)
∂ξ3

+ g23ξ2 + g33ξ3 = 1
2 (tA − tB) . (8.3)2

One particularly useful test is pure shear in the fiber plane (i.e. ξ2 = 0), whereby G(0, 0, ξ3, 0, 0, 0, 0), g23, and
g33 can be found with (8.3)2. Similarly, equibiaxial stretch (i.e. ξ3 = 0) can determineG(0, ξ2, 0, 0, 0, 0, 0), g22,
and g23. Furthermore, G(0, ξ2, ξ3, 0, 0, 0, 0) can be completely characterized by performing a series of biaxial
stretching tests with ξ2 or ξ3 held constant becauseG(0, ξ2, ξ3, 0, 0, 0, 0) is only a two parameter function. Note
that tests with ξ2 held constant are forthright because the area of the fiber plane (or the product λAλB) is merely
held constant. For tests with ξ3 constant, hold the ratio λA/λB constant.

For incompressible materials with orthogonal fiber families, consider a biaxial test such that M1, M2, and N
are the principal stretch directions. For this test, ξ2 and ξ4 vary whereas ξ1, ξ3, ξ5, and ξ6 vanish. Consequently,
with W and G given by (7.7), then g22, g24, g44, and G(0, ξ2, 0, ξ4, 0, 0) can be completely characterized.
Moreover, if an incompressible material with orthogonal families has mechanically equivalent fibers, then with
W and G given by (7.8), the two biaxial testing orientations can be combined to determine g22, g33, g44,
G(0, ξ2, 0, ξ24 , 0, 0), and G(0, ξ2, ξ23 , 0, 0, 0).

9 Conclusions

The approach herein has distinct advantage over prior invariant approaches because common tests on high
strain, 2-fiber materials can determine terms in W for the first time (see Sect. 8). Since covariance (among the
parameters being optimized) can cause oscillation and instability in an optimization algorithm, this approach
(with its reduced covariance amongst response terms) may enhance the speed and precision of inverse finite
element analyses that attempt to estimate material properties from tests with a heterogeneous deformation and
an indeterminate stress field.

For linearized small strain elasticity (see Sect. 5), all terms that are cubic order or higher are simply neglected
such that the transition from small strain to large strain is forthright. Moreover, the response terms are entirely
orthogonal for small strain, and the elasticity moduli have direct physical meaning.As shown in Criscione (2003),
orthogonality, being the absolute minimum of covariance, is of paramount importance for the determination of
material properties from mechanical tests.
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Appendix A

This appendix derives equation (2.10) which is a condition on the components of f , the local deformation gradient
as seen by an observer who rotates such that the bisectors of the fibers appear fixed. Hence, the current bisector
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of fM1 and fM2 must be colinear to MA, the reference bisector of M1 and M2. Upon dividing fM1 and fM2
by their respective lengths (i.e. by their respective fiber stretches, λ1 and λ2) and summing the resulting unit
vectors, we obtain

λ−1
1 fM1 + λ−1

2 fM2 = kAMA , A.1

where kA is a scaling factor that is needed because the sum of two unit vectors is not necessarily a unit vector.
Since MA and MB are orthogonal, take the dot product of both sides of (A.1) with λ1λ2MB to obtain

λ2MB · fM1 + λ1MB · fM2 = 0 . A.2

In likewise fashion, the current bisector of −fM1 and fM2 must be colinear to MB , the reference bisector of
−M1 and M2, whereby

−λ−1
1 fM1 + λ−1

2 fM2 = kBMB , A.3

where kB is a scaling factor similar to kA. Upon taking the inner product of (A.3) with λ1λ2MA,

−λ2MA · fM1 + λ1MA · fM2 = 0 . A.4

With M1 and M2 given by (2.9) and f given by (2.8), then (A.2) and (A.4) respectively yield

λ2 − λ1

λ2 + λ1
=
fBA cosΘ
fBB sinΘ

, (A.5)1

λ2 − λ1

λ2 + λ1
=
fAB sinΘ
fAA cosΘ

. (A.5)2

Whereby, equation (2.10) should be evident.

Appendix B

This appendix develops the one-to-one mapping between the components of C and the strain attributes ξ1−6. To
begin, premultiply (3.2) by its transpose to obtain C which is given by the following six components:

N · CN = J2/3


α−2 + αβ2

(√
1 + γ2s2c2ψAN + γc2ψBN

)2

+αβ−2
(
γs2ψAN +

√
1 + γ2s2c2ψBN

)2


 , (B.1)1

MA · CMA = J2/3α
(
β2 (1 + γ2s2c2

)
+ β−2γ2s4

)
, (B.1)2

MB · CMB = J2/3α
(
β−2 (1 + γ2s2c2

)
+ β2γ2c4

)
, (B.1)3

MB · CMA = J2/3αγ
√

1 + γ2s2c2
(
β2c2 + β−2s2

)
, (B.1)4

MA · CN = J2/3α


β2

√
1 + γ2s2c2

(√
1 + γ2s2c2ψAN + γc2ψBN

)
+β−2γs2

(
γs2ψAN +

√
1 + γ2s2c2ψBN

)

 , (B.1)5

MB · CN = J2/3α


β−2

√
1 + γ2s2c2

(√
1 + γ2s2c2ψBN + γs2ψAN

)
+β2γc2

(
γc2ψBN +

√
1 + γ2s2c2ψAN

)

 . (B.1)6

With (3.5) and much algebra and trigonometry, it can be verified that

J =
√

det(C) , (B.2)1

α =

√
(M1 · CM1) (M2 · CM2) − (M1 · CM2)

2

J4/3 sin2 2Θ
, (B.2)2



628 J.C. Criscione, W.C. Hunter

β =

√√√√tanΘ

√
(M1 · CM1) (M2 · CM2) + (M1 · CM2)√
(M1 · CM1) (M2 · CM2) − (M1 · CM2)

2
, (B.2)3

γ =
M2 · CM2 − M1 · CM1

sin 2Θ
√

(M1 · CM1) (M2 · CM2)

(
2 +

M1 · CM1 + M2 · CM2√
(M1 · CM1) (M2 · CM2)

)−1/2

, (B.2)4

ψAN =
(N · CMA) (MB · CMB) − (N · CMB) (MA · CMB)

(MA · CMA) (MB · CMB) − (MA · CMB)2
, (B.2)5

ψBN =
(N · CMB) (MA · CMA) − (N · CMA) (MA · CMB)

(MA · CMA) (MB · CMB) − (MA · CMB)2
. (B.2)6

Now, it should be evident that for every C there is one set of values for {J, α, β, γ, ψAN , ψBN}, and for every
set {J, α, β, γ, ψAN , ψBN} there is one C. Since (3.4) gives the one-to-one correspondence between ξ1−6 and
the set {J, α, β, γ, ψAN , ψBN}, it follows that there is a one-to-one relationship between the ξi and C. Although
(B.2) with (3.4) could be used to compute ξ1−6, it is faster to use (3.3) instead of (B.2) because mA and mB

have to be computed for t anyway.
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