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A simple checkerboard suppression algorithm for evolutionary

structural optimization

Q. Li, G.P. Steven, Y.M. Xie

Abstract Checkerboard patterns are quite common
in various fixed grid finite element based structural op-
timization methods. In the evolutionary structural op-
timization procedure, such checkerboard patterns have
been observed under various design criteria. The presence
of checkerboard patterns makes the interpretation of op-
timal material distribution and subsequent geometric ex-
traction for manufacturing difficult. To prevent checker-
boarding, an effective smoothing algorithm in terms of
the surrounding element’s reference factors is proposed in
this paper. The approach does not alter the mesh of the
finite element model, nor increase the degree of freedom
of the structural system, therefore, it does not affect the
computational efficiency. To demonstrate the capabilities
of this algorithm, a wide range of illustrative examples are
presented in this paper.

Key words finite element analysis, structural optimiza-
tion, checkerboard patterns, multiple criteria

1
Introduction

Checkerboard patterns refer to the phenomena of al-
ternating presence of solid and void elements ordered
in a checkerboard like fashion (Sigmund and Petersson
1998). This pattern can be commonly produced in various
finite element based structural optimization processes.
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Such shapes and topologies with checkerboard patterns
may be unacceptable in practice. For this reason, the so-
lutions to the checkerboard problems have attracted con-
siderable attention in the past several years. The previous
researchers have devoted their efforts on two significant
aspects:

1. the cause of checkerboard formation, and
2. the suppression techniques of checkerboard patterns.

To identify the formation mechanism of the checker-
board, Bendsge et al. (1993) described a four-node dis-
placement model with piecewise constant density field
through a patch test, in which an effective super element
is introduced to the finite element formulation. The in-
vestigation by Jog et al. (1994) showed that the choice of
basis functions for both displacement and density fields
is critical in optimization, when using the homogeniza-
tion method. This means that the combination of high
order displacement model (8-node) with a low order bilin-
ear density field cannot ensure a stable solution. Diaz and
Sigmund (1995) used a patch test of four-node elements
to indicate that, in a compliance minimization design, the
checkerboard patterns appear to be locally stiffer than
any other distribution of the two constituent materials.
Similarly, theoretical framework of Jog and Haber (1996)
further demonstrated that the cause of checkerboard for-
mation is numerical rather than physical in nature. Above
work has significantly contributed to the understand-
ing of the checkerboard formation in the stiffness based
optimization.

Although the origin of checkerboard patterns is still
not fully understood, in particular for various design op-
timization criteria, it is likely to be related to the finite
element approximation. From this point, various inter-
pretation schemes and suppression approaches have been
proposed. Diaz and Kikuchi (1992) showed that finer
checkerboard patterns could approach to solid material
with half thickness in the natural frequency optimiza-
tion. This provided an intuitive interpretation to checker-
board patterns, but the topological implication becomes
unclear to a certain extent. To improve the interpolation
accuracy of basis functions, one of the approaches sug-
gested is to use higher order elements. The investigation



reported by Rodrigues and Fernandes (1995) successfully
removed checkerboarding in thermoelastic optimization
problems. However, the degrees of freedom of the struc-
tural system are greatly expanded with a commensurate
increase in the computational cost. To overcome this com-
putational difficulty introduced by the high order elem-
ents, various modification algorithms for design variable
and response parameters are developed for the four-node
element. Bendsge et al. (1993) suggested a patch mod-
ification technique inspired by the similar problems in
Stokes flow. But this did not always entirely eliminate
checkerboarding in topology optimization. Based on fil-
tering techniques from image processing, Sigmund and
Petersson (1998) developed a checkerboard prevention
filter by a weighted average over element itself and its
eight direct neighbors. Following this line, Youn and Park
(1997) as well as Swan and Kosaka (1997) also employed
neighbouring elements to redistribute elemental dens-
ity, which promptly improves the subiteration results of
the design variables. By relaxing the slope constraints
of density function, Zhou et al. (2000, 2001) developed
a density control algorithm into the commercial struc-
tural optimization package Altair OptiStruct. These algo-
rithms have been proven effective in seeking compliance
minimization problems while not increasing the computa-
tional cost greatly.

In the evolutionary structural optimization (ESO)
method (Xie and Steven 1993, 1997), checkerboard pat-
terns can also be observed in various four-node element
based design problems. With the ESO method, mate-
rial alternation (increase or reduction) of an element
is determined in terms of its relative reference level.
In this sense, the appearance of checkerboard patterns
reflects an improper estimation on the elemental evo-
lutionary criterion. It is believed that such a situation
is also caused by the poor numerical behavior of four-
node elements in 2D models. The numerical experiments
conducted by Manickarajah et al. (1998a) showed that
the use of higher order elements, e.g. 8-node elements,
can significantly reduce the occurrence of checkerboard-
ing. But this was not an appropriate solution due to
the considerable increase in computational time. Simi-
larly to the approach of Haber et al. (1996), Kim et al.
(2001) developed an algorithm of Intelligent Cavity Cre-
ation (ICC), in which the checkerboarding patterns (with
numerous cavities) can be eliminated through control-
ling the number of cavities in the final topology. In
this paper, to improve the estimation quality of elemen-
tal sensitivity or reference level in low order elements,
a weighted average algorithm is developed to balance
the over or under evaluation of the evolution criteria.
Although theoretical work is still required to fully un-
derstand the formation mechanism of checkerboarding,
in particular, with different design criteria, this paper
focuses on demonstrating the effectiveness of the pro-
posed elimination algorithm. For this purpose, a var-
iety of demonstrative examples are presented in this
paper, which include 2D/3D regions, topology/shape,

231

single/multiple components and single/multiple load
cases with single/multiple design criteria of structural
stiffness, natural frequency, buckling load, thermoelas-
tic displacement, heat flux density and stress level. It
is found that this approach is easy to be implemented
into various criteria and works equally well in 2D and 3D
structures.

2
Brief description of evolutionary design criteria

Evolutionary structural optimization aims at modifying
(removing or adding) material distribution to seek one or
several specific design objectives. With finite element an-
alysis, the material removal or addition is carried out on
the basis of elements. In the ESO method, an element’s al-
teration is determined in terms of its effect on the design
objective. For this reason, this section will briefly describe
the design criteria for various situations that are prone to
form the checkerboard patterns.

2.1
Stiffness based criterion

It is known that, removal or addition of material from
element ¢ will lead to the change (sensitivity number) in
structural mean compliance or strain energy by

o= AC = %fTAu: %u;uKiui, (1)

where AK; denotes the change in the stiffness matrix
of candidate element ¢ when reducing or increasing its
material (Chu et al. 1998). This provides an inverse meas-
ure in the change of structural overall stiffness. To seek
the stiffest design, material should be gradually removed
from the lowest sensitivity elements or added onto the
highest sensitivity elements.

2.2
Natural frequency criteria

In order to avoid severe induced vibration, it is often ne-
cessary to produce a design that shifts the fundamental
(first) frequency or several of the lower frequencies of the
structure away from the specific frequency range of the
dynamic loading. To estimate the effect of material re-
moval and addition of an element on the natural frequen-
cies, a frequency sensitivity can be derived as (Xie and
Steven 1996, 1997; Zhao et al. 1997)

1
o = ij = m—juz; (w?AMl — AKl) uij s (2)

where m; = u};Mu;; gives modal mass, u;; denotes the
corresponding eigenvector of element ¢ and w; the j-th
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natural frequency. To most effectively increase or reduce
a specific frequency, material should be removed from ei-
ther those elements with the most highly positive or the
most highly negative sensitivities, respectively.

2.3
Buckling load criterion

To increase the buckling resistance of a structure, a sen-
sitivity number of the critical value of the load factor
A with respect to the decrease or increase in candidate
element material can be evaluated as (Manickarajah et al.
1998a,b)

o; = A)\j = u;f';- (AKZ - )\jAKg,i) U;j , (3)

where \; denotes the j-th eigenvalue and u;; the corres-
ponding eigenvector for element i, AK, ; represents the
change in the geometric stiffness matrix of the candidate
element i. As with the vibration and from the definition of
the sensitivity number, it is clear that to raise the buck-
ling load factor it will be most effective to increase the
material of elements with the highest sensitivity, or re-
duce material from those with the lowest sensitivity.

2.4
Thermoelastic displacement criterion

To control the deformation in thermoelastic structure,
a displacement sensitivity number, which indicates the
nodal displacement change along a specific direction (e.g.
the j-th d.o.f.), can be evaluated as (Li et al. 1999b)

a; = Aujy =ul - Afy o —u); - AK; -y, (4)

where f; +1 represents the change in the elemental equiva-
lent thermal nodal force under a certain differential of the
temperature AT = (T — T,ef) due to removing or adding
material in candidate element 4, u;; denotes the displace-
ment entries of candidate element ¢ from the solution of
virtual system Ku; = f; (the j-th d.o.f. of f; is equal to
unity and all the others are equal to zero). The thermoe-
lastic sensitivity number «; can be positive or negative,
which implies that the displacement component U; may
increase or decrease when there is a change in the material
of element 1.

2.5
Thermal stress and heat flux criteria

In a thermal environment, a structure usually experiences
heat flux and thermal stress. To estimate the relative effi-
ciencies of material usage of candidate element 4, two di-
mensionless factors, ay, = oy, /oyn™ and o = Jg,, /JO
(Li et al. 1999a,c), are defined. From the viewpoint of iso-

strength and iso-flux density, the elemental overall contri-

bution to such two criteria can be evaluated in terms of
the weighted average scheme as

a; = weal + wfozj} , (5)

where w, and wy denote weighting coeflicients for ther-
mal stress and heat flux criteria, respectively, which sat-
isfy ws +wy = 1. To achieve as uniform an efficiency of
material usage as possible, it is logical to gradually re-
move the elements with the lowest overall efficiency from
the structure (Li et al. 1999c¢).

2.6
Stress based criterion

Stress is an important indication of material usage of
a structure. Ideally the stress in every part of a structure
is near the same safe level. This concept leads to a rejec-
tion or addition criterion based on elemental stress level,
where lowly (or highly) stressed material is assumed to be
under-utilized (or over-utilized) and is to be removed (or
added) in the structures. As a result, the level of elemen-
tal von Mises stress is regarded as the criterion to decide
the material removal (Xie and Steven 1993) or addition
(Querin et al. 1998) as

O = Oym = (uiTBTZBui)% , (6)

where Z = DTTD, T is the coefficient matrix of the von
Mises quadratic form, u; represents elemental displace-
ment vector, and D and B denote the elastic and stress-
strain matrices, respectively. Through progressively re-
moving lowly stressed material (strongest) or shifting ma-
terial from lowly stressed elements (strongest) to highly
stressed ones (weakest), the stress distribution or struc-
tural strength over the design domain evolves towards
more uniform (Xie and Steven 1997).

3

Suppression algorithm of checkerboard patterns

The ESO procedure is directly driven by the elemen-
tal reference factor as outlined in the preceding section.
In a continuum structure which is discretized using low
order bilinear (2D) or trilinear (3D) finite elements, the
reference factors could become C° discontinuous across
element boundaries. In other words, the C! disconti-
nuity of interpolation function between adjacent elem-
ents leads to the resulting reference sensitivity factors,
as defined in (1-6), varying in a stepwise manner. In
evolutionary structural optimization, the evidence of
alternative solid and void patterns supports an expla-
nation that the design criterion is either overestimated
or underestimated alternately (Jog and Haber 1996).
To correct such errors caused by finite element approx-
imation, an intuitive smoothing technique can be in-



troduced. In brief, this procedure consists of two basic
steps:

1. Calculate the reference factor at each node by averag-
ing the element ones connecting to this node as

ne
Z Viay
Qg = % ) (7)
> Vi
i=1
where ne denotes the total number of elements con-
nected to the k-th node, «; and V; the reference
factor and volume of the i-th connection element,
respectively.
2. Calculate the smoothed reference factor of the candi-
date element (e) by averaging all nodal ones of this
element as

1
e=— [ NpapdV, 8
o= [ Nuaw (®)
Ve
for regular square elements, simply,

1 n
e:— 5 9
« n;ak (9)

where Ny, is the vector of shape function of the can-
didate element e, n denotes the node number of this
element, V. the elemental volume.

This is viewed as a first-order smoothing technique,
where the reference factor of the candidate element is cal-
culated from its own and those directly attached elements
(e.g. Fig. 1a). When necessary, a second-order smooth-
ing approach may be applied, in which the smoothed
reference factors are smoothed further. In this case, the
candidate element itself as well as the first-layer and the
second layer of surrounding elements are involved, as
in Fig. 1b.

From such a two-step procedure, the smoothed refer-
ence factor of element e can be consequently formulated
as

m
> wiVioy
Qe = erlni ) (10)
> wiV;
i=1

where m is the total number of all involving elements and
w; represents filter parameter, which usually satisfies

Swi=1. (1)

Typically, for the uniform four-node square elem-
ents, the filter parameter w; (i =1,2,... ,m) is given in
Figs. 1a and 1b for the first- and the second-order filters,
respectively. It is clear that the first-order scheme lays
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(a) The weighting coefficient 16w,
for the first order smoothing scheme

6 24. 24 | 6

(b) The weighting coefficient 256w,
for the second order smoothing scheme

Fig. 1 The weighting coefficients for checkerboard filter

more emphasis on the candidate element itself (25%) than
the second-order scheme does (14%). Under many cir-
cumstances, seriously checkerboarding often reflects that
the reference level is severely under or over evaluated. For
this reason, the second-order scheme can provide more
correction to the numerical instabilities.

4
Illustrative examples

To demonstrate the checkerboard suppression technique,
a wide range of illustrative examples is presented with
2D quadrilateral or 3D brick element meshes, under dif-
ferent design criteria and using different approaches to
material modifications (element elimination or thickness
variation).

4.1
Example of 2D stiffness criterion

In stiffness based ESO solutions, different levels of the
checkerboard phenomena can be observed in various
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examples, in which four node elements are used (refer
to Chu et al. 1998; Xie and Steven 1997). According to
the proof by Jog et al. (1994), the choice of basis func-
tions for displacement field is critical to achieve a stable
solution in stiffness based optimization. Diaz and Sig-
mund (1995) also show that artificially high stiffness
could account for the formation of checkerboard pat-
terns. In this example, when the smoothing scheme is not
used, a cantilever structure within the design domain of
510 x 210 mm (modeled by 51 x 21 four-node elements),
as given in Fig. 2, does suffer serious checkerboarding
as Fig. 2a.

dimension of 300 x 200 x 10 mm is meshed by 30 x 20
four node elements, where the material properties of
Young’s modulus 200 GPa, Poisson’s ratio 0.3 and dens-
ity 7.8 x 1072 Tonne/mm? are taken. The potential ap-
plied vibration source, such as motor with a certain fre-
quency of operation, is represented in a lumped mass of
10 kg (Zhao et al. 1997) at the free end of the structure as
illustrated in Fig. 3a.

Lumped Mass (10Kg)

(a) Without checkerboard suppression
(w=282.7rad / s, reduced from
the initial frequency @ =91.7rad / s)

(b) ESO with checkerboard suppression (V/Vo=45%)

Fig. 2 Checkerboard suppression for stiffness criterion

In continuum structures, the density of strain energy
is a continuous function. It is found that, however, the
energy density or stiffness sensitivity number becomes
stepwise in finite element analysis as (1), which expe-
riences discontinuity across elements (Chu et al. 1998).
This means that the enhancement of the continuity of
sensitivity numbers across elements can improve the sta-
bility of the solution. As a result, when the proposed
smoothing scheme is employed, the checkerboard pat-
terns are completely suppressed from the cantilever struc-
ture in this example, as shown in Fig. 2b.

4.2
Example of frequency minimization criterion

In some structures, it is necessary to control the fun-
damental natural frequency. For this purpose, vibration
sensitivity analysis as (2) is needed prior to element re-
moval. In this example, a cantilever structure with the

(c) With 2nd order filter (0= 80.5rad / s)

Fig. 3 Checkerboard suppression for fundamental frequency
minimization (V/Vp = 65%)

As with the static stiffness optimization, checkerboard
patterns can be clearly observed in dynamic optimization
as shown in Fig. 3a. However, as opposed to the previ-
ous stiffness design example, the first-order filter does not
fully remove the checkerboard, as displayed in Fig. 3b.
For this reason, the second-order smoothing scheme is
required. A checkerboard free topology results from the
second-order filter as Fig. 3c. It is worth noting that the



use of the second-order filter does not greatly increase
computation cost. Thus it provides a convenient and ef-
fective tool capable of dealing with even more stubborn
checkerboard phenomena.

Under the first-order filter, the failure to achieve a sta-
ble solution may indicate that this correction is not
enough to improve the smoothness of frequency sensi-
tivity number across elements. However, this may not
always happen and in practice the decision to advance to
the second-order smoothing scheme may well be problem
dependent.

4.3
Example of buckling load maximization criterion

In the previous topology designs, material removal is car-
ried out through element deletion (so called hard-kill),
in which the presence or absence of an element itself is
considered as the design variable. Such a discrete opti-
mization algorithm may cause further discontinuity in
sensitivity numbers. To improve the continuity of ESO
algorithm itself, one may wish to remove material from
elements in a stepwise manner (also called morphing
ESO). The numerical investigations conducted by Chu
et al. (1998), Manickarajah et al. (1998a,b) explored that
this strategy, but do not appear to help suppress checker-
boarding. The current example is employed to deal with
checkerboard thickness distribution with a buckling load
maximization criterion. In this example, a simply sup-
ported square plate is subjected to constant uniaxial load
analyzed (Manickarajah et al. 1998b). The upper and
lower bounds of thickness variables are set for = 20 mm
and t = 10 mm, between which nine selectable discrete
thicknesses are given as shown in the thickness legend
of Fig. 4.

As shown in Fig. 4a, four-node elements do cause
checkerboarding thickness allocation under the buckling
criterion, where the thickness evolves to an alternating
pattern at either the upper bound % or the lower bound t.
Investigation by Manickarajah et al. (1998b) has shown
that such a checkerboarding thickness allocation does
not achieve the desired result when compared to non-
checkerboarding equivalent benchmarks. To improve the
numerical accuracy and stability, the problem was rean-
alyzed using the 8-node isoparametric elements (Man-
ickarajah et al. 1998a). As expected, the checkerboarding
was completely eliminated from the design. This indicates
that the higher order elements did improve the numerical
stability as proven by Jog and Haber (1996) in stiffness
based criterion. But the use of high order elements con-
siderably increases the computational cost (by five times
in this specific example). For this reason, the proposed
smoothing filter is switched on to a FEA model consist-
ing of four-node elements. The result of smoothly varying
thickness distribution (Fig. 4c) shows a close resemblance
to the 8-node one (Fig. 4b). With this result it can be ar-
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gued that the efficacy of the smoothing algorithm works
correctly.

(a) 4 node elements without checkerboard
suppression (N, = 872.9kN/m )

(¢) 4-node with the 1st order filter (N, =831.1kN/m)

Fig. 4 Checkerboard suppression for buckling resistance cri-
terion

4.4
Example of displacement minimization for
thermoelasticity

To extend the capabilities of the ESO morphing algo-
rithm, a thickness based topological design is conducted
in this example. A design is sought to minimize the down-
ward displacement in the mechanical loading point on
the bottom edge of the thermoelastic region (refer to Li
et al. 1999b), where the elemental thermal displacement
sensitivity with respect to the elemental thickness, as
(4), is calculated. To capture topology features, the lower
bound of the design variables (elemental thickness) is as-
signed to a value so much smaller than the upper bound,
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e.g. 1% as the thickness legend in Fig. 5. This ensures
that the resulting variable thickness design has topology
significance.

(a) ESO without checkerboard suppression

(b) ESO with checkerboard suppression

Fig. 5 Checkerboard suppression for 2D thermoelastic dis-
placement criterion (V/Vy =40%, AT =1°QC)

In addition to the instability of the four-node elem-
ent itself, the effect of equivalent nodal thermal loading
further exacerbates the tendency to numerical in-balance
during the thermoelastic optimization processes, thus
the checkerboard appearance becomes more prevalent
(Rodrigues and Fernandes 1995; Sigmund and Torquato
1997). As with the Homogenization method, the ESO
method is also prone to produce a checkerboard pat-
tern as shown in Fig. 5a (Li et al. 1999b). In the ref-
erences (Rodrigues and Fernandes 1995), the numeri-
cal instabilities of checkerboard appearances were re-
moved by using the 9-node elements. The checkerboard-
ing regions were consequently switched to an interme-
diate density material, for which the topology implica-
tions are still unclear. Similarly to the use of 8-node
elements in the previous example, the drawback of this
approach is that the computational efficiency is remark-
ably reduced because the degrees of freedom of the model
are greatly increased. Also, a re-meshing process may
be needed to transform four-node elements to 9-node
ones.

To overcome these difficulties, the first-order smoothed
sensitivity number is employed with the four-node elem-
ents. It is found that this successfully prevents checker-

board patterns appearing, as observed in Fig. 5b. The
central region near the mechanical loading evolves to
a local Michell type structure, which is more accept-
able than the intermediate density distributed material.
Therefore, the high computational efficiency and the dis-
tinct topological definition further demonstrate the effec-
tiveness of the proposed suppression algorithm.

4.5
Example of multiple thermal criteria

The examples in the foregoing subsections show the
formation of checkerboarding in various single opti-
mum objectives. Indeed, the checkerboard patterns can
also be observed in the designs with multiple criteria.
In this example, a printed circuit board (PCB) sub-
strate with the pure thermal loading generated from

r\-loﬁ-de-sigﬁ
Domain

(c) The second order smoothing scheme

Fig. 6 Checkerboard suppression for multiple thermal crite-
ria (V/Vy = 60%)



four major electronic elements is designed as illustrated
in Fig.6a (refer to Li et al. 1999a,c). To seek a fully
stressed and evenly fluxed design over the region, the
weighted average scheme is used to estimate the elemen-
tal overall contribution to strength and thermal criteria
as (5).

When there is no checkerboard suppression scheme
used, notable checkerboarding can be seen in the cen-
tral region in Fig. 6b. This is caused by an incorrect
estimation of elemental thermal stress level and flux
density over this area. When the first-order suppres-
sion scheme is set up, the checkerboarding is notably
reduced but still present. When the second-order sup-
pression scheme is employed, a good topology is ob-
tained as shown in Fig. 6¢, in which the topological lay-
out, as displayed in Fig.6b has a reasonable physical
interpretation.

4.6
Example of 3D von Mises stress criterion

Traditionally, investigations in structural optimization
mainly focus on 2D elasticity with a single compon-
ent (Bendsge 1995; Rozvany et al. 1995; Xie and Steven
1997). This example is presented herein to incorporate
3D objects composed of the two components under multi-
ple load cases, where Components A and B are connected
by a number of candidate connection elements as sepa-
rately illustrated in Fig. 7. In the evolution process, both
the connection elements and the component elements are
allowed to be removed. In the finite element analysis, 8-
node brick elements are used and two load cases are ap-
plied at the free end of the cantilever system as shown
in Fig. 7. To seek a fully stressed design, the inefficient
material that is indicated by elemental von Mises stress

Component A

Corner Connections

Component B

(a) Without checkerboard suppression
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level (6) is progressively removed from the structure so
that the stress distribution in the remaining structure
evolves towards a more uniform level (Xie and Steven
1993, 1997).

When the smoothing filter is turned off, a typical
checkerboard pattern can be observed in the central re-
gion in Component A as shown in Fig. 8a. This pro-
vides an evidence that checkerboard pattern also ap-
pears in the 3D 8-node brick elements, where a trilinear
displacement field (subject to C° continuity) is formu-
lated. In such elements, the level of elemental von Mises
stress varies in a stepwise manner from element to elem-
ent. When the smoothing scheme is switched on, such
a discontinuity of stress distribution can be significantly
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Fig. 7 Design model for 3D multiple components and multi-
ple load cases

Component A

(b) With checkerboard suppression

Fig. 8 Checkerboard suppression for 3D eight node brick elements (V/Vj ~ 48%)
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reduced. As a result, the checkerboard pattern is sub-
stituted with a cross truss of Component A as shown
in Fig. 8b. In addition, the pattern of the corner con-
necting elements in Component B (Fig. 8a), which is
usually viewed as a by-product resulting from checker-
boarding, has also been filtered from the optimal design
(Fig. 8Db).

5
Concluding remarks

To deal with the checkerboard phenomena, a simple and
effective smoothing algorithm involving an element’s evo-
lution criterion has been proposed. The approach does
not alter the mesh of the finite element model, nor in-
creases the degrees of freedom of the structural system,
therefore, it does not affect the computational efficiency.
This is an advantage over the use of high order element
approaches.

To demonstrate the capabilities of the proposed
smoothing filter, this paper has presented a wide range
of illustrative examples. These examples increase our un-
derstanding in the formation of checkerboard patterns
under one or several design criteria such as stiffness, nat-
ural frequency, von Mises stress, thermal displacement,
buckling load and heat flux. At the same time, the exam-
ples present the solutions to a variety of optimal problems
such as single or multiple design criteria, single or multi-
ple components, single or multiple load cases, 2D or 3D,
and topology or size designs.
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