Educational article

Struct Multidisc Optim 22, 179-187 © Springer-Verlag 2001

A web-based topology optimization program

D. Tcherniak and O. Sigmund

Abstract The paper presents a web-based interface
for a topology optimization program. The program is
accessible over the World Wide Web at the address
http://www.topopt.dtu.dk. The paper discusses im-
plementation issues and educational aspects as well as
statistics and experience with the program.

Key words topology optimization, web-based program-
ming, engineering education

1
Introduction

In its simplest form, the topology optimization method
solves the problem of distributing a given amount of
material in a design domain subject to load and sup-
port conditions, such that the stiffness of the structure is
maximized. Since its introduction (Bendsge and Kikuchi
1988), the method has gained widespread popularity
in academia and is now being applied to the design
of materials, mechanisms, MicroElectroMechanical Sys-
tems (MEMS) and many other complex structural design
problems.

The application of the topology optimization method
in various fields of engineering can significantly improve
design cost and quality which is important in global
competition. Several papers have reported industrial ap-
plications of topology optimization such as design of au-
tomotive and airplane structures, however, the method,

Received September 29, 2000

This manuscript was originally submitted and accepted for
publication by the former journal Design Optimization on Jan-
uary 6, 2000

D. Tcherniak! and O. Sigmuncl2

Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, DK-2800 Lyngby, Denmark
e-mail: sigmund@fam.dtu.dk

L Current address: Briiel & Kjeer, Skodsborgvej 307, DK-2850
Neerum, Denmark
2 Corresponding author

despite its attractiveness, is still not well-known in wide
circles of practising design engineers, university students
and engineering companies. The same can be said for
design optimization in general (Hinton and Toropov
1999).

From the authors point of view, there are two main
reasons for this. First, commercial software providing
topology optimization solutions (e.g. CSA/NASTRAN,
Altair OptiStruct, Quint Optishape and MSC Construct)
are expensive to buy for small companies and require
lengthy education of the operators. Second, due to the
youth of the method, topology optimization is not men-
tioned even in modern text-books on optimization, and
is seldom found in regular undergraduate and graduate
courses. As a result, many students and engineers do not
know about the promising method.

The present project is our attempt to help in improv-
ing the situation. We present a Web-site including a Web
interface for a program performing topology optimiza-
tion of statically loaded mechanical structures. The Web
interface provides a simple way to try out the method,
serves as a starting point for learning more about it and
provides engineers and students with an easy-to-use soft-
ware that can be used to develop insight into optimal
structural design.

There are other examples of topology optimization
software accessible throughout the Internet, for instance
a down-loadable program based on evolutionary method
(www.ae.su.oz.au/wwwdocs/esol.html). However, in
order to use them one has to down-load and install the
software, the user is constrained by a computer platform
and a speed of the computer. The technique, described in
this paper, helps to avoid these deficiencies: all the user
needs is a web browser.

Referring to the above-mentioned arguments, the
main goals of the project are as follows.

1. To spread the concept and ideas of topology optimiza-
tion among designers in various fields of engineering.

2. To use the interface as a computer-aided learning tool
for students having courses on civil and mechanical
engineering design, architecture, etc.

Our topology optimization program is based on math-
ematical programming techniques. Recently, many alter-

180

native procedures (e.g. genetic algorithms, hard-kill/soft-
kill methods and evolutionary based algorithms) have
been proposed for the solving of topology optimization
problems. A third goal is to provide an easily accessible
base for the comparison of results, convergence and speed
of different methods.

The World Wide Web fits the requirements of the
project very well. Among other well- known advantages
such as accessibility, the World Wide Web offers many
new informational technologies and distributed comput-
ing is among them. The distributed computing concept
is a popular topic of discussion among users in the com-
puter industry (Cheng et al. 1998; Isreb et al. 1997; Wag-
ner and Castanotto 1997). This concept simply means
that instead of having all the computation taking place
on a user’s local machine, the user’s computer sends
data to a powerful remote server, which returns results
that are then displayed on the local machine. In our
case this means that a client, even in a platform with
relatively low computing ability, can run topology opti-
mization problems without any special software installed
but a Web browser. Thus a Web interface is a software
which serves as a bridge between the client’s computer
and the remote server. Among other advantages, dis-
tributed computing solves the problem of program up-
grading (one has only one copy of the program run-
ning on a server) but other questions like security and
charging users (for commercial versions of programs) will
rise.

The authors do not claim that the present paper con-
tributes either to the scientific fields of topology optimiza-
tion or to Web-based programming: a basic topology opti-
mization formulation (cf. next section) and standard and
well-documented Web tools were used for the interface.
Thus the three goals of the paper, as we see them, are:
(i) to report the existence of the site to engineers, design-
ers and teachers who want to try topology optimization;
(ii) to discuss educational aspects of the Web-based pro-
gram; and (iii) to share our experience among those who
want to apply web-based programming to their own fields
of research.

The paper is built up as follows. Section 2 is a brief in-
troduction to the topology optimization problem solved
by the program. In Sect. 3 the educational aspects of

Solid region—

- " Void region

Load ¥

the Web-based program are discussed and some statis-
tics are presented. Section 4 describes the interface and
also contains technical details of our implementation of
the Web-based topology optimization program.

We invite the readers to test our program by visiting
our Web Site: http://www.topopt.dtu.dk.

2
Topology optimization overview

As mentioned in the introduction, the topology optimiza-
tion method has recently been applied to such various
problems as mechanism design (Larsen et al. 1997; Sig-
mund 1997), material design and MEMS design. A Web
page for the design of compliant mechanisms is available
at our web site but here, we shall only discuss the most ba-
sic topology optimization problem consisting in the com-
pliance minimization of static structures, considered in
the present version.

In this version, the topology optimization method
solves the problem of distributing a given amount of ma-
terial in a design domain subject to load and support
conditions, such that the stiffness of the structure is maxi-
mized. A simple example is shown in Fig. 1. The light-
grey area denotes the design domain which is supported
to at least exclude rigid-body motions and loaded by one
or more forces applied in up to three different load-cases.
Some areas of the design domain can be specified to con-
sist of solid material (black areas) and some areas may be
specified to be void (white areas).

Using the so-called power-law approach to topology
optimization (Bendsge 1989; Zhou and Rozvany 1991,
e.g.), the design domain is discretized by N finite elem-
ents and the relative density x. of material in each elem-
ent is a design variable. The Young’s modulus of material
in each element is proportional to the element density
raised to a power p, e.g. E(z.) =22 Ey. The power-law
approach has previously been called the fictitious mate-
rial approach since it was believed that an isotropic mate-
rial with Young’s modulus described by above power-law
was non-existent. However, a recent paper by Bendsge
and Sigmund (1999) proves that the power-law approach
is perfectly valid when the power satisfies a simple in-

(b)

Fig. 1 (a) A typical topology optimization problem: a design domain with passive areas (white is fixed to be void and black is
filled by a material), supports and a load. (b) An optimal design for the described problem

equality (e.g. p larger than three for Poisson’s ratio equal
to a third).

In order to prevent degenerated solutions, the pro-
gram can handle multiple load cases but for simplicity,
the number of load cases is limited to three equally
weighted cases. The force vectors with dimensions equal
to the number of degrees of freedom in the finite elem-
ent problem are denoted Fi, Fo and F3, respectively,
and the corresponding displacement solutions are de-
noted U;, Uy and Us. The global finite element stiff-
ness matrix is the same for all three load cases and is
denoted K.

With the above definitions, the topology optimization
problem solved by our web-program can be written as

m}in : F,{Ul (X) + FgUg (X) + FgUg, (X)
st.: V) /Vo=f
K(X)UZ(X) =F;, 1=1,2,3

O<xmin§x§1

where Vj is the volume of the total design domain and f
is the fraction of the total volume that can be filled with
material.

The optimal topology is independent of the Young’s
modulus, whereas the Poisson’s ratio affects the optimal
design slightly (more for high volume fractions) and also
the choice of penalization power may cause the algorithm
to converge to other (local) minima. However, in order
to keep the user’s input to the web program to a min-
imum, the Young’s modulus, Poisson’s ratio and penal-
ization power are chosen to be constants (E=1,v=1/3
and p = 3, respectively). Furthermore all applied forces
have the same magnitude (= 1) but the user can apply
larger forces by placing several force vectors on top of
each other.

The optimization problem (Fig. 1) is solved by a math-
ematical programming method (the Method of Moving
Asymptotes (MMA) by Svanberg (1987) but for the sim-
ple compliance type objective function with only one
linear constraint, an optimality criteria type algorithm
could have been used as well. Using the MM A-algorithm,
the optimization problem is solved iteratively involving
alternating finite element analyses, sensitivity analyses,
and material redistribution based on the solving of lin-
earized subproblems. In order to ensure mesh-indepen-
dent and checkerboard free designs we apply a filtering
algorithm suggested by Sigmund (1994, 1997) (see also
Sigmund and Petersson 1998 for an overview of numer-
ical problems in topology optimization). The output of
the topology optimization program is a bitmap picture
of the optimal design (Fig. 1b). For more details on the
topology optimization method, the reader is referred
to the book by Bendsge (1995), to the vast literature
on topology optimization or to the other references by
Sigmund.

181

3
Educational aspects of a web-based program
interface

3.1
Requirements to meet

Since one of the main goals of the program is to use it
in an educational/training process, let us consider the re-
quirements that the web-interface should meet from this
point of view.

First we want to allow students fast testing of many
different sets of load /support cases. During a session, the
student can try several (maybe 10 to 15) various com-
binations of load/support cases and volume fractions, in
order to analyse and compare solutions that the program
produces. This kind of “case study” can be very useful
for the understanding of topology optimization. However,
this calls for two requirements: (i) the program must be
fast enough to solve problems in reasonable time (no more
then 1-2 minutes); and (ii) since the user input is 2D geo-
metrical information (design domain configuration, loca-
tion of loads and supports), a graphical user interface is
desirable. Menu and drag-and-drop features must allow
the user to change the problem formulation in a fast, easy
and intuitive way.

Then, the output of the target program (here, the top-
ology optimization program) is a series of images. They
show an animation of the optimization process, i.e. how
the topology changes in order to accommodate the ap-
plied loads or in other words: the evolution of the optimal
topology. We are sure that this animation is useful and
instructive for understanding the topology optimization
concept. It might be very practical if a user can watch this
evolution although the transmission of graphical data via
the Internet may be slow.

Then, some important details concerning the con-
cepts of finite element analysis and topology optimization
might effectively be demonstrated. One example is that
the number of supports must be large enough to prevent
rigid body motions, another example is that using sym-
metry, a more detailed design can be obtained with the
same number of elements and computational time. Like-
wise a lecturer can explain the importance of using several
load cases — an important concept of topology optimiza-
tion which, if ignored, may lead to seriously degenerated
designs.

Finally, it could be useful to provide several “ready-
to-submit” examples of problem formulations in order to
help the user in getting acquainted with the program and
its possibilities.

Besides this, we took the following considerations into
account in the layout of the interface.

1. The program should run in any computing plat-
form under a web-browser (at least under the new
enough versions of the two most popular ones —
Netscape Navigator /Communicator and Microsoft In-
ternet Explorer).

182

2. The user interface should be attractive.

3. It should be self-explanatory with only a brief on-line
documentation (Internet surfers rarely read manuals
or even short accompanying explanations).

4. The number of controls should be minimized: we al-
low our user to change only the few most important
problem parameters.

5. The checking part of the user’s interface should not be
very restrictive and annoying: it should not forbid but
inform and recommend.

6. The data transfer should be minimized: the realiza-
tion of the client’s part should be compact to keep the
down-loading time reasonable.

7. The server part should be able to process the problems
of several users simultaneously with only a reasonable
speed loss.

8. It has to be robust and tolerant to user’s incorrect in-
puts.

9. For users interested in theory there should be links for
detailed information.

3.2
Appearance of the interface

The interface for distributed computing programs nor-
mally consists of two parts: a client’s part and a server
part. The client’s part provides a user’s interface, checks
the user’s input, sends data to the server and finally dis-
plays server output on the client’s computer. The server
part is hidden from the user, it registers the user, reads
the data, starts a target program (which provides the
topology optimization itself) and then supplies the client
with output data generated by the target program.

We used a Java applet technology (Tyma et al. 1996)
for the implementation of the client’s part. An applet is
a small Java program that is down-loaded via the Inter-
net and runs on a client machine. Using Java one is able to
produce safe, functional, platform-independent, attrac-
tive and fairly fast programs or interfaces. Some technical
details of the implementation can be found in the next
section.

Our applet is a part of the Topology Optimization
Site (http://www.topopt.dtu.dk) . When down-loaded,
it presents a graphics screen as many ordinary graphics
editors do. By means of the menu and a drag-and-drop
mechanism, the user defines a design domain and volume
fraction, applies loads and supports. We tried to work out
the graphics interface as simple as possible; the resulting
problem formulation looks like a drawing in a standard
text-book on mechanics.

When down-loaded, the applet appears with an ex-
ample problem formulation. This example can directly be
submitted or it can be modified or reset.

Pressing the “submit” button, the user first initiates
the checking procedure. We put efforts into making this
procedure less restrictive. Only few user’s actions might
stop the data submission and require to change the input,

e.g. “Error: No forces applied.” or “Error: Supports allow
rigid body motion! Please add supports”. Most messages
just give information to the user, e.g. “Warning: The force
is applied outside the domain. The force is ignored”. Of
course, it is infeasible to predict and catch all possible in-
correct inputs at the earliest stage of the data submission.
However, the target program is stable enough to prevent
a hang-up due to an incorrect input.

After the submission, the target program (located in
a remote server) starts to solve a user problem. The pro-
cess is iterative, results after every iteration are trans-
mitted to the users computer and displayed in a special
window. Provided the problem is not very complicated
and the network connection is fast enough, the series of
resulting images present a reasonably smooth animation
which illustrates the optimization process. The user can
interrupt the process and modify the input. We decided to
keep windows with old designs; thus making it possible to
compare results of different inputs which is certainly use-
ful for educational reasons. The common users session is
shown in Fig. 2.

The applet is accompanied by links, where we explain
the details of the user’s interface and some basic ideas of
topology optimization (e.g. what a design domain is and
what the volume fraction means, why multiple load cases
should be used, etc.). There are also links to examples of
real structures such as a bridge, a wheel, etc., and links to
some useful hints and tips, showing for example, how to
simplify a problem using symmetry, etc.

As was mentioned above, the program is a part of
a Topology Optimization site which also includes an in-
troduction to topology optimization theory and overview
of techniques used in the method. Thus, we hope, the site
can be a good starting point for those who want to learn
more about topology optimization methods.

3.3
Statistics and examples of users designs

The pilot project was first made publicly available in De-
cember 1998. The present version started in February
1999. The study of log-files allows one to make detailed
studies of users habits. At the time of writing (January
2000), the program was tried by 400 visitors (distin-
guished by their IP addresses) and has been started 3760*
times (on average, about 10 times per day ranging from
few in February to up to 280 per day when it was being
used in student courses). As can be seen, many users run
the program several times, the number on an average is
about 9 times, however, it exceeds 100 times for some visi-
tors. In total, the program performed about 232 000 itera-
tions and this took approximately 131 000 seconds (about
37 hours) of running time (measured from the start of the
target program until the last requested picture has been

L the corresponding numbers are 1087 and 10993 at the
time of final proof reading (April 2001)

183

}f::-Hl:tsl:aper BE R

Fis Edit View Go Communicator Help

N & a3 &

Dack FTorward Meload Hame Search helicape Prirk

= i) > o

Decurity

-’; Show ast read il

Stop

" Bookmarks ,.t: Goto]I':llp:r"f’www topopt, dhu dk/T opProg/

| EQ

Try your own design!

.

t

]
! 4
T .
4>

2
| A

==

Cbjective = 86,74 topyight TepOpt groug

Just construct your own design problem and press “Submit’ button F

Load cusa:

F . ook

Wobnue Bacrion . p

R I*oas M Result 12 Hi=1E
Densities

Press "Fecet' Inattom to Tesst the excmnple. 172 T

= -y B4 (W)

Cbjective = 6,21 Comefoht TapGot oman.

M Hesult 10

ol xj——
Finishad

Show

Oensities

1072 TR 1

2

35

Chjactive = 39.831 Capyright Taptot gmap

[[Unsigned Java Applet wWincow

E [V Insigried dava &npket Windms

Fig. 2 A generic user’s session. The three solutions correspond to a problem formulation which has been modified during a design
session. The user got the design for only one load case (right window), then reformulated the problem using two load cases (middle
window), and finally added a void passive area in the middle of the design domain (the problem formulation actually shown in the

applet) to get the design in the bottom window

down-loaded by the user). On average one iteration was
performed in 0.56 seconds, however this time is varying
from 0.5 second to 90 seconds mostly due to very differ-
ent speed of network connection. The average number of
iterations per one program run is 54 (maximum allowed
iterations is 80) which means that many users interrupt
the process before it converges.

As expected, the help pages of the site, where we tried
to highlight some ideas of topology optimization and not
obvious details of the user interface, were not very popu-
lar — on average they were visited about 100 times. This
confirms the idea that the user interface must be as simple
as possible.

During the year of operation we stored final designs
(maximum of five per user) of our visitors in a spe-
cial directory (http://www.topopt.dtu.dk/TopProg/ —
Gallery/Galeryl.html); some of which are shown in
Fig. 3. Surprisingly this directory gained a lot of popular-
ity among our users — this again confirms that this kind
of “case study” can serve as a very instructive way of
learning.

Other site statistics are also available at
http://www.topopt.dtu.dk/Statistics.

Although we ask users to mail us comments or ques-
tions, only a few users have given us any response. The
few comments we did receive, mainly expressed the users

184

(a) (b)

()

".-_ .
£

Fig. 3 Designs of our visitors: (a) By skiffl.univ-brest.fr (25.05.99); (b) by hamachi.engin.umich.edu (26.06.99); (c) by
dial37.inet.zitech.dk (18.06.99); (d) by dhcpl05.me.psu.edu (27.07.99) (the forces belong to three different load cases). The tri-

angles denote supports

surprise at how fast the program works (c.f. next section
for a partial answer to this question). We also received
positive oral feedback from users in academia who have
used it in their courses and from a Danish company that
used the program to get ideas for a new engine part.

4
Implementation of the interface

This section contains the description of the technologies
on which the implementation of our program is based and
some technical details of the implementation. The sec-
tion is mostly addressed to those researchers who want to
develop similar web-interfaces for their own programs in
their research areas.

4.1
The target program

In our project we use a topology optimization program
developed in our lab. It is a well-developed program which
is fast and robust. The program is written in Fortran
77 language and it uses the PGPLOT graphics package
to generate the output images in CompuServe’s GIF file
format.

In our project we use a version of the program
that allows one to optimize statically loaded mechan-

ical structures according to the problem formulation
in Sect. 2. The software is developed in our lab and
does not make use of any commercial or public finite
element library. This way, it is possible to write a very
efficient code that is optimized for the topology opti-
mization problem at hand. For a remote client we set
a limit on the number of program iterations to 80 and
allow the client to use a mesh with up to 1000 4-node
linear finite elements. Experience shows that this reso-
lution is fine enough for test and educational purposes
and modest enough to keep the calculation time in the
wanted range. In this case, our server (based on the In-
tel Pentium-IT 450 MHz processor with 256 MB of RAM
running the Linux operating system) makes approxi-
mately 100 iterations per minute (for a typical problem
and if only one copy of the target program is running
at the same time). Thus it takes about 50 seconds to
produce the whole series of images. The size of one
GIF file is approximately 3 Kbytes (GIF87, 256 x 256
pixels), so we have about 240 Kbytes to be transmitted to
the user.

4.2
On image transfer technologies

The client-server interaction is the most important part
of any interface. In our case it has to meet two main
criteria.

1. The interface should deliver an image as soon as it has
been generated by the target program. It is desirable
to provide the user with a smooth animation if this is
allowed by the complexity of the user’s problem, con-
nection quality and server load.

2. The server should terminate the target program
and clean up the image files, which were not called
for, if the user has interrupted the calculations, left
a browser or jumped to another web-page.

There is a standard protocol that meets these require-
ments — the so-called Netscape multipart/x-mixed re-
place push-server. Based on this protocol, a browser gets
data by portions and successively puts them into a screen:
when the next portion is coming, the browser replaces
the old content by the new one. A user can terminate
the transfer, for example by pressing the browsers stop
button, this will also stop the target program. The push-
server method seems to be robust and could easily be
implemented due to its simplicity. However, this proto-
col has a disadvantage: only few browsers support it (e.g.
Netscape Navigator or Communicator), the Microsoft In-
ternet Explorer does not. Working on an Internet-based
program, we wanted the program to operate with most
browsers, which is why we rejected this protocol for the
public version of the project. (It was used in a pilot real-
ization of the project; one can test it at
http://www.topopt.dtu.dk/Push).

Another option for making web-animations is the so-
called pop-server method. In this case a web-browser con-
tinuously reloads a web-page content in a specified time
whether or not the content actually has been changed. On
the server side, a target program has to replace the old
web-page content (or its component, e.g. an image) by the
new one. The protocol is based on the “refresh” feature
of the HTML and thus must be recognized by all modern
web-browsers. The obvious disadvantage of this protocol
is that it generates enormous and unnecessary network
traffic. Also it should be noted that there is no straightfor-
ward way to stop the target program when a client breaks
the connection.

4.3
The protocol implementation

Due to the disadvantages of the above-mentioned
methods, we decided to work out a custom protocol which
is organized as follows. As the target program has pre-
pared a GIF file, the server connects to the client and
sends the name of the file as a signal that it is ready. Un-
til this moment the client is waiting for this signal. Then
it reads the file name and checks whether it should show
the image or omit it. The latter can happen if the user
ordered to draw not each but, say, every fifth image. If
the image should be drawn, the client program starts to
down-load it and renders it to a screen when the down-
loading is completed. The described scheme is simple and

185

meets both criteria outlined above. It reduces the network
traffic, because only short file names are transferred via
Internet and only requested files are down-loaded. The
client and server keep the connection open, thus if the
user breaks the connection, the server will know about
this and react accordingly: it terminates the target pro-
gram and makes a clean up.

There are two bottlenecks in the way we supply our
user with the resulting images. The first one is the solv-
ing of the user’s topology optimization problem on the
server. The time mainly depends on the bandwidth of the
finite element problem and the present CPU load. The
second bottleneck is the delivery of the images to the
user, and this depends on the connection quality. We do
not know beforehand which one will be the actual bot-
tleneck in every specific case. That is why it is desirable
to separate the process of solving the problem from the
process of the image delivery and make these processes
asynchronous. This explains our decision to implement
the above-mentioned protocol by means of Java’s thread
technology. A thread is a lightweight process which runs
simultaneously with other processes. Java defines threads
as an integral part of the language and includes a number
of features that allow one to easily write Java programs
that create multiple threads.

Figure 4 shows the protocol implementation. After
the “Submit” button is pressed, the applet starts two
threads. The first one is responsible for a connection with
the server: it requests the connection, sends the prob-
lem description and “talks” with the server. The second
thread is responsible for the display of incoming images:
it opens a new window, down-loads image files and draws
them on the screen. The two threads are asynchronous.
They share one common resource — the list of the names of
ready image files: as soon as the server connection thread
reports the file is ready, the client connection thread ap-
pends the file name to the end of the list. The window
thread successively down-loads the files named in the list.
It can down-load each file from the list or every 2nd,
5th or 10th or last ready file. This depends on the user’s
choice and supposed to be based on his/her estimation of
the network connection speed.

The server is written in Java. In order to get more
flexibility, we used low-level network communication by
means of sockets, which are provided by the standard
Java’s API. The main program is an infinite loop, lis-
tening to a specified port. As a connection is requested,
the code checks if the current number of users does not
exceed the allowed number (in our case three simultan-
eous connections are allowed) and, if it does not, registers
the user. Then the program spawns the server connec-
tion thread which is responsible for the serving of the
client. The thread answers the client, reads the client’s
data and starts the target program with this data. As the
target program has generated a new GIF file, the thread
sends its name to the client. The thread does not trans-
mit the files: a standard HT'TP daemon is in charge of this
operation.

186

Server's part Client's part

"Submit"
is pressed

Server

Copy the ready
GIF file #k to
the client's
directory

(appr. 3000 bytes)

Internet
lOOp Client's .
request Graphlcs .
b ; Stopped window
interface
. Request Request the
Listening port R B thread
infinite loop server
— 2
9 Openthe | = _ . Request_ _ _ _ | Waiting for z
connection accepted response 71
Read | _ . .. Geom. data_ _ _ _ Send
data (200 byte) data Active window
¥ New
Start tar- window
get progr. The list of names

of ready GIFs

A

B €l Appends the '

file name name of ready '
Target Server (20 bytes) Client GIF to the list Window ‘s
. . = O
program connection - connection 2%, 3
main Signal if thread 5E' D
thread . userbroke _ _ _ _ _ thread P
loop the connect. 2O

Cleaning
up and exit

Fig. 4 Connection flow and interaction of threads. Oval here denotes the thread’s run- loops, solid lines arrow — operation flow,
dashed arrows — transmission via the Internet, — the “event” happened, — a request

If the user ends the connection, the client connection
thread notifies the server. The server thread terminates
the target program and makes a clean-up. If something
irregular happens, this situation is processed by Java’s
catch-exception mechanism and in any case the server ful-
fills the prescribed cleaning operations.

When the program became publicly available, we ex-
perienced the following problem: sometimes the commu-
nication was broken when the server thread was wait-
ing for client’s data. In this case the situation cannot
be processed by Java’s exception mechanism; and the
server waits forever. (This case is explained in detail
by Cassady-Dorion et al. 1997, p. 388). This results in
“hang-up” of the server communication thread. If the
situation repeats, the number of active threads achieves
the limit; after which the server rejects all other in-
coming requests. The only cure was a manual reboot
of the server program. To prevent this, a simple time-
out mechanism was introduced: if the thread remains ac-
tive longer then it is allowed (about 5 minutes in our
case), the server terminates it. As soon as this mech-

anism was implemented, the server became significantly
stable.

Based on our experience we shall note that the use
of Java allowed us to significantly shorten the period of
program development. The above-mentioned features of
Java such as threads, exception mechanism and in-built
network programming tools allow a rapid development of
Internet-wrappers for existing code regardless of the lan-
guage in which it was written or the computing platform
on which it is running.

5
Summary and conclusions

In this paper, a web-based interface to a topology opti-
mization program is described. We believe that the in-
terface will assist in promoting the topology optimization
approach as a modern and useful design tool suitable for
various fields of engineering. Furthermore, the interface
can be used as a computer-aided learning tool and it can

be considered as an example of the application of dis-
tributed computing concepts.

Obviously, much remains to be done. It is desirable
to implement the same interface to other problems where
the topology optimization approach is beneficial, e.g. to
the design of compliant mechanisms, smart materials or
MEMS. There are some technical issues which need to be
further tackled such as data flow rate over the network,
compatibility with other web-browsers, etc. A mechanism
of charging users should be developed for a commercial
version of the program.

Acknowledgements The authors gratefully acknowledge the
support by the Danish Technical Research Council through
the THOR/Talent-programme: Design of MicroElectroMe-
chanical Systems (MEMS). The authors would also like to
thank Krister Svanberg from KTH, Sweden for supplying the
MMA-subroutines.

References

Bendsge, M.P. 1989: Optimal shape design as a material dis-
tribution problem. Struct. Optim. 1, 193-202

Bendsge, M.P. 1995: Optimization of structural topology,
shape and material. Berlin, Heidelberg, New York: Springer

Bendsge, M.P.; Kikuchi, N. 1988: Generating optimal topolo-
gies in optimal design using a homogenization method. Comp.
Meth. Appl. Mech.Engrg. 71, 197-224

Bendsge, M.P. and Sigmund, O.: 1999, Material interpola-
tions in topology optimization, Archive of Applied Mechanics
69, 635-654

Cassady-Dorion, L.; Brumbaugh, M.; Maheshwari, S.; Wright,
J.; Brookshier, D.; Last, B.; Mathis, J. 1997: Industrial
Strength Java. Indianapolis, IN: New Riders Publishing

187

Cheng, K.; Harrison, D.K.; Pan, P. 1998: Implementation of
agile manufacturing — an AI and internet based approach.
J. Mat. Process. Tech. 76, 96-101

Hinton, E.; Toropov, V.V. 1999: Editorial on education and
training. Design Optimization 3

Isreb, M.; Khan, A.IL.; Parker, B.A. 1997: Adaptive finite elem-
ent mesh refinement — a CAL module on the www. Comp.
Struct. 65, 169-175

Larsen, U.D.; Sigmund, O.; Bouwstra, S. 1997: Design and
fabrication of compliant mechanisms and material structures
with negative Poisson’s ratio. J. Microelectromech. Sys. 6,
99-106

Sigmund, O. 1994: Design of material structures using top-
ology optimization. PhD thesis, Department of Solid Mechan-
ics, Technical University of Denmark

Sigmund, O. 1997: On the design of compliant mechan-
isms using topology optimization. Mech. Struct. Mach. 25,
495-526

Sigmund, O.; Petersson, J. 1998: Numerical instabilities in
topology optimization: a survey on procedures dealing with
checkerboards, mesh-dependencies and local minima. Struct.
Optim. 16, 68-75

Svanberg, K. 1987: The method of moving asymptotes —a new
method for structural optimization. Int. J. Numer. Meth.
Eng. 24, 359-373

Tyma, P.M.; Torok, G.; Downing, T. 1996: Java Primer Plus,
Corte Madera, CA: Waite Group Press

Wagner, R.; Castanotto, G. 1997: Fixturenet: Interactive
computer-aided design via the world wide web. Int. J. Human-
Computer Stud. 46, 773-788

Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm. Part II:
topological, geometry and generalized shape optimization.
Comp. Meth. Appl. Mech. Eng. 89, 197-224

