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Sequential approximate optimization using variable fidelity
response surface approximations�

J.F. Rodŕıguez, V.M. Pérez, D. Padmanabhan and J.E. Renaud

Abstract The dimensionality and complexity of typi-
cal multidisciplinary systems hinders the use of formal
optimization techniques in application to this class of
problems. The use of approximations to represent the
system design metrics and constraints has become vi-
tal for achieving good performance in many multidis-
ciplinary design optimization (MDO) algorithms. This
paper reports recent research efforts on the use of vari-
able fidelity response surface approximations (RSA) to
drive the convergence of MDO problems using a trust re-
gion model management algorithm. The present study
focuses on a comparative study of different response sam-
pling strategies based on design of experiment (DOE)
approaches within the disciplines to generate the zero
order data to build the RSAs. Two MDO test prob-
lems that have complex coupling between disciplines are
used to benchmark the performance of each sampling
strategy. The results show that these types of variable
fidelity RSAs can be effectively managed by the trust re-
gion model management strategy to drive convergence
of MDO problems. It is observed that the efficiency of
the optimization algorithm depends on the sampling
strategy used. A comparison of the DOE approaches
with those obtained using a optimization based sam-
pling strategy (i.e. concurrent subspace optimization –
CSSO) shows the DOE methodologies to be competi-
tive with the CSSO based sampling methodology in some
cases. However, the CSSO based sampling strategy was
found to be, in general, more efficient in driving the
optimization.
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1
Introduction

The complex systems defining typical MDO problems are
often characterized by a large number of design variables
and constraints. The data that is shared is very large
resulting in severe communication requirements for the
designers. Hence, the application of formal optimization
techniques to the design of these systems is presently
hindered because the number of design variables and
constraints is so large that the optimization is both in-
tractable and costly and can easily saturate even the most
advanced computers available today. Therefore, the use of
approximations to represent the design space is essential
to the efficiency of MDO algorithms.

Approximations provide information about the sys-
tem necessary for the optimization process without the
cost of executing CPU-intensive analysis tools. Moreover,
the use of approximations allows for the temporary de-
coupling of disciplines which avoids the constant trans-
fer of information among disciplines required during an
iterative system analysis. Consequently, most MDO algo-
rithms couple, in an iterative fashion, a traditional op-
timization code to lower-cost computational models of
the objective function and constraints. In a traditional
MDO algorithm, a solution to the approximate problem
is found, a full analysis is executed at this new design, the
approximate model is updated and the process repeated
until convergence to a solution of the original problem is
achieved.

Lower-cost computational models can be categorized
in: lower complexity models which are less physically
faithful representations of the actual physical problem
(Barthelemy and Haftka 1993); and model approxima-
tions which are algebraic representations obtained from
design sites at which objective and constraints are known
(Guinta and Watson 1998; Lewis 1998). Most MDO algo-
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rithms differ in how the approximatemodels are built and
managed in order to drive convergence to a solution of the
original problem.

In recent years there has been a growing interest in
the use of response surface approximations in model man-
agement frameworks to optimize large multidisciplinary
systems (Rodŕıguez et al. 2000). Rodŕıguez et al. (1998b)
proposed a trust region approach for lower fidelity ap-
proximate model management for the class of constrained
approximate optimization problems to manage conver-
gence. The framework is used to manage the conver-
gence of low fidelity response surface approximations in
an augmented Lagrangian optimization. A cumulative
response surface approximation of the augmented La-
grangian is sequentially optimized subject to a trust re-
gion constraint which insures convergence of the strategy.
Rodŕıguez et al. (1998b) conducted the application stud-
ies on a suite of single level optimization problems. High
fidelity system models were queried directly using a cen-
tral composite design (CCD) sampling strategy to build
response surface approximations over the design space
during each iteration of the algorithm. Querying the high
fidelity model during each iteration can itself become cost
prohibitive as the size of the design space grows. In a later
study Rodŕıguez et al. (1998a) the scope of application
studies was extended to include the class of multidisci-
plinary design optimization (MDO) test problems with
the high fidelity model no longer being queried directly
to generate response surface approximations. Rodŕıguez
et al. (1998a) used the design sampling strategy in the
CSSO approach of Wujek et al. (1997). Instead of query-
ing the high fidelity model directly using a statistical
sampling strategy, the Wujek approach queries approx-
imation models available at the discipline design level.
These models are of variable fidelity and will be dis-
cussed in detail in a later section. The sampling strat-
egy in the Wujek et al. (1997) approach is optimization
based. The design sites visited during the subspace op-
timizations are the response sampling sites. The result-
ing response surface is therefore constructed from data of
variable fidelity.

The concurrent subspace optimization (CSSO) ap-
proach has the attribute of providing for the temporary
decoupling of the disciplinary analysis during subspace
optimizations facilitating interdisciplinary communica-
tions. However, the number of design sites visited during
a subspace optimization could be much larger than the
minimum required for building the RSA leading to unnec-
essary computational expense. Another potential prob-
lem is the generation of ribbons of data during the CSSO
process which is a result of the line searches performed by
the optimizer during the subspace optimizations. In other
words, the data generated might not be “space filling”
leading to inaccurate response surface approximations
which could slow the convergence of the optimization, re-
ducing the efficiency of the algorithm.

In this research, the decoupled system used in the
CSSO methodology is sampled using design of experi-

ments (DOE) methodologies (Box et al. 1978; Ross 1988)
and this data used to build a second order RSA of the
system function and of each of the constraints to build
the augmented Lagrangian in the algorithm of Rodŕıguez
et al. (1998a). The design of experiments methodologies
provide an efficient alternative for sampling the design
space which avoids data clustering and reduces the num-
ber of unnecessary sampling sites. In this investigation
three different experimental designs are investigated: two
level factorial experiments; central composite designs ex-
periments; and orthogonal arrays. The subspace sam-
plings are executed following a random schedule in order
to reduce, the possibility of neighbouring sites being sam-
pled at the same subspace. Note that since the sam-
pling is executed at the subspaces, the data is of variable
fidelity.

2
Design of Experiments

When searching for improved designs, the designer typic-
ally runs a number of tests at certain design sites and, ob-
serves the system’s design performance and makes a de-
cision of accepting or rejecting each new design. Design
of Experiments (DOE) is a statistical based methodology
for systematically and efficiently designing and analyzing
experiments for product evaluation.

In the language of DOE, one has to distinguish be-
tween the inputs to an experiment called independent
variables, and the system outputs or responses. A typical
experiment consists of a combination of runs, where each
run defines a particular setting of independent variables
(i.e. a site). The particular combination of runs is called
experimental design and the possible settings for each in-
dependent design variable are called levels.

As mentioned earlier, one of the main concerns in de-
signing an experiment is to define a pattern of design
points (i.e sites) that best reveals the aspects of the situ-
ation of interest (i.e, response of the nonlinear objec-
tive and constraints). At this point we can distinguish
between two approaches to the design of computer ex-
periments. The parametric approach where it is assumed
that f is the realization of a stochastic process, specify-
ing a parametric family of possible processes, where the
parameters are chosen such that f is approximated as
accurately as possible (Torczon and Trosset 1998). This
approach is usually combined with a design sampling
criteria which is optimal with respect to the specified
family (Osio and Amon 1995). Even though parametric
experiments are appealing because of their properties,
the practical difficulties of actually computing such op-
timal designs can be formidable, therefore limiting their
applicability.

The nonparametric approach to the design of com-
puter experiments, chooses the design sites in a manner
that is perceived to be space-filling. Factorial experiments
are part of this family of computer experiments. In this
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type of experiments, the independent variables or factors,
are set at prescribed levels resulting in an ordered pattern
in the design space. Factorial experiments can be divided
in full and fractional factorial experiments. Full factorial
experiments are those in which the total number of runs
is given by the product of the number of levels of each
independent variable. Figure 1 shows a two level full fac-
torial experiment. On the other hand, fractional factorial
experiments are those in which fewer runs than the full
factorial experiment are required. The Central Compos-
ite Design (CCD) is a commonly used fractional facto-
rial design. A CCD is a two-level factorial augmented by
a centre point plus points arranged along the axis of the
variables and symmetrically positioned with respect to
the factorial cube (see Fig. 1).

Fig. 1 Factorial designs: full factorial (left), CCD (right)

Another class of experimental designs are the Orth-
ogonal Arrays (OAs) (Owen 1992). OAs are based on
fractional factorial and are constructed to minimize the
number of designs required to evaluate the effects of the
independent variables on the response. Orthogonal arrays
possess a space-filling property called strength. An OA of
strength t, for a k level experiment, represents, for every
subset of t independent variables, a kt grid. This is shown
in Fig. 2, where the design sites for a four-level factorial
OA of strength 2 for three independent variables are de-
picted. Note that even though the design sites represent
a “cloud” in the whole design space, the grid pattern is
observed in the projections.

3
Data base generation

In this investigation the CSSO sampling strategy is re-
placed by a sampling strategy based on design of experi-
ments. In the concurrent subspace optimization (CSSO)
approach of Wujek et al. (1997) the subspace optimizers
solve the same system level optimization problem. The
optimizations differ in that each discipline (i.e. subspace)
optimizes the system level problem with respect to a local
set of design variables allocated to the subspace.The vari-
able fidelity data is obtained from each design site visited

Fig. 2 Orthogonal array

during a given subspace optimization. The subspace opti-
mizers therefore provide the approximate response sam-
pling strategy. The CSSO sampling strategy is optimiza-
tion based and provides for design sampling in descent
directions, where the sampling sites are feasible as meas-
ured by the approximations available within the subspaces
(see Fig. 3).

In this research we elect to use the principles of
the concurrent subspace optimization (CSSO) of Wujek
et al. (1997) to generate variable fidelity design data
for multidisciplinary systems. Evaluations of the sys-
tem states (i.e. performance metrics) at the subspace
level does not involve an iterative solution strategy. This
is accomplished by providing the disciplinary designers
with linear response representations of the other disci-
pline states based on sensitivities generated from the
global sensitivity equations (GSE) of Sobieszczanski-
Sobieski (1990). Therefore nonlocal states are linearly
approximated and local states are evaluated using the
high fidelity local analysis tools available in the disci-
pline. The design data generated by a given subspace is
therefore of variable fidelity. Some of the data is gener-
ated by the high fidelity disciplinary analysis tools but
based on linearized inputs of the other disciplines. Other
data is simply the state prediction provided by the lin-
earized response representations of nonlocal disciplinary
states.
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Fig. 3 CSSO: optimization based sampling

In the present paper matrices of experiments based
on two level full factorial, central composite designs and
orthogonal arrays are investigated. Three orthogonal ar-
rays are considered: An OA of strength 2 and 8 levels in
the design variables, an OA of strength 2 and 11 levels in
the design variables, and an OA of strength 3 and 11 levels
in the design variables.

Fig. 4 Partial sampling

Two sampling methodologies are considered. In the
first methodology denoted partial sampling methodology,
the matrix of experiments is partitioned among the differ-
ent disciplines or subspaces. Figure 4 shows an example
of this methodology, partitioning the matrix of experi-

ments between two subspaces named S̃A1 and S̃A2 . In
this way a subset of the entire matrix of experiments is
sampled at each discipline. Therefore, only the required
number of discipline evaluations defined by the matrix

of experiments are performed in each iteration. In this
methodology, three different sampling strategies are in-
vestigated. In the first strategy, the matrix of experiments
as well as the assignment of the experiments to the dis-
ciplines was kept the same during the optimization pro-
cess. The second strategy of sampling keeps the matrix
of experiments fixed during optimization while the as-
signment of the experiments to the disciplines changes at
each iteration. The assignment of the experiments to the
disciplines is performed using a pseudo-random genera-
tor. In the third strategy, a new matrix of experiments is
generated at each iteration while the assignment of the
experiments to the disciplines is kept the same. In the
generation of new matrices of experiments, the random-
ization software developed by Owenwas used. A complete
set of computer programs for generating OAs may be
found at http://www.cmu.edu/. Strategies two and three
are only applied to the orthogonal arrays since the matrix
of experiments for the two level full factorial and CCD
designs are unique.

Fig. 5 Full sampling

In the second sampling methodology denoted full
sampling, the entire experimental design was run at each
discipline. Note that this sampling methodology repre-
sents a considerable increment in the cost of generating
the database, however it also provides a much richer infor-
mation of the system which might increase the quality of
the response surface approximations and therefore the ef-
ficiency of the optimization algorithm (see Fig. 5). In this
methodology, two different sampling strategies are con-
sidered. In the first strategy, the matrix of experiments
is kept fixed during the optimization process. In the sec-
ond strategy, which is only applied to orthogonal arrays,
a new matrix of experiments is generated after each it-
eration. Table 1 details the characteristics of each of the
sampling strategies explored.

The data generated using the procedure described
above is employed to construct a cumulative response
surface approximation of the augmented Lagrangian
(Rodŕıguez et al. 1998b) for use in the trust region model
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Table 1 Sampling strategies investigated

Strategy Partial Sampling Full Sampling

1 exp. matrix fixed exp. matrix
exp. assignment fixed fixed

2 exp. matrix fixed exp. matrix
exp. assignment random random

3 exp. matrix random –
exp. assignment fixed

management algorithm for constrained minimization de-
veloped by (Rodŕıguez et al. 1998a). The results pre-
sented in the next section are based on 10 independent
runs corresponding to different initial matrices of ex-
periments and/or different initial experiment assignment
depending on the strategy under consideration.

4
Test problems

4.1
Autonomous hovercraft

The design of an autonomous hovercraft (AHC), shown
in Fig. 6, was first presented by Sellar et al. (1996). This
problem involves 11 design variables and the calculation
of 50 states. The physical system consists of an engine,
rotor, and payload. The rotor is comprised of two rectan-
gular lifting surfaces located on opposite ends of a hollow,
circular shaft. The system is to operate such that the mo-
tor speed (RPM) provides a thrust-to-weight ratio of one,
imposing hover conditions.

The system analysis is comprised of four contribut-
ing analysis, three of which interact in a complex coupled
fashion as illustrated in the dependency diagram of Fig. 7.
The aerodynamics CA (CAa) calculates the aerodynamic
loads on the lifting surfaces and approximates the dis-
tributed drag force along the rod while estimating the
induced velocity at the lifting surfaces as a function of
the thrust. CAa requires the torsional deformation of
the shaft (θd), the motor RPM and thrust as inputs.
The shaft deformation is supplied by the structures CA
(CAs). All the quantities calculated by this CA, which
also include the axial and shear stresses at the hub and
the deflection of the lifting surfaces, are a function of
the aerodynamic loads, thus subjecting these CAs to
static aeroelastic coupling. The propulsion/performance
CA (CAp) calculates the thrust and torque necessary
to spin the motor based on the loads supplied by CAa.
RPM is calculated by explicitly imposing that the total
weight equals the thrust, determining the weight of the
motor to achieve this total weight, and calculating the
power and resulting RPM available from that size mo-
tor. At this point the formulation used here differs from
that of Sellar et al. (1996) where the RPM is updated in
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x
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tskin

Fig. 6 Autonomous hovercraft system

a heuristic manner. The fourth CA, structural dynam-
ics (CAd), calculates the first natural frequencies of the
rotor in bending and torsion. This CA is completely un-
coupled from the other CAs as it requires no states as
inputs.

RPM

Thrust

θd

LoadsCA
Aerodynamics

a

Propulsion /
Performance

CAp

CA
Structures

s

Dynamics
CAd

Fig. 7 AHS dependency diagram

The goal of the optimization of this system is to
minimize the empty weight of the hovercraft subject
to constraints on the Von Misses stress due to in-plane
and normal forces in the rod, the first natural frequen-
cies of the rod, the Mach number at the tip, and the
hovercraft range. The optimization problem is posed
as:

min Wempty =Wwing+Wrod+Wfuel+Wmotor ,

subject to

g1 = 1.0−
σN

σall
≥ 0.0 ,

g2 = 1.0−
σT

σall
≥ 0.0 ,
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g3 =
ωb

k ·RPM
−1.0≥ 0.0 ,

g4 =
ωt

k ·RPM
−1.0≥ 0.0 ,

g5 =
Mtipall
Mtip

≥ 0.0 ,

g6 =
E

Ereq
−1.0≥ 0.0 .

where σall = 14000 psi, k = 1.5, Mtipall = 0.8 and
Ereq = 2 h. The global optimum for this problem was
first reported by Sellar et al. (1996) and is depicted
in Table 2. For the minimum empty weight, Wempty =
67.9 lbs, 7 design variables are at their bounds and the
hovercraft range constraint, g6, is active.

Table 2 Starting and optimum designs for the AHC problem

Design Starting Optimum
Variable Design Design

t (in) 0.5 0.15
r (in) 2.0 1.20
lrod (in) 60.0 39.92
c (in) 18.0 6.00
b (in) 24.0 42.0
θ◦ (deg) 15.0 10.66
t/c 0.2 0.05
x/c 0.0 0.1507
%cam 0.0 0.035
tskin (in) 0.25 0.05
Wfuel (lb) 50.0 19.981
Wempty (lb) 394.2 67.92

4.2
The cantilever beam

The structures-controls design problem shown in Fig. 8 as
introduced by Sobieszczanski-Sobieski et al. (1991). The
problem comprises a total of 11 design variables and 43
states. The physical problem consists of a cantilever beam
subjected to static loads along the beam and to a dynamic
excitation force applied at the free end. Two sets of actua-
tors are placed at the free end of the beam to control both
the lateral and rotational displacement.

The system analysis is comprised of two coupled con-
tributing analysis as shown in Fig. 9. The structures sub-
system, CAs consists of a finite element model of the
beam where the natural frequencies and modes of the
cantilever beam are computed. CAs requires, in add-
ition to the characteristics of the beam, the weight of
the control system as input. The weight of the con-
trol system is calculated at the controls CA, CAc. The
weight of the control system is a function of the dy-

T T T

P=f(t)

A

B123

Fig. 8 Cantilever beam with actuators

namic displacements and rotations of the free end of
the beam. These dynamic displacements and rotations
are functions of the natural frequencies and modes ob-
tained in the structures CA, thus subjecting these CAs to
coupling.

y

y

s

c

Structures
CA S

Controls
CA C

Fig. 9 Dependency diagram of the cantilever beam design
problem

The objective of the optimization is to minimize the
total weight of the systemWt, composed of the weight of
the beam Ws plus the weight of the control system Wc.
The minimization is subjected to seven constraints on
the static stresses, lateral and rotational displacements,
natural frequencies and dynamic lateral and rotational
displacements at the free end of the beam. The problem is
posed as:

min Wt =Ws+Wc ,

subject to

g1 = 1−
dl

dla
≥ 0 , g2 = 1−

dr

dra
≥ 0 ,

g3 =
ω1

ω1a
−1≥ 0 , g4 =

ω2

ω2a
−1≥ 0 ,

g5 = 1−
σ

σa
≥ 0 , g6 = 1−

ddl

ddla
≥ 0 ,

g7 = 1−
ddr

ddra
≥ 0 ,

where dl is the static lateral displacement, dr is the static
rotational displacement, ddl is the dynamic lateral dis-
placement, ddr is the dynamic rotational displacement,
ω1 is the first natural frequency, ω2 is the second nat-
ural frequency, and σ is the static stress. The subscript
a stands for the allowed value. The optimum for this
problem is depicted in Table 3. The minimum weight,
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W = 1493.6 lbs occurs where 6 design variables are at
their bounds.

Table 3 Starting and optimum designs for the Cantilever
Beam problem

Design Starting Optimum
Variable Design Design

b1 (in) 10.0 3.0
b2 (in) 10.0 3.0
b3 (in) 10.0 3.0
b4 (in) 10.0 3.0
b5 (in) 10.0 3.0
h1 (in) 10.0 13.85
h2 (in) 10.0 11.96
h3 (in) 10.0 9.78
h4 (in) 10.0 7.06
h5 (in) 10.0 3.75
c 0.01 0.06

5
Results

The optimization algorithm described by Rodŕıguez et al.
(1998a), was applied to the autonomous hovercraft and
cantilever beam problems using the database generation
methodologies presented in previous sections. Since both
problems have a total of 11 design variables, the sampling
patterns are the same in both cases. Table 4 shows the
total number of design evaluations required for each of the
experimental designs investigated.

Table 4 Number of evaluations for each experimental design

Experiment Design No. of Evaluations

OA11-8-2 128
OA11-11-2 121
OA11-11-3 1331
FF 2048
CCD 2071

In Table 4 OAX-Y-Z stands for an orthogonal array of
strength Z, for X design variables and Y levels per vari-
able. Note that increasing the strength of the orthogonal
array increases the number of sampling points, providing
a much richer data base. However, it also increments the
cost of generating the database.

For each of the sampling strategies described in
Table 1, 10 different runs were performed, each with a dif-
ferent initial matrix of experiments. The initial design
point was kept unchanged. The mean number of approxi-
mate minimizations and its standard deviation for each of
the strategies are shown for each problem. The total cost

of the optimization is reported in the form of the total
number of subsystem evaluations performed using each of
the sampling strategies.

5.1
Autonomous hovercraft

For this problem, the four contributing analysis (i.e. CAa,
CAs, CAp, CAd) comprising the system analysis of the
problem are taken as four independent subspaces for
database generation purposes. Table 5 shows the aver-
age number of approximate minimizations for each of
the sampling cases for the partial sampling methodol-
ogy (i.e. the design matrix is partitioned among the
subspaces).

Table 5 Mean value of the total number of approximate min-
imizations for the AHC problem (partial sampling)

Sampling Approx. Minimizations

Matrix Strategy 1 Strategy 2 Strategy 3

OA11-8-2 31±15 36±14 34±23
OA11-11-2 42±26 40±38 52±33
OA11-11-3 16±2 16±5 18±4
FF 36±33 28±27 –
CCD 17±4 17±4 –

The results show (Figs. 10–12) that increasing the
strength of the orthogonal arrays reduces the total num-
ber of approximate minimizations required to solve the
problem. Also, a reduction in the standard deviation of
the number of approximate minimizations is observed for
experimental designs where a large number of sampling
points were used (i.e. OA11-11-3). Table 5 also shows the
results to be almost independent of the sampling strategy
used for each orthogonal array. This fact is more clearly
observed in Fig. 10 where the average number of approx-
imate minimizations for the different sampling strategies
for the partial sampling methodology are depicted.

Table 6 shows the total number of approximate min-
imizations obtained with the full sampling methodology

Table 6 Mean value of the total number of approximate min-
imizations for the AHC problem (full sampling)

Sampling Approx. Minimizations

Matrix Strategy 1 Strategy 2

OA11-8-2 17±3 16±3
OA11-11-2 19±12 15±3
OA11-11-3 16±1 18±6
FF 13 –
CCD 18 –
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Fig. 10 Total approximate minimizations for different sam-
pling strategies (partial sampling)

(i.e. the entire matrix of experiments is run at all sub-
spaces).

This table shows a reduction in the number of ap-
proximate minimizations for all matrices of experiments,
but also the results are obtained with a lower standard
deviation. This last observation denotes a more reliable
database from an optimization standpoint. Moreover,
Table 6 shows that for the particular case of the AHC
problem, the results obtained using full sampling seem to
be also independent of the experimental design used to
query the subspaces (see Fig. 11).

When the total number of CA Calls for both method-
ologies are compared (Fig. 12) a rather interesting result
is obtained.
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Fig. 11 Total approximate minimizations for different sam-
pling strategies (full sampling)

Experimental Design

To
ta

l C
A

 C
al

ls

Fig. 12 Total CA calls for different sampling strategies

The figure shows that for the case of high strength
orthogonal arrays, full factorial and CCD design, the
number of CA Calls grows tremendously when full sam-
pling is used. However, the same does not occur for low
strength orthogonal arrays where the total number of CA
Calls remains almost constant. In these two cases the sys-
tem is optimized in a lower number of iterations with
more repeatability of the results (i.e. lower standard devi-
ation) at almost the same cost.

5.2
Cantilever beam

In this problem the two contributing analysis (i.e. CAs
and CAc) comprising the system analysis are taken as two
independent subspaces for database generation. Table 7
shows the average number of approximate minimizations
for the partial sampling methodology.

Table 7 Mean value of the total number of approximate min-
imizations for the cantilever beam problem (partial sampling)

Sampling Approx. Minimizations

Matrix Strategy 1 Strategy 2 Strategy 3

OA11-8-2 75±39 71±26 65±23
OA11-11-2 88±46 70±24 72±43
OA11-11-3 46±25 30±9 33±10
FF 45±21 37±10 –
CCD 40±15 37±15 –

These results are in general consistent with those ob-
tained for the AHC design problem. Increasing the size of
the experimental design reduces the total number of ap-
proximate minimizations. In this case, a reduction in the
standard deviation of the number of approximate mini-
mizations for the orthogonal array of higher strength and
Full Factorial and CCD designs is also observed. As found
in the AHC problem the results in Table 7 appears to be
indifferent to the sampling strategy used with each ex-
perimental design. Figure 13 showing the average number
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Fig. 13 Total approximate minimizations for different sam-
pling cases (partial sampling)
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Table 8 Mean value of the total number of approximate min-
imizations for the cantilever beam problem (full sampling)

Sampling Approx. Minimizations

Matrix Strategy 1 Strategy 2

OA11-8-2 40±11 57±20
OA11-11-2 55±21 60±18
OA11-11-3 31±14 25±4
FF 37 –
CCD 33 –

of approximate minimizations for the partial sampling
methodology details this observation.

Table 8 shows the total number of approximate mini-
mizations for the cantilever beam problem using the full
sampling methodology.

In this example a reduction in the number of approxi-
mate minimizations for all matrices of experiments is also
observed. This reduction is accompanied, as in the previ-
ous problem, with a reduction in the standard deviation
of the total number of approximate minimizations. Note
that the results for this methodology in regard to the
number of approximate minimizations, follows the same
trend as in the AHC problem (see Figs. 11 and 14). How-
ever the results are not as uniform as was observed in the
previous example.

If the total number of CA Calls required for each sam-
pling strategy to solve the optimization problem are com-
pared (Fig. 15), the result resembles that obtained for the
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Fig. 14 Total approximate minimizations for different sam-
pling strategies (full sampling)
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Fig. 15 Total CA calls for different sampling strategies

AHC problem. As occurred in the previous example, the
number of CA calls for high strength OAs, full factorial,
and CCD designs grows when used with the full sam-
pling methodology, while the number of CA calls does
not manifest a significant variation when full sampling
methodology is applied with low strength OAs.

6
Discussion

One of the most interesting results obtained is the reduc-
tion in the number of approximate minimizations when
low strength orthogonal arrays are used with the full
sampling methodology. This behaviour is obtained be-
cause in the partial sampling methodology, the matrix
of experiments is divided among the contributing analy-
sis limiting the amount of information supplied for each
discipline. This might prevent for some areas of the de-
sign space where the response provided by a particu-
lar CA is critical for the minimization to be sample, or
queried insufficiently. Therefore, the response surfaces
approximations constructed from this data will not pro-
vide a good approximation of the system reducing the
rate of convergence or leading to earlier convergence of
the algorithm, thus making the algorithm more sensi-
tive to the partition of the matrix of experiments among
the disciplines and the matrix of experiments itself. Note
that this situation will be more critical in problems with
a large number of subspaces and a relatively small num-
ber of design variables since the contribution of each
discipline will be significantly reduced. This is the situ-
ation in the examples studied here. The AHC problem has
four subspaces implying that each discipline contributes
30 sampling points for the OA-11-11-2 orthogonal ar-
ray. On the other hand, a quadratic response surface
approximation (RSA) with 11 design variables around
a design point, requires 66 constants to be determined,
which corresponds to the Hessian information, as first
order information is already available. Even though, the
total number of points in the database (122) suffices to
characterize the second order approximation, the ratio
of the information supplied for each discipline to the
total number of sampling points required to character-
ize the RSA is low (i.e. 0.5). The situation changes quite
abruptly for the full sampling methodology. In this sce-
nario, the ratio of the information supplied by the disci-
pline to the total required for characterizing the RSA is
four times larger (i.e. 2) than that in the partial sampling
methodology.

The considerable reduction in the number of approx-
imate minimizations for the case of low strength OAs
compensates for the extra cost involved in the generation
of the database. As a consequence the total number of CA
calls required to optimize the problem is kept almost con-
stant as shown in Figs. 12 and 15. The difference is that
using the full sampling methodology the algorithm gains
robustness.
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Fig. 16 Total CA calls required for CSSO, partial sampling,
and full sampling methodologies for the AHC problem
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Fig. 17 Total CA calls required for CSSO, partial sam-
pling, and full sampling methodologies for the cantilever beam
problem

It is interesting to compare the cost of the optimiza-
tion using a statistical based sampling methodology and
an optimization based sampling methodology like CSSO.
Figure 16 and Fig. 17 provide a comparison of the total
CA calls required to optimize the AHC and the cantilever
beam problems using both methodologies.

Even though orthogonal arrays appear to be com-
petitive with CSSO when used with the full sampling
methodology, the optimization based sampling provided
by CSSO seems to be, in general, more efficient in driv-
ing the optimization. However, one must extend the cur-
rent study to additional MDO problems having different
dimensionality and complexity in order to extend this ob-
servation to a definite conclusion.

7
Conclusions

This investigation continues research efforts on the use
of data of variable fidelity to drive the convergence of
MDO problems using a trust region model management
algorithm. The present study focuses on the use of de-
sign of experiments at the disciplines levels for response
sampling to generate the database required to build the
system RSAs. Orthogonal arrays of strength 2 and 3,
full factorial and CCD experiments are investigated. Two
different sampling methodologies are considered, one in

which the matrix of experiments is partitioned among the
different disciplines (partial sampling methodology) and
a second sampling methodology in which the entire ma-
trix of experiments is run in each discipline (full sampling
methodology). Two MDO problems that have complex
coupling between disciplines are used to benchmark the
performance of each sampling strategy. The results show
that response surface approximations constructed using
variable fidelity data obtained using design of experi-
ments at the discipline level, can be effectively managed
by the trust region model management strategy. The re-
sults also show that orthogonal arrays of low strength
(lower dimension matrices of experiments) perform best
when used with the full sampling methodology. A com-
parison of the current results with those obtained using
CSSO showed that full sampling with low strength orth-
ogonal arrays appears to be competitive with CSSO in
some cases. However, the optimization based sampling
strategy (CSSO) was found to be, in general, more effi-
cient in driving the optimization.
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