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Analysis and optimization of energy flows in structures
composed of beam elements – Part II: examples and discussion

S.V. Sorokin, J.B. Nielsen and N. Olhoff

Abstract This paper addresses analysis and optimiza-
tion of in-plane coupled flexural and longitudinal vi-
brations within the framework of a theory outlined in
a companion paper. An optimization problem is posed
for a model structure consisting of two elements of a fi-
nite length and one semi-infinite element. This model
structure has four terminal points. Parameters of design
are chosen as stiffness, mass and the location of two of
the terminal points. A parametric study of vibrations
of the structure is performed and optimal locations of
terminal points are detected. Analysis of energy flows
between elementary dynamical systems is done and the
dynamics of a structure with the optimized design shape
is compared with the dynamics associated with the ini-
tial design shape. The formulation of the optimization
problem is also extended to include amplitudes of “sec-
ondary forces” as design variables. Possibilities of active
control of energy flows by usage of “secondary” sources of
excitation are discussed.

Key words elastic beam structures, power flow, mini-
mization of emitted or transmitted energy of vibrations,
dynamical subsystems, substructuring, wave guides,
boundary equations

1
Introduction

In Part 1 of this paper, a theory of analysis of in-plane
coupled flexural and longitudinal vibrations of a planar
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structure composed by tubular elements of both a finite
and an infinite length is presented. The mechanical sys-
tem is modelled by a set of coupled subsystems intro-
duced as elastic wave-guides carrying flexural or longi-
tudinal waves. The purpose of the study is an optimiza-
tion of energy flows from a source to a remote zone of
a structure for a given frequency range and given excita-
tion conditions by means of varying the location, stiffness,
damping and mass parameters of the attached terminal
points. A boundary integral equation method is used to
set up a system of governing equations describing forced
stationary vibrations of the structure.

In Part 2, validity of this problem formulation is
checked via comparison of numerical results obtained
by usage of the boundary integral method, the finite
element method and the spectral element method. Then
a parametric study of vibrations of a model structure is
performed and optimization examples are considered.

2
Verification of computational algorithm

To check the validity of solutions to the problem obtained
by the boundary equation method, analysis of free vibra-
tions of the structure of finite length introduced in the
companion paper has been done first. Parameters of the
elements of the structure are specified as follows: lengths
�1 = 1m, �2 = 0.5m, �3 = 3m, outer diameters d1 = d2 =
0.0275m, d3 = 0.055m, thickness t1 = t2 = 0.0025m,
t3 = 0.005m, material density ρ1 = ρ2 = ρ3 = 7800 kg/m3

and Young’s modulusE1 =E2 =E3 = 2.1×1011Pa. Two
sets of boundary conditions have been considered. For
a simply supported structure, boundary conditions (3)
and (8) from Part I are formulated as

u1(0) = w
′′(0) = 0 ,

u3(�3) = w3(�3) = w
′′(�3) = 0 .

The first five eigenfrequencies found by the standard
finite element package ANSYS and via boundary integral
equations (BIE) are shown in Table 1.
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Table 1 Eigenfrequencies of a simply supported structure

ANSYS 4.624 Hz 25.145 Hz 76.313 Hz 102.23 Hz 161.44 Hz
BIE 4.625 Hz 25.152 Hz 76.358 Hz 102.29 Hz 161.75 Hz

Table 2 Eigenfrequencies of a “free-free” structure

ANSYS 14.62 Hz 34.98 Hz 49.67 Hz 96.02 Hz 145.66 Hz
BIE 14.62 Hz 35.02 Hz 49.68 Hz 96.16 Hz 145.83 Hz

For an unconstrained structure, boundary conditions
(3) and (8) from Part I are formulated as

u′1(0) = w1(0) = w
′′′(0) = w′′(0) = 0 ,

u′3(�3) = w
′′′
3 (�3) = w

′′(�3) = 0 .

The first five eigenfrequencies of an unconstrained struc-
ture are displayed in Table 2

The difference between eigefrequencies obtained via
ANSYS and via BIE is of the same order of magnitude as
one proceeds to higher frequencies or to any other bound-
ary conditions.

As has been discussed, the system of boundary inte-
gral equations for a structure containing a semi-infinite
element is obtained by a reduction of the system of
boundary integral equations for a finite structure. Thus,
the above example validates the formulation of equations
both for the finite structure and for the structure having
an infinitely long element. However, the energy calcula-
tions part of the solution by boundary equations cannot
be checked by comparison with a finite element solution
by ANSYS because the latter does not possess facili-
ties for wave propagation analysis. To verify the validity
of energy flow calculations, a spectral element method
(see Doyle 1997) has been applied for calculating en-
ergy flows in a structure shown in Fig. 1b (see Part I).
Its parameters are kept the same as listed above, but
the length of the third element is taken to be infinitely
large. No energy dissipation and no terminal points have
been taken into account. The structure has been ex-
cited at the middle of the first element by a transverse
driving force of amplitude 10N. Structural intensities
calculated by the boundary integral equation method
at the interfaces between subsystems have been exactly
the same as those obtained via the spectral element
method. Thus, the suggested boundary integral formula-
tion is proved to be valid also for calculations of structural
intensities.

Analysis of wave propagation in tubular beams may
only be adequately performed within the framework of
the elementary theory of beams formulated by differential
equations (2)–(3) from Part I up to a certain threshold
frequency; the theory is applicable if the free wavelength

is markedly larger than the diameter of the tube. Thus, it
is necessary to estimate wavelength to diameter ratio for
both flexural and longitudinal waves in the infinitely long
element of the structure. In Fig. 2, the dependence of the

nondimensional parameters
Lbending
d3

and
Llongit
d3

upon fre-

quency in Hz is plotted. As follows from this graph, the
elementary beam theory may reliably be used at least up
to 400Hz.

3
Optimization, results and discussion

The problem of optimization has been formulated for
a structure as shown in Fig. 1b (see Part I). Unlike the
cases discussed earlier, the energy dissipation within the
material of a structure has been included in our con-
sideration. Specifically, the simple model of a frequency-
independent loss factor has been adopted for all subsys-
tems, i.e. ηwkω= ηukω = 10−4, k = 1, 2, . . . , 6. The trans-
verse driving force is applied at the middle of the first
beam element and its amplitude is taken as uniformly dis-
tributed in the given frequency range. For definiteness,
the amplitude of force is specified as 10N and its phase
is put to zero. Apparently, excitation conditions may in-
clude several other transverse and longitudinal driving
forces with phases shifted from the first one. There is
a wide variety of their possible combinations, but analy-
sis of vibrations when several driving forces are applied
to the structure lies beyond the scope of the present pa-
per. It is more instructive to look into the possibilities
of an active control of energy flows within the optimiza-
tion framework that is possible by use of the suggested
methodology. Thus, the last example of optimization to
be given in this section is relevant to the case when
the amplitude of a control force is chosen as a design
variable.

A set of four terminal points is chosen as shown
in Fig. 1b (see Part I) . The first terminal point coin-
cides with the excitation point, and it has a mass of
M1 = 2.5 kg with no added stiffness and no damping.
This terminal point in a real pipeline models a pump
(a source of energy) which generates vibrations of the
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Fig. 2 Nondimensional free wavelength parameters
Lbending
d3

(curve 1) and
Llongit
d3

(curve 2) versus frequency

whole structure. The second terminal point (an inter-
mediate support of the pipeline) in the initial design is
placed 30 cm to the right from the first one; its parameters
areM2 = 1.5 kg, K2 = 3×108N/m and internal loss fac-
tor is ωC2 = 0.01K2. The third terminal point is placed at
the substructure (beam element) III in a distance of 3 m
from its interface with the substructure II. This termi-
nal point models a support of the third tubular element,
and its parameters are M3 = 1.5 kg, K3 = 3×108N/m,
ωC3 = 0.01K3. Similarly to those of the first terminal
point, these parameters are not subjected to optimiza-
tion. The fourth terminal point is placed between the
interface of the second and the third beam elements and
the terminal point 3. The parameters of this terminal
point 4 are subjected to optimization.

An objective function is selected as the structural
intensity measured at the distance of 5 m from the
interface between substructures 2 and 3. As is seen
in Fig. 1b, this control point is situated sufficiently
far both from the excitation zone and from the intro-
duced terminal points. Thus, it is reasonable to con-
sider the structural intensity at this cross-section as an
amount of vibration energy, which may produce un-
desirable noise emission from an “outer” part of the
pipeline. The structural intensity at the control cross-
section should be minimized for the frequency range
from 40 to 100Hz. This comparatively narrow frequency
band is chosen for optimization of the structural per-
formance since a low-frequency noise is most difficult
to be suppressed by conventional means (see Norton

1986; Fuller et al. 1997). The structural intensity is
calculated by a discrete counterpart of formula (7) in
Part I,

Θ =
60∑
k=1

N(ωk)∆ω , (1)

with an integration step of 1 Hz in the frequency do-
main, i.e. ∆ω = 2π 1/s. This formulation of an objec-
tive function is approximate in the sense that it is re-
lated to sampling of the forced response of a structure
with this accuracy. In principle, the convergence of this
objective function to a certain value should be inves-
tigated when a number of sampling points is varied.
However, just as in structural acoustics (see, e.g. Chris-
tensen et al. 1998) it is possible to restrict optimization
of a structural response by a set of “master” frequen-
cies. In the subsequent analysis, the latter approach is
adopted.

3.1
Analysis of the initial design

In order to enable a good understanding of energy trans-
mission mechanisms at the set of specified “master” fre-
quencies, the behaviour of the system in its “initial de-
sign” is compared with the behaviour of the system when
its terminal points are removed one by one. Some results
of this comparison are illustrated in Fig. 3. In particular,
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in Fig. 3a curve 1 presents the dependence of the power
outflow Nout

[
Nm
s

]
at the control cross-section upon the

excitation frequency when the system has no terminal
points except for the first one. Curve 2 is plotted for the
case, when only the terminal point 3 is added and curve 3
is plotted for the case when the terminal points 2 and
3 are added. As is seen, power outflow at the frequency
of approximately 52.5Hz is maximal in all three cases.
Excitation of the structure at this frequency is associ-
ated with resonant behaviour of a concentrated mass.
To explain this phenomenon, it is convenient to return
to vibrations of a structure bearing only a concentrated
mass (curve 1). Although the structure is infinitely long,
the trapped mode effect (the strong localization of vi-
brations nearby the inhomogeneity) is produced by the
presence of this mass. Since the driving force is applied
directly at the mass, the power input into the pipeline
also reaches its maximum at this frequency. As a very
rough estimation of the value of this trapped mode reso-
nant frequency, one may calculate the natural frequency
of a single degree of freedom system composed as a sim-
ply supported weightless beam element 1 bearing the
given concentrated mass. If the terminal point 3 is added,
then the localization phenomenon becomes even more
pronounced at the vicinity of the first trapped mode res-
onant frequency, see curve 2. In addition, a second peak
of smaller magnitude is seen on this curve. This peak
could be identified also as a resonant response of an inho-
mogeneous structure consisting of three beam elements.
However, if one more terminal point (2) is added, then
the energy transmission through the control cross-section
is reduced, as is shown by curve 3, but it is still larger
than in the case where the pipeline has no attachments.
This is explained by the decrease in the amplitude of
vibrations of the structure at the excitation point due
to the relatively close location of a rather stiff terminal
point 2.

These results show that addition/removal of termi-
nal points may significantly change the energy consump-
tion of the modelled system. In Fig. 3b, a radiation effi-
ciency of travelling waves calculated asNbendingout /Ninput+
N longitout / Ninput is plotted versus the excitation frequency
for the same three cases. This graph clearly shows that in
the specified frequency range practically the entire power
input is transmitted through the structure with the se-
lected parameters of terminal points. To compare con-
tributions of bending waves and longitudinal waves, in
Fig. 3c, the radiation efficiency of bending waves versus
frequency is shown for the third element of the pipeline,
where the control cross-section is positioned. Two con-
clusions follow from these graphs: (i) in this frequency
range the vibration energy is conveyed mostly by bend-
ing waves, (ii) the radiation efficiency is very close to 1,
so it is possible to formulate an objective function for
the optimization procedure as the power input into the
system.

Analysis of power flows between subsystems in the
initial design is also performed in the selected frequency

range. For the given excitation conditions, i.e. when
a single transverse driving force acts at the first elem-
ent, a power flow from the first element of the pipeline

Fig. 3 Comparison of energy flow characteristics for three
configurations of the structure. (a) Power outflow at the
control cross-section, (b) radiation efficiency of all travelling
waves, (c) radiation efficiency of flexural waves
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to the second one versus excitation frequency is shown in
Fig. 4a. For convenience, the power flow is scaled to the
energy input into the system. Curve 1 presents an overall
power flow Nbendingout /Ninput+N

longit
out /Ninput. As has al-

ready been discussed, this quantity is fairly close to unity
in the whole frequency range. Curve 2 shows the power
flow carried by the longitudinal waves,N longitout /Ninput and
it is negative whereas the power flow carried by the flex-
ural waves Nbendingout /Ninput exceeds unity, as presented
by curve 3. These results are explained by phenomena
of energy exchanges between subsystems, namely, the
energy of longitudinal waves in the second element is
supplied by energy of flexural waves. In Fig. 4b, the
similar graphs are presented for the energy flow to the
third element. The overall energy flow Nbendingout /Ninput+
N longitout /Ninput is again slightly less than unity (due to
the internal dissipation) as shown by curve 1. How-
ever, unlike partial energy flows in the second element,
both quantities Nbendingout /Ninput (shown by curve 2) and

Fig. 4 Energy flows between substructures. (a) Energy flow
to the second beam element, (b) energy flow to the third beam
element

N longitout /Ninput (shown by curve 3) are positive and their
values agree with those presented in Fig. 3. It is clear that
the distribution of the energy between longitudinal and
flexural waves set up at the junction between the second
and the third beam elements is preserved while the waves
propagate along the third element and reach the control
cross-section. We shall not pursue this aspect of analy-
sis any further and now proceed to optimization of the
structural performance.

3.2
Parametric optimization

A parametric study of the influence of design parame-
ters on the objective function has been carried out in-
stead of using some standard optimization software. This
decision was made due to a complex behaviour of the
objective function in the specified frequency range. It

Fig. 5 Optimization of positioning of the fourth terminal
point (the first example). (a) Power outflow at the control
cross-section, (b) radiation efficiency of all travelling waves
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Fig. 6 Energy flow characteristics of a structure. (a) Power input for three positions of the fourth terminal point: x = 1.1 m
curve 1; x = 1.2 m curve 2; x = 1.3 m curve 3; (b) power outflow in a system with a dynamic absorber, curve 1 and without
a dynamic absorber, curve 2

should also be pointed out that a parametric study pro-
vides a better understanding of the roles of the param-
eters of design in the physical process of transmission
of power in the considered system. On the other hand,
even if a moderate number of parameters of design is se-
lected (as is done in the present paper), then it presents
some difficulties to find the most representative cases
of a parametric study. Thus, a few examples tackled in
this subsection are aimed to provide the reader with
some initial understanding of possible roles of various de-

sign variables, rather than to serve as a basis for any
general conclusions concerning strategy of power flow
optimization.

The optimization procedure has been started with
mass, stiffness and damping parameters of terminal
points 2, 3 and 4 fixed as they are given in the previ-
ous subsection. The positions of the second and the third
terminal point have also been fixed as indicated there.
Then the only design parameter that has been variable
is the position of the fourth terminal point. The step in
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Fig. 7 Dependence of power input (curve 1) and power output (curve 2) upon the stiffness of the fourth terminal point

changing co-ordinate of this terminal point has been cho-
sen as 0.05m and a simple constraint condition has been
imposed to ensure that the terminal point cannot get
closer than 10 cm to both the junction point and the ter-
minal point 3, see Fig. 1b. For each configuration of the
system, the power input and radiation efficiency coeffi-
cient have been computed for the whole frequency range
with a step of 1 Hz. In Fig. 5a, the objective function
(1) is plotted versus the co-ordinate of the fourth termi-
nal point (the design variable). It is clearly seen that the
power flow attains minimum value in x= 1.2m. It should
also be pointed out that the objective function oscillates
when the design variable exceeds this value. The energy
outflow is approximately the same when x= 1.45m and
when x = 1.2m. However, the sensitivity of the objec-
tive function to changes of the design variable is larger
in the former case than in the latter one. Thus, the op-
timal design location of the terminal point 4 should be
selected as x= 1.2m. In Fig. 5b, for the whole frequency
range 40–100Hz the radiation efficiency calculated is
plotted (to different scale) versus the co-ordinate of this
terminal point. It is clearly seen that the radiation effi-
ciency is quite insensitive to the selected design variable
and this characteristic of a structural performance can-
not therefore serve as a reliable objective function for an
optimization procedure. The results illustrated by Fig. 5
give a “global picture” of the structural behaviour in
a given frequency range. A more detailed “local picture”,
i.e. the dependence of the energy input upon a frequency

at three steps of optimization (i.e. for three positions of
the terminal point) is presented in Fig. 6a. The principal
contribution to the structural intensity is made by vibra-
tions at the trapped mode resonant frequency, i.e. around
52.5Hz. The dependence of the power outflow upon fre-
quency in each of the cases is similar to the dependence
of the power inflow since almost the whole input power is
transmitted through the structure for the selected set of
parameters.

As can be seen in Fig. 6a, the largest contribution to
the input and the output power occurs at the resonant
frequency related to a trapped mode generated by the
concentrated mass at the terminal point 1. If an opti-
mization problem is posed to minimise the output power
only at this specific frequency, then to suppress resonant
effects a dynamic absorber of vibrations may be effec-
tively used. Such an absorber is modelled as a one-degree-
of-freedom linear oscillator attached to the concentrated
mass at the terminal point 1. Then (9) in Part I is formu-
lated as[
−ω2M1−K0

ω2+ iωC0
K0

ω2−Ω2+ iωC0
K0

− iωC0

]
v1 = Φ1 . (2)

In (2) Ω =
√
K0
M0

is the natural frequency of the ab-

sorber. The absorber’s stiffness, mass and damping
parameters are chosen to tune its resonant frequency
to the trapped mode frequency of 52.5Hz. They are



19

Fig. 8 Optimization of positioning of the fourth terminal point (the second example). (a) Power outflow at the control cross-
section, (b) radiation efficiency of all travelling waves

K0 = 103 N/m, M0 = 9.2 g, and ΩC0 = 0.001K0, respec-
tively. The fourth terminal point is placed at x = 1.1m.
The dependence of the energy output upon a frequency

is presented in Fig. 6b for the frequency range 50–60 Hz.
As is clearly seen, the dynamic absorber is efficient
only “locally” at the resonant frequency where the en-
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ergy output drops practically to zero. At all other fre-
quencies it does not produce any effect on the energy
output. Therefore, the “global” role of a dynamic ab-
sorber in minimization of the objective function (1) in
the whole given frequency range is insignificant and the
further analysis is performed for a structure without
absorbers.

After the optimal position of the fourth terminal point
has been located, a similar parametric study is continued
into the roles of stiffness, mass and damping parameters
of a substructure connected with a “host” structure at
this terminal point. In Fig. 7, the dependence of the power
input (curve 1) and of a power transmitted through the
control point (curve 2) upon stiffness of the fourth ter-
minal substructure is presented. As is seen, both these
characteristics are rather insensitive to variations in stiff-
ness of this terminal substructure. There is only a rather
small range around a value ofK4 = 3×105N/mwhere an
increase in input power is associated with a decrease in
radiated power. The role of an attached mass has also ap-
peared to be insignificant. As it varies from 0 to 10 kg,
it does not influence values of the input and the output
power. The role of damping parameter is trivial: it influ-
ences only the transmission coefficient but not the power
input into the system. Summing up the investigation into
optimization of structural performance by varying pa-
rameters of the substructure at the terminal point 4 (see
Figs. 5–7) it is concluded that by proper choice of de-
sign parameters, a value of the objective function may be
reduced by about 10–15% from its value for the initial
design.

In the considered optimization example, a pipeline
supported by comparatively stiff terminal points is mod-
elled. The stiffness parameters of all supports are of the
order of magnitude relevant to an axial stiffness of steel
rods with a length of about 10 cm and a cross-sectional
area of about 1 cm2. It may be called an in-plane po-
sitioning of the pipelines supports since these rods are
put in the plane where motions of the structure occur
(as shown in Fig. 1b). The same rods may also be used
to fix the pipeline in such a way that they experience
a bending deformation. This is an “out-of-plane” (with
respect to the plane in Fig. 1) positioning of the sup-
ports. Then the stiffness parameters of all the terminal
points should be reduced about 1000 times to become
Kj = 3×105N/m, j = 1, 2, 3, 4. This scaling factor is the
ratio between axial and bending stiffness of these sup-
ports. As shown in Fig. 7, this particular value of the
stiffness of the fourth terminal point would imply some
decrease in the transmission coefficient. The internal loss
factor at all terminal points is chosen to be the same as
before, i.e. ωCj = 0.01Kj, j = 1, 2, 3, 4. This assumption
matches the one adopted for beam elements that an in-
ternal loss factor in bending vibrations of a pipeline is the
same as in its longitudinal vibrations. An objective func-
tion is selected to have the form (1) and optimization is
performed for the same frequency range as in the previous
case. The results of an initial design analysis of a pipeline

Fig. 9 Optimization of positioning of the second terminal
point. (a) Power outflow at the control cross-section, (b) radi-
ation efficiency of all travelling waves

with “out-of-plane” or “bending” supports are quite simi-
lar to those illustrated in Fig. 3 and not displayed here.
Similarly to the case of “axial” or “in-plane” supports,
only one design parameter is variable that is the position
of the fourth terminal point. For each configuration of the
system, the power input and radiation efficiency coeffi-
cient have been computed for the whole frequency range
with a step of 1 Hz. In Fig. 8a, the objective function (1)
is plotted versus the co-ordinate of the fourth terminal
point (a design variable). It is clearly seen that the power
flow is minimized, when x= 1.38m. This result is rather
similar to what has been obtained for “out-of-plane” or
“bending” supports at terminal points, see Fig. 5a. How-
ever, the value of radiated power is significantly reduced
and as shown in Fig. 8b, the radiation efficiency is lower
than in the previous case.

Another possibility of control is relevant to variation
of parameters of the terminal point 2 (the one located
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next to the excitation point). To perform a study of their
roles, the fourth terminal point is placed at x= 1.2m and
all other parameters of the pipeline are kept as specified
in Sect. 2 for the first example of optimization (i.e. “in-
plane” connection at terminal points is considered). In
Fig. 9a, the dependence of the power flow on the position
of the second terminal point is shown. As is seen, it is
more efficient to control the energy output by letting the
second terminal point tend to the excitation point, than
to change the location of the fourth terminal point. Ap-
parently, the best performance of the structure could be
achieved when the terminal point merges the excitation
point. Physically, it is explained simply by a significant
reduction of the amplitude of vibrations at the excitation
point produced by a presence of the stiffener. This result
is well-known in many practical applications as suppres-
sion of vibrations at the source. However, a constraint
similar to that in the previous case has been imposed to
prevent the second terminal point to be positioned closer
than 10 cm to the point of excitation. In Fig. 9a it is seen
that a minimum of power transmission is reached just
when a terminal point is placed at this distance from
the source (i.e. as near as permitted). In Fig. 9b, the ef-
ficiency of radiation is plotted versus the position of the
terminal point, and it is clear that just in all the previous
cases, this quantity is insensitive to variations in design
parameters.

In Fig. 10, the dependence of an energy flow through
a control cross-section of an optimized structure (a struc-
ture with the second terminal point positioned 10 cm
from an excitation point) is plotted in a broad frequency
range (0–200Hz). Simultaneously, the dependence of an
energy flow upon the frequency for the initial design
(a structure with the second terminal point positioned in
30 cm from an excitation point) is also presented. Opti-
mal location of the second terminal point improves a per-
formance of the structure in a broader frequency range
than the range specified for the optimization process.

Fig. 10 Power outflow at the control cross-section (1 – initial
design, 2 – optimized structure)

However, the overall decrease in structural intensity in
the frequency range 0–200Hz is not as large as in the
range 40–100Hz. As is seen from the graph, there are
two peaks of energy outflow of an optimized structure at
about 157 Hz and 178Hz, whereas the initial design has
peaks of larger magnitude at the frequencies of 52.5Hz
and 104 Hz. Physically, a shift of “resonant” (in the sense
of maximum energy transmission) frequencies towards
larger values is explained by an increase in the stiffness of
the whole structure generated by relocation of the second
terminal point.

To conclude our investigation into the dynamics of the
model structure, the possibility of an active control of
power outflow by means of a “secondary” control force
is explored. This transverse force is applied at the mid-
dle of the second beam element. For simplicity, an active
control is restricted by a variation in the amplitude of

Fig. 11 Power outflow control by “secondary” source. (a)
Power outflow at the control cross-section for small ampli-
tudes of a control force, (b) minimization of the power outflow
at the control cross-section by a control force
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this secondary source, whereas it acts in phase with the
primary one. Then negative values of its amplitude are
relevant to a force shifted in π radians from the driv-
ing force. The technique used in this paper for analysing
forced vibrations and energy flows may easily be adopted
to take into account possible phase shifts between active
and secondary sources. However, more detailed inspec-
tion into active control of vibrations of pipe systems (see
Norton 1986; Fuller et al. 1997) lies beyond the scope of
the present paper. In Fig. 11a, the influence of a con-
trol force of fairly small amplitude on the power outflow
through the control cross-section is illustrated. The pres-
ence of the secondary source acting in phase with the
primary one reduces energy outflow. Apparently, from
a practical viewpoint the amplitude of a control force
should be much less than the amplitude of a driving force.
However, as suggested by the results shown in Fig. 11a in-
teraction of two in-phase forces significantly reduces the
energy outflow. This conclusion is supported by the graph
in Fig. 11b, which in fact is an extension of Fig. 11 a to-
wards large amplitudes of the “secondary” force. As it fol-
lows from this graph, the optimal value of the secondary
force is very large (1.48 times larger than an amplitude
of the primary force), but it gives a very large reduction
in power transmission through the control cross-section
(almost 5 times).

4
Conclusions

An investigation of in-plane coupled flexural and lon-
gitudinal vibrations of a planar structure composed by
tubular elements of both a finite and an infinite length
is presented. The mechanical system is modelled by a set
of coupled subsystems introduced as elastic wave-guides
carrying flexural or longitudinal waves. The purpose of
the study is an optimization of energy flows from a source
to a remote zone of a structure for a given frequency
range and given excitation conditions by means of vary-
ing the location, stiffness, damping and mass parame-
ters of the attached terminal points. A boundary in-
tegral equation method is used to set up a system of
governing equations describing forced stationary vibra-
tions of the structure. Validity of this problem formula-
tion is checked via comparison of numerical results ob-
tained by usage of the boundary integral method, the
finite element method and the spectral element method.
The parametric study of vibrations of a model structure
has shown that at the specified low-frequency range, the
structural intensity (the energy flow) at the remote part
of a structure is very close to the power input. Thus,
for the sets of parameters considered in this paper, the
radiation efficiency coefficient is a very robust charac-
teristic of a vibrating structure and it slightly depends
upon selected design variables. The algorithm based on
use of boundary equations is also used to analyse energy
flows between subsystems and to compare contributions

to the structural intensity from flexural and longitudinal
waves.

The objective function is selected as the power in-
put into the system and the optimization strategy is set
up as reduction of the power input because it simul-
taneously gives the minimization of an energy outflow.
Presence of several terminal points strongly affects the
above objective function. Specifically, the power input
into a structure with terminal points at a certain rather
narrow frequency range is much higher than that for
a structure with no terminal points due to resonant mode
trapping. Several case studies of optimization are per-
formed to show that a proper choice of positions of the
terminal points (which are the most influential design
variables) may significantly improve structural perform-
ance in a broad frequency range. It is also shown that
the objective function is not equally sensitive to all con-
sidered design parameters. In particular, the sensitivity
with respect to mass characteristics of terminal points (at
least, within their variability range considered in the pa-
per) is much lower than to their location parameters. It is
found that a dynamic absorber capable to suppress vibra-
tions at the given individual frequency is not an efficient
tool to reduce the energy outflow in a broad frequency
range.

Finally, the formulation of a problem in optimization
is extended to include amplitudes of “complementary”
driving forces in the set of design variables, i.e. an active
control of structural intensities is considered, and a sig-
nificant effect of such a control strategy is shown.
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