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On nonassembly in the optimal dimensional synthesis of planar
mechanisms

R.J. Minnaar, D.A. Tortorelli and J.A. Snyman

Abstract This paper presents a general method for
treating nonassembly in the optimal synthesis of planar
mechanisms. The synthesis is performed with gradient
based optimization algorithms and the sensitivities are
calculated analytically through the method of direct dif-
ferentiation. The analysis is based on the well-established
and general method of computational kinematics. In this
study the residuals of the joint constraint equations are
minimized rather than equated to zero. This makes it pos-
sible to perform the kinematic analysis for any proposed
design even though it may not be possible to assemble the
mechanism. Several examples are provided.

Key words kinematic synthesis, nonassembly, absolute
coordinate

1
Introduction

In dimensional synthesis the component dimensions that
comprise a chosen mechanism are specified to allow the
mechanism to perform a given task (Erdman and San-
dor 1997). The task may vary but will always be specified
by some prescribed points through which, or near which,
a tracking point on one of the components must pass. Two
different approaches to dimensional synthesis are com-
monly used. We use the numerical approach rather than
the analytical approach. In addition we address the prob-
lem of nonassembly.
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In the analytical approach, referred to as exact or pre-
cision point synthesis, the mechanism will pass through
the prescribed points, but only a limited number of
points can be specified. The number of points depends
on the type of mechanism etc., but is for example limited
to 9 points for a path generating four-bar mechanism
(Erdman and Sandor 1997).

In the numerical approach, referred to as approxi-
mate synthesis, more points may be prescribed but the
mechanism no longer passes through all of the points.
Rather, the mechanism tracking point trajectory approx-
imates the desired trajectory. The goal of the synthe-
sis is to make the discrepancy between these trajecto-
ries as small as possible. This leads to optimal synthe-
sis, where mathematical programming techniques are em-
ployed to reduce the trajectory discrepancy. This is not
a new approach. As early as 1967 Fox and Willmert
used a then newly developed mathematical programming
technique for optimal dimensional synthesis. Gabriele
(1993) edited a review spanning 40 years that summa-
rizes the development of mechanism synthesis optimiza-
tion algorithms.

A feature of mechanism synthesis problems that has
received little attention is that of nonassembly. This oc-
curs when the dimensions of the mechanism are such that
it is not possible for the joint constraints to be satis-
fied throughout the desired motion range. I.e. the motion
is not physically realizable and hence kinematic analysis
methods will fail. In optimal dimensional synthesis it of-
ten occurs that a proposed design cannot be assembled
and consequently the kinematic analysis fails. As a re-
sult the cost function (and its gradient) for the synthesis
problem can not be evaluated and hence the optimization
algorithm fails.

To address the nonassembly issue, constraints which
prohibit nonassembly can be incorporated into the opti-
mization problem. However, this approach requires that
the optimization algorithm keeps the design in the feas-
ible region. To accomplish this, Paradis and Willmert
(1983) developed an optimization technique that can
move along linear constraints and introduce the assembly
conditions for a four-bar as well as a slider crank mech-
anism as linear inequality constraints. Makkonen and
Persson (1994) enforce the joint constraints with penalty
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functions formulated as barrier functions, so that the de-
sign remains in the feasible region.

It is also possible to formulate the optimal synthe-
sis problem to accommodate an infeasible design. Fox
and Willmert (1967) specify the vector loop equations
of a four-bar mechanism as inequality constraints of the
optimization problem, thereby eliminating the need for
a separate kinematic analysis. Vucina and Freudenstein
(1991), Garćia de Jalón and Bayo (1994) enforced the
joint constraints with a penalty function method, hence,
they need not consider the kinematic analysis. Krishna-
murthy and Turcic (1992) use nonlinear goal program-
ming techniques where priorities are assigned to different
objectives. They assign high priority to the assembly of
the mechanism, which is described by geometric relations
derived for the particular mechanism. Hansen (1992) con-
strains the square of the errors of the vector loop equa-
tions to ensure assembly. Cossalter et al. (1992) define
a residual that is a measure of the amount by which the
mechanism cannot assemble. This residual, which is de-
rived for the considered type of mechanism, penalizes the
cost function of the optimal synthesis problem. Vallejo
et al. (1995) use a strategy whereby the mechanism is
deformed to reach the prescribed points and the mechan-
ism that requires the least deformation is the optimum
mechanism.

In the method proposed here, the kinematic analysis
is formulated to accommodate nonassembly. The method
is based on the absolute coordinate kinematic analy-
sis to ensure the method’s generality. In the absolute
coordinate kinematic analysis, mechanisms are modeled
by combining the kinematic constraints that describe
a mechanism. A revolute joint is a typical kinematic con-
straint which would allow the modeling of four-bar and
six-bar mechanisms. Translational joints are available to
model many more mechanisms. It is this generality of the
absolute coordinate kinematic analysis that is an advan-
tage over methods where the kinematic analysis is based
on equations that are derived for a particular type of
mechanism.

By accommodating nonassembly in the kinematic
analysis, the synthesis problem is cast as a standard
inequality constrained optimization problem. The ad-
vantage of having a standard inequality constrained op-
timization problem is that it allows conventional con-
strained optimization algorithms to be employed without
modifications.

The two greatest advantages of the proposed method
therefore both stem from the particular formulation of
the kinematic analysis and are: First, the generality of
the kinematic analysis since it is based on the absolute
coordinate method. And second, that the synthesis prob-
lem is formulated as a simple inequality constrained opti-
mization problem since nonassembly is already accommo-
dated in the kinematic analysis.

The following sections discuss the new formulation of
the kinematic analysis as well as a direct differentiation
sensitivity analysis to obtain accurate and efficient sen-

sitivity computations. The efficient sensitivity computa-
tions is an additional advantage. Finally three numerical
optimization examples are presented.

2
Analysis

In order to evaluate the objective function of the op-
timal synthesis problem it is necessary to evaluate the
trajectory of the tracking point. One suitable method
would be to calculate this trajectory through a kinematic
analysis. The proposed method is based on the well-
established absolute coordinate method for kinematic an-
alysis (Nikravesh 1988; Haug 1989; Shabana 1994). An
attractive feature of this method is that it is general.

In the numerical approach to kinematic analysis, the
position and orientation of each body with relation to
a global coordinate system are determined. In this study,
absolute generalized coordinates qi (Shabana 1994) are
used to describe the position and orientation of body i.
For the planar case, each body i has three coordinates

qi = (xi, yi, φi)
T , (1)

specifying the origin (xi, yi) of the body i fixed coordinate
system and the angular orientation φi of this coordinate
system relative to the global coordinate system. The co-
ordinates of the n bodies in the mechanism are combined
to form the vector of generalized coordinates or state
variables,

q=
(
qT1 ,q

T
2 , . . . ,q

T
n

)T
. (2)

The kinematic analysis problem is formulated as a sys-
tem of constraint equations. These equations describe the
geometric and driving constraints of the mechanism and
are functions of the state variables q and time t,

Φ[q(t), t] = 0 . (3)

For any specified time t = ti, (3) represents a nonlinear
system of equations in q which can be solved computa-
tionally by various methods to ensure that

‖Φ‖< εa , (4)

where εa is the analysis convergence tolerance. It is, how-
ever, possible that the dimensions of the mechanism are
such that it cannot be assembled at time t= ti. In such
a case (3) no longer has a solution for t = ti and any
method used to solve (3) will fail.

In optimal synthesis, the problem of nonassembly of-
ten occurs. It is possible that the optimization algorithm,
in an attempt to find a better mechanism design, will sug-
gest a design that will not assemble for some portion of
the motion under consideration. For the instances in time
when nonassembly occurs, the solution q to (3) does not
exist and consequently the cost function for the optimal
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synthesis problem, which is a function of q, cannot be
evaluated. Obviously this situation is troublesome for any
optimization algorithm.

An alternate formulation for the kinematic analy-
sis that accommodates nonassembly is proposed here to
eliminate the problem of nonassembly. In the new kine-
matic analysis formulation, instead of solving (3), the
norm of the constraint equation is minimized,

minimize e[q(t)] =
1

2
‖Φ[q(t), t]‖2 . (5)

Haug (1989) uses a similar strategy to find an assembled
initial configuration. The stationary condition for (5) is

∇e=ΦTqΦ= 0 , (6)

where ∇ is the gradient operator, the subscript indi-
cates the partial derivative i.e. Φq = ∂Φ

∂q and the argu-
ments have been suppressed for conciseness. From (6) it
is clear that three conditions will satisfy the stationary
condition.1 The first condition is,

Φ[q(t), t] = 0 , (7)

which is exactly equal to the original kinematic analysis
problem stated in (3). It is therefore clear that the new
formulation, stated in (5), is equivalent to the original for-
mulation, stated in (3), when assembly is possible.

The second condition that satisfies (6) is

detΦq[q(t), t] = 0 . (8)

This condition occurs when Φq is rank deficient so that
there need not be a solution to the original problem stated
in (3). Moreover, if Newton’s method is used to solve (3)
then the update qj+1 = qj+∆q, calculated by,

Φq|q=qj∆q=−Φ|q=qj , (9)

where∆q is the Newton update will fail.
The third condition that satisfies (6) is the combina-

tion of the first two, i.e. Φ(q(t), t) = 0 and detΦq[q(t), t]
= 0. In this case, the mechanism is in a singular configu-
ration from which bifurcation or lock-up follows.

The minimization problem stated in (5) is solved by
satisfying the stationary conditions expressed in (6). This
is done by Newton’s method where the update ∆q is cal-
culated by the linear equation,

H∆q=
(
ΦTqΦ

)
q
∆q+ΦTqΦq∆q=−∇e , (10)

where H =D2e denotes the Hessian of e and the over-
bar denotes quantities that are viewed as constants for
the differentiation. The only new term in (10) [that is
not used in the analysis of (9)] is ΦTqqΦ. However, this
term is readily computed using the methods already

1 We do not consider redundant constraints (Haug 1989)

available from the acceleration analysis with the con-
ventional absolute coordinate method. There the term
(Φqq̇)qq̇, appears (Haug 1989) which is quite similar to

our
(
ΦTqΦ

)
q
∆q term.

Two points regarding the present analysis should be
noted. First, Newton’s method does not distinguish be-
tween minima, maxima or saddle points of e, rather it
only ensures that ∇e = 0. Consequently, the solution to
(6) does not necessarily provide the solution to (5) as no
second order sufficiency conditions are considered. Sec-
ond, multiple solutions, i.e. minimum, may exist.

When Newton’s method converges to a saddle point,
the following problem arises. If a mechanism is such that
there is nonassembly at t = ti−1 but that the mechan-
ism can assemble at t = ti then our experience shows
that Newton’s method is likely to converge to a saddle
point of e rather than a minimum of e at t = ti. The
solution would then continue along this saddle point so-
lution for t= ti, . . . , tn. These solutions do not solve (5)
since saddle points, although zeros of ∇e, do not mini-
mize e. In such cases the associated cost function values
of the dimensional synthesis problem would be physically
meaningless.

The following strategy is employed to obtain a mini-
mum once a saddle point has been found. It is known that
a saddle point occurs when the Hessian matrix H is in-
definite hence e does not attain its minimum zero value
and therefore the solution q only satisfies the condition
stated in (8). Therefore we only check whether H is in-
definite when Newton’s method (of (10)) has converged to
a solution where detΦq = 0 andΦ �= 0.

If we compute a q that satisfies (6) and have detΦq=0
andΦ �= 0 and if the nonzero eigenvalues ofH are all pos-
itive then the solution is a minimum of e as is desired
(although in this case the mechanism cannot be assem-
bled). If this is not the case, a minimizing solution must
be found. To find this minimum we use the method pre-
sented by Gill et al. (1981) in which a direction of negative
curvature s is found such that

sTHs< 0 , (11)

where s is the eigenvector that is associated with the
most negative eigenvalue ofH. A line search is performed
along s to determine the α that minimizes e(q+αs).
Note that both α > 0 or α < 0 yield descent direc-
tions as is illustrated in Fig. 1. This implies that the
mechanism has multiple configurations, i.e. multiple
circuits and/or branches (Chase and Mirth 1993) that
satisfy (3) at this instant in time. To choose the cor-
rect sign of α so that when e is minimized we remain
in a smooth trajectory care must be taken, for we do
not want suddenly jump to a different circuit (as seen
in Fig. 1). To these ends, we choose the sign of α so
that the sign of det(Φq) remains unchanged through-
out the trajectory. This approach is sufficient for simple
mechanisms. However, if the mechanism has multiple
loops or even for double-rocker or rocker-crank four-
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Fig. 1 Saddle point as plotted along the direction of negative curvature s. Also shown are the two alternative configurations of
a four-bar mechanism with their relation to the determinant of the Jacobian matrix

bar mechanism the determinant alone is not a sufficient
gage whether or not the mechanism jumps to a dif-
ferent circuit between adjacent time steps (Chase and
Mirth 1993).

With s and the sign of α known, a line search is per-
formed to find the minimum of e(q+αs) after which
Newton’s method [see (10)] is restarted. Since this point is
in the vicinity of the saddle point it is possible that New-
ton’s method will again converge to a saddle point. To
this end a line search is appended to Newton’s method
once it is restarted to ensure that e is monotonically de-
creasing. It is emphasized that the line search is only
appended to Newton’s method to find a minimum after
a saddle point solution was found, therefore it is used
infrequently.

The second problem, i.e. nonuniqueness, occurs when,
at t = ti−1, the mechanism is in a singular configura-
tion i.e. when Φ = 0 and detΦq = 0. For cases where
the mechanism cannot be assembled immediately be-
yond this time i.e. when Φ �= 0 for t = ti, a unique so-
lution to (5), that satisfies (8), is found. However, if
the mechanism can assemble for time t = ti then we
are in the presence of a bifurcation. We arbitrarily seek
the trajectory that retains the sign of detΦq. Simi-
larly, if the trajectory at t = ti−1 is near a singular
configuration and passes through the singular config-
uration during the next time step then, if the mech-
anism can assemble at t = ti, we desire the solution
that retains the sign of detΦq. If, for t = ti, New-
ton’s method converges to an undesirable minimum
(according to the determinant criteria stated above)
then the desired minimum is found by first finding
the saddle point according to the method of Smith
(1990) and using the method discussed in the previous
paragraphs.

In this second problem for which Φ= 0 and detΦq =
0 we see that H must be rank deficient, cf. (10). In prac-

tice, this condition is never precisely encountered how-
ever, if it were, we could use some alternative method, eg.
singular value decomposition (Strang 1988) to solve (10).

The new formulation will yield results that are consis-
tent with those of the original kinematic analysis problem
when assembly is possible. Furthermore, since the norm
of Φ is minimized, we obtain the best possible solution
if the mechanism cannot assemble i.e. the configuration
where the violation of (3) has been minimized.2 This
implies that the cost function for the optimal synthesis
problem can always be evaluated and consequently that
gradient-based optimization methods can be employed to
solve the optimal synthesis problem. Moreover, to ensure
that the optimized mechanism design can be assembled,
the norm of Φ i.e. (4), can be used as an inequality con-
straint in the design optimization to define the feasible
region.

3
Optimization

We now have nested minimization problems. In the inner-
problem, i.e. analysis, a trajectory is determined for
a specific mechanism design by minimizing the function e.
In the outer-problem, i.e. design optimization, a cost
function is minimized subject to constraints. Iterations
are performed in which a design is specified by the outer-
loop and the inner-problem is solved to evaluate trajec-
tory which is needed to compute the values of the cost and
constraint functions. Critical to the success of the outer-
loop minimization is the ability to compute sensitivities
of the cost and constrain functions with respect to the
design variables. Such capabilities, to be discussed, are
augmented to the inner-loop analysis problem.

2 Of course the solution in this case is physically meaningless
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For the optimal synthesis problem, the cost function
F quantifies the discrepancy between a prescribed path
and the trajectory of the tracking point of the mechanism
that is defined by the design variables b, i.e. the link di-
mensions. Constraints, derived from (4), ensure that the
optimized mechanism can be assembled.

The cost function is stated as follows:

F (b) =
n∑
i=1

fi[q(b, ti),b, ti] , (12)

where we note the dependence of the state q on b and fi
is the measure of trajectory discrepancy defined as

fi =
√

(xipre −xitp)
2+ (yipre−yitp)

2 , (13)

where (xipre , yipre) are the coordinates of points on the
prescribed trajectory and (xitp , yitp) are the computed
coordinates of the tracking point at t= ti.

From (13) it is clear that the discrepancy is calculated
on a point-by-point basis. Although more sophisticated
methods are available (Hansen and Tortorelli 1996, Ul-
lah and Kota 1997) the point-by-point comparison is still
widely used due to its simplicity. This comparison does
however, have one drawback. Since distinct points on the
prescribed and calculated trajectories are compared, it is
now necessary to add additional design variables to pa-
rameterize, in time, the rates at which the driving links
are driven. In this way, links may be driven at fast or slow
rates to help minimize F . Although these additional de-
sign variables have no influence on the dimensions of the
mechanism, they are vital for the point-by-point compar-
ison to be successful.

To ensure that the synthesis produces a design that
can be assembled, the following inequality constraints are
defined:

ci =
1

2
‖Φ|t=ti‖

2− εa ≤ 0 , (14)

where there is one constraint ci for every time step t= ti
in the analysis. The tolerance εa > 0 is that which is tra-
ditionally used to verify the solution of (3).

The design sensitivity analysis of planar mechanisms
has been studied extensively (Hansen and Tortorelli 1996,
Bruns 1992, Haug and Sohoni 1984, Etman 1997). In this
study the design sensitivities are obtained by the direct
differentiation method rather than the finite difference or
adjoint methods. This method requires n efficient pseudo
analyzes whereas the finite difference method requires n
complete analyzes with n the number of design variables
in b.

The sensitivities of the cost function F are given by

dF

db
=

n∑
i=1

(
fiq
∂q

∂b
+fib

)∣∣∣∣
t=ti

, (15)

and similarly, from (14) the sensitivities of the inequality
constraints ci are given by

∂ci

∂b
=ΦT

(
Φq
∂q

∂b
+Φb

)
|t=ti , (16)

where the response derivative ∂q
∂b is not readily available

due to the implicit dependence of q on b. Indeed, for
a given b we solve (5) to evaluate q.

The evaluation of ∂q
∂b uses the stationary condition of

the kinematic analysis problem, as stated in (6), but re-
peated here with all of the dependencies shown,

ΦTq [q(b, t),b, t]Φ[q(b, t),b, t] = 0 . (17)

The chain rule of differentiation is used to differentiate
(17) with respect to a single design variable bk to obtain,
after some rearrangement,

H
∂q

∂bk
=−ΦqbkΦ−Φ

T
qΦbk . (18)

The above linear system is solved for the derivative ∂q
∂bk

where it is noted thatH has already been assembled and
decomposed to solve (6) [see (10)]. Therefore the calcu-
lations of the sensitivities ∂q

∂bk
and hence ∂F

∂bk
and ∂ci

∂bk
are very efficient as compared to the analysis itself. The
pseudo analysis of (18) is done in tandem with the the an-
alysis of (6). That is, in the inner-loop, at each time step
t= ti, we first solve (10) via Newton’s method and then,
using the decomposed Hessian H, we solve (18) n times
for each of the design variables bk, k = 1, 2, . . . , n.

The Sequential Quadratic Programming (SQP) algo-
rithm of DOT (Vanderplaats, Miura & Associates 1992)
was used in this study to solve the optimization problem

minimize F (b) subject to ci < εa . (19)

The fact that the synthesis problem is cast as a standard
inequality constrained optimization problem allows the
use of any constrained optimization algorithm.

Due to the nonlinearities of the kinematic analy-
sis, a somewhat accurate initial configuration guess, i.e.
q0(0, b), must be supplied for each analysis. For this rea-
son the design changes between successive optimization
iterations, i.e. the move limits, are limited so that the
initial configuration from the previous design iteration
given by bj−1 represents a suitable initial configuration
guess for the current design iteration given by bj , i.e
q0(0,bj) = q(0,bj−1).

4
Numerical results

Three path generating dimensional synthesis problems
are solved using the proposed method. The three paths,
shown in Fig. 2, vary in complexity and are each de-
scribed by 50 equally spaced points where the ⊗ indicates
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Circle Ellipse Limason of Pascal

Fig. 2 Prescribed paths

the first point. The tracking point trajectory is calcu-
lated with 50 fixed time steps i.e. ∆t is constant. In this
way only one driving parameter, i.e. the initial orienta-
tion, was required for the optimization [cf. the discus-
sion following (13)]. The tolerance εa that is used to ver-
ify the convergence of the solution to (6) and is used
in the definition of the constraint equations (14) is set
to εa = 10−6.

Four-bar mechanisms are used to obtain the pre-
scribed paths. Ten design variables parameterize specified
for the four-bar mechanism as shown in Fig. 3. The design
variable b8 is the initial orientation of the driven link.

b3

b4

b5

(b6;b7)

X

Y

(b1;b2)

b8

b9

b10

Tracking point

Fig. 3 Four-bar mechanism with the design variables

It is known that optimal synthesis problems might
have local minima and for this reason four different ini-

Table 1 The initial designs with the bounds on the design
variables

b Lower Upper Input1 Input2 Input3 Input4

b1 −20.0 20.0 0.0 0.0 0.0 0.0
b2 −20.0 20.0 0.0 0.0 0.0 0.0
b3 5.0 60.0 5.0 5.0 40.0 40.0
b4 0.1 60.0 10.0 10.0 10.0 10.0
b5 0.1 60.0 15.0 15.0 40.0 40.0
b6 −20.0 20.0 10.0 10.0 10.0 10.0
b7 −20.0 20.0 −10.0 −10.0 0.0 0.0
b8 −10.0 10.0 0.1257 0.3539 0.1257 0.1257
b9 −60.0 60.0 5.0 5.0 5.0 5.0
b10 −60.0 60.0 1.0 1.0 1.0 −35.0

Table 2 Results for circle

Input Initial Optimal Function
] File F value F value Evaluations

Input1 404.116505 0.003380 177
275.645133 0.003100 135

Input3 2010.218841 0.009658 151
Input4 1495.604740 0.056589 172

Table 3 Final designs for circle

b Input1 Input2 Input3 Input4

b1 −8.611E−5 7.750E−6 −2.665E−4 −5.730E−4
b2 −1.320E−5 2.625E−5 −3.521E−5 2.094E−4
b3 7.000 7.000 11.470 10.808
b4 10.358 12.637 12.413 6.298
b5 17.014 11.145 4.707 9.778
b6 10.136 3.585 5.519E−4 −9.616E−4
b7 −9.897 −3.734 −1.416E−4 −1.235E−3
b8 3.519E−6 −1179E−5 2.390E−1 2.108E−1
b9 8.375E−6 −6.342E−6 4.948 3.082
b10 −8.361E−6 −5.988E−5 −2.369E−1 −2.889

tial designs were used for each of the three optimizations.
Side constraints were also placed on all the design vari-
ables as specified in Table 1. Also listed in this table are
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Table 4 Results for ellipse

Input Initial Optimal Function Side
File F value F value Evaluations Constraints

Input1 475.407002 39.477200 176 −7
Input2 310.308966 26.628608 95 −7
Input3 2019.153771 143.526336 108 –
Input4 1530.844523 87.500640 71 –

the values of the design variables for each of the initial
designs. It should be noted that the only difference be-
tween Input1 and Input2 is the initial value of b8 and be-
tween Input3 and Input4 the only difference is the initial
value of b10.

4.1
Circle

The first and simplest of the prescribed paths is the cir-
cle. The circle’s centre point coincides with the origin of
the global axis system and the circle has a diameter of
7 units. One obvious solution to this problem would be
a crank with a length of 7 units, pivoting around the
origin of the global axis system and with the tracking
point at the end of the crank, i.e. b1 = b2 = b9 = b10 = 0
and b3 = 7.

The results obtained for the four different initial de-
signs are listed in Tables 2 and 3. For the initial designs
Input1 and Input2 the solution described above with the
crank length b3 at 7 units, is found (see Table 3). The ini-
tial and final trajectories yielded by Input1 are shown in
Fig. 4. The initial designs Input3 and Input4 are imprac-
tical because the ground points are almost coincident,
i.e. b1 ≈ b2 ≈ b6 ≈ b7 = 0. In these mechanisms we now
have two links which pivot around the origin of the global

Fig. 4 Initial (×) and final (+) trajectories obtained for the
the prescribed circle with the initial design Input1

axis system. All designs satisfy the assembly and side
constraints.

4.2
Ellipse

The second prescribed path is an ellipse described by

θi =
2π

50
i , i= 0, . . . , 49 ,

(xipre , yipre) =

[(
7 +

7

2

)
cos θi , 7 sin θi

]
. (20)

Fig. 5 The prescribed Limason of Pascal (×) and the final
trajectory obtained for the initial design Input4 (+)

Table 5 Final designs for ellipse

b Input1 Input2 Input3 Input4

b1 −1.471 −3.266 1.924E−1 5.714E−3
b2 −1.313 −1.197E−1 2.108E−1 −1.025E−2
b3 8.882 9.978 19.304 28.598
b4 10.237 14.554 26.709 9.321
b5 18.503 18.998 8.212 28.568
b6 −8.995E−1 8.930 7.512E−1 2.278E−3
b7 −20.000 −19.994 −3.769E−1 −1.058E−2
b8 1.266E−1 2.993E−2 −1.570E−1 7.958E−1
b9 1.481 3.838 10.459 9.903
b10 2.311 9.625E−1 −2.331 −21.126
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Table 6 Results for the Limason of Pascal

Input Initial Optimal Function Active Side
File F value F value Evaluations Constraints

Input1 544.343052 250.592783 86 −3
Input2 556.976071 20.939624 355 3
Input3 2071.161562 275.076024 56 –
Input4 1549.821596 16.022744 76 5

The results obtained for the ellipse are listed in Tables 4
and 5. Again, all of the designs satisfy the assembly and
side constraints.

The final trajectory yielded by Input2, the best de-
sign, along with the prescribed trajectory are shown in
Fig. 5. It is clear that although there are discrepancies,
the final trajectory is similar to the prescribed trajectory.
It should be noted that b7 is at its lower bound and that
it is possible that a better design might result if the side
constraint imposed on b7 is relaxed.

The results for the remaining 3 initial designs vary
greatly with all three final designs being unacceptable.
The variation in the “optimal” design due to different
initial designs emphasizes the need for multiple starting
designs to ensure that a good design is found.

4.3
Limason of Pascal

The last prescribed path, a Limason of Pascal, is pre-
sented by Cossalter et al. (1992). The path is described by
the following relations:

αi =
2π

50
i i= 0, . . . , 49 ,

ri = ρ cosαi+
ρ

2
,

(xipre , yipre) = (−ri cosαi,−ri sinαi) , (21)

where ρ= 10. The results obtained for this path are listed
in Tables 6 and 7. Here it is interesting to note the differ-
ence that the additional variable (the initial orientation
b8) makes for the initial designs Input1 and Input2. For

Table 7 Final designs for the Limason of Pascal

b Input1 Input2 Input3 Input4

b1 −2.895 −4.052 −2.576 −4.045E−1
b2 −9.356E−1 4.834 −4.666E−1 1.886
b3 5.003 59.995 5.928 59.692
b4 19.066 49.256 13.283 23.430
b5 20.274 38.098 6.722 59.992
b6 10.691 −1.452 6.838 −1.154E−1
b7 12.980 −2.322 8.894E−1 −1.961
b8 3.184 5.329 2.967 1.844
b9 1.618 51.839 −5.030E−1 6.091
b10 1.665 −36.523 −1.139 −58.645

Input1 the crank length b3 is decreased to its lower limit
where a local minimum is found but this is a poor so-
lution. For Input2 however, an acceptable final design is
found. For the initial design Input3 a poor design is gen-
erated in which the crank length b3 is again decreased
rather than increased as is the case for the two acceptable
designs. None of the final designs violate any assembly
constraints.

The results obtained for the Limason of Pascal are
compared to those obtained by Cossalter et al. (1992) ac-
cording to the following two measures:

εxymean =
1

n

n∑
i=1

√
(xipre −xitp)

2+ (yipre−yitp)
2 ,

εxymax = max
√

(xipre −xitp)
2+ (yipre−yitp)

2 . (22)

Table 8 Comparison between the results yielded by the ini-
tial design Input4 and the results reported by Cossalter et al.
(1992)

Input4 Cossalter

εxymean 0.2983 0.250
εxymax 0.5129 0.441

Fig. 6 The prescribed ellipse (×) and final trajectory ob-
tained for the initial design Input2 (+)
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In Table 8 the best design obtained, i.e. Input4 (see
Fig. 6), is compared to the best design reported by Cos-
salter et al. (1992). The results published by Cossalter
et al. (1992) are marginally better. However, two points
should be noted. First, their published result is the best
design from 50 different initial designs that were analyzed
as opposed to only four initial designs analyzed in this
study. Second, 2353 iterations of the simplex method, im-
plying a total of 2353 function evaluations, were needed to
arrive at the their best design (for a single initial design)
whereas a maximum of 355 function evaluations were
needed to arrive at a final design in this study. On aver-
age, the designs presented here required 138 iterations to
converge.

4.4
Discussion

For each of the prescribed paths our proposed method
yielded at least one acceptable design. Furthermore, all
the final designs were in the feasible region. Thus it ap-
pears that the formulation is able to produce feasible de-
signs even if infeasible designs are encountered during the
optimization. The dependence of the optimized design on
the initial design is apparent for all examples and high-
lights the need for multiple initial designs to ensure that
a good design is found.

5
Conclusions

A general procedure for addressing nonassembly issues
in the optimal dimensional synthesis of planar mechan-
isms is presented. The procedure is based on an alter-
native formulation of the computational kinematic an-
alysis problem in which the norm of the kinematic con-
straint vector Φ is not equated to zero but is mini-
mized. This ensures that the kinematic analysis can be
performed even though the mechanism cannot assemble,
which implies that the cost function and its sensitivity
for the optimal synthesis problem is always defined. In-
equality constraints for the optimal synthesis problem
are defined to ensure that the final design is feasible but
there is no requirement that the mechanism must re-
main in the feasible region during the intermediate it-
erations of the optimal synthesis problem. The design
sensitivities are calculated analytically to make efficient
use of a gradient based optimization algorithm. Three
numerical examples are presented and it is shown that
the method not only finds good designs but converges
to these designs within an acceptable number of func-
tion evaluations. The method is general and can be ex-
panded to allow for the optimal dimensional synthesis
of any planar or spatial mechanism and include con-
straints on velocities, accelerations and reaction forces
and torques.
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