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Structural reanalysis for topological modifications – a unified
approach

U. Kirsch� and P.Y. Papalambros

Abstract A unified approach for structural reanalysis
of all types of topological modifications is presented. The
modifications considered include various cases of deletion
and addition of members and joints. The most challeng-
ing problem where the structural model is itself allowed
to vary is presented. The two cases, where the number of
degrees of freedom is decreased and increased, are consid-
ered. Various types of modified topologies are discussed,
including the common conditionally unstable structures.
The solution procedure is based on the combined ap-
proximations approach and involves small computational
effort. Numerical examples show that accurate results
are achieved for significant topological modifications. Ex-
act solutions are obtained efficiently for modifications in
a small number of members.

Key words structural analysis, approximate reanalysis,
topological optimization

1
Introduction

Topological optimization of structures has been the sub-
ject of numerous studies in recent years (Bendsøe and
Mota-Soares 1992; Kirsch 1989; Rozvany et al. 1995).
This type of optimization can greatly improve the design,
and potential savings are generally more significant than
those resulting from fixed-topology optimization. How-
ever, optimization of the topology is more difficult due to
changes in the structural model. Members and joints are
deleted or added during the solution process and the re-
analysis model becomes complicated. Developing reanal-
ysis procedures for general topological modifications is
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particularly challenging when the number of degrees of
freedom (DOF) is modified and the structural response is
significantly changed.
Reanalysis methods are intended to analyze modi-

fied designs efficiently. The object is to evaluate accu-
rately the structural response (displacements, stresses
and forces) for successive modifications in the design,
without solving repeatedly the complete set of modi-
fied analysis equations. These methods can be divided
broadly into exact (direct closed-form) and approximate
ones. In this study both exact and approximate solutions
will be presented.
Several exact methods for calculating the modified

response due to changes in the design have been pro-
posed in the past. Most of these methods are based on
the Sherman-Morrison-Woodbury formulae (Sherman
and Morrison 1949; Woodbury 1950). Exact methods
are suitable for changes in a relatively small num-
ber of members and are inefficient in cases of changes
in a large proportion of the structure. Improved ver-
sions of the Sherman-Morrison-Woodbury approach have
been proposed by several authors (Akgun et al. 1998;
Kirsch 1981).
Approximate reanalysis methods are more efficient

than exact methods and are usually suitable for mod-
erate changes in the structure. In most approximations
the quality of the results and the efficiency of the calcu-
lations are conflicting factors that should be considered.
That is, better approximations are often achieved at the
expense of more computational effort. Approximate re-
analysis methods can be divided into the following classes
(Barthelemy and Haftka 1993; Kirsch 1993a).

1. Global (multi-point) approximations, such as reduced
basis (Noor 1994) and response surface methods
(Sobieszczanski-Sobieski and Haftka 1997). These ap-
proximations are obtained by analysing the structure
at a number of design points, and they are valid for the
whole design space. However, global approximations
may require much computational effort, particularly
in problems with a large number of design variables.

2. Local (single-point) approximations, such as the first-
order Taylor series expansion or the binomial series
expansion about a given design point. Local approxi-
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Fig. 1 Types of topological changes

mations are based on information calculated at a sin-
gle point. These methods are more efficient but they
are effective only in cases of small changes in the de-
sign variables. To improve the quality of the results,
various means have been proposed (Schmit and Farshi
1974; Svanberg 1987).

In this study, a third class attempting to give global qual-
ities to local approximations, is presented. The method
has been used in previous studies for various problems
and different types of design variables (Kirsch 1993b,
1999, 2000; Kirsch and Liu 1995, 1997). The solution pro-
cedure is based on the combined approximations (CA)
approach, where the binomial series terms are used as ba-
sis vectors in a reduced basis approximation. Similar to
local approximations, the calculations are based on re-
sults of a single exact analysis. Each reanalysis involves
small computational effort and calculation of derivatives
is not required. The method is easy to implement and can
be used with general finite element programs. Accurate
results are achieved for significant design modifications
and exact solution is obtained in certain special cases.
In previous studies reanalysis procedures have been de-
veloped for some particular cases of topological optimiza-
tion (Kirsch 1993b; Kirsch and Liu 1997).
A unified approach of structural reanalysis for all

types of topological modifications is presented in this
study. The modifications include various cases of dele-
tion and addition of members and joints. The most chal-
lenging problem is when the number of DOF’s is de-
creased or increased. Various types of modified topologies
are discussed, including the common case of condition-
ally unstable structures. Formulation of the reanalysis
problem is presented in Sect. 2, solution procedures are
developed in Sect. 3, and numerical results are demon-
strated in Sect. 4.

2
Formulation of reanalysis for various topological
modifications
In topological optimization, members are deleted or
added, the structural model is itself allowed to vary dur-
ing the solution process, and the reanalysis model be-
comes complicated. In this study, the following typical
cases of topological modifications will be considered.

1. Deletion and addition of members, where the number
of DOF’s is unchanged (Fig. 1a). In such cases, the
number of analysis equations is also unchanged and
only numerical values of the coefficients of the equa-
tions aremodified. It will be shown later in Sect. 3 that
exact solutions can be obtained efficiently by the CA
method in various cases of topological and geometrical
modifications, where the number of modified members
is relatively small.

2. Deletion and addition of members, and deletion of
some joints, where the number of DOF’s is decreased
(Fig. 1b). Some common cases where the resulting
structure is conditionally unstable are demonstrated.
It will be shown that in the latter cases approximate
reanalysis by the CA method with a reduced number
of unknowns provides accurate results.

3. Deletion and addition of members, and addition of
some joints, where the number of DOF’s is increased
(Fig. 1c). In this case it is necessary to augment the
analysis model such that the new degrees of freedom
are included in the modified model. A general solution
procedure is presented, where an exactmodified initial
analysis is first efficiently carried out. The modified
initial analysis is then used for reanalysis of further
modifications.

Modifying the topology, the resulting structures may
be classified as:

1. Stable structures (S). This is the typical case where
the analysis equations are satisfied and reanalysis is
straightforward.

2. Conditionally Unstable structures (CU), which are
common in topological optimization problems solved
for a single (or a small number of) loading condi-
tion(s). In such cases the forces in the structure satisfy
equilibrium conditions for a specific loading, but the
necessary relationship, which exists between the joints
and the members in a stable structure, is not satisfied.
That is, the structure can carry only specific loading
conditions. Some analysis equations of the modified
structure become zero identities and exact analysis is
meaningless. It will be shown that the CA approach
may provide accurate results in such cases.

3. Unstable structures (U). In such cases the structure
(or part of it) is unstable for a general loading con-
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Fig. 2 Ten-bar truss

dition, the analysis equations are not satisfied, and
a collapse of the structure will occur. Unstable struc-
tures are not considered in this study.

To illustrate the various cases, consider the initial
ten-bar truss shown in Fig. 2. The number of unknown
forces is fourteen (ten member forces and four reactions)
and the number of independent equilibrium conditions is
twelve. The truss is statically indeterminate, having two
redundant members, thus various cases of deletion of two
members could be considered to obtain a statically deter-
minate structure. However, in many of the above cases
the resulting structure might be unstable or condition-
ally unstable. Assuming all forty-five possible cases of
deletion of two members, only twenty-nine of the result-
ing structures are stable (Fig. 3), whereas four structures
are conditionally unstable (Fig. 4) and twelve structures
are unstable (Fig. 5). Some of the conditionally unstable
structures could be transformed into stable structures by
deleting or adding zero force members. It is instructive to
note that conditionally unstable structures could be ob-
tained also by addition of some members and joints. In
addition, various stable and conditionally unstable struc-
tures could be obtained by deletion of three or four mem-
bers, as can be observed in Figs. 6 and 7.

2.1
The number of DOF’s is unchanged

The basic reanalysis problem presented in this section can
be stated as follows.

1. Given an initial design, the corresponding stiffness
matrixK0 and the initial load vectorR0, the displace-
ments r0 are computed by the equilibrium equations

K0r0 =R0 . (1)

It is assumed that the stiffness matrixK0 is given from
the initial analysis in the decomposed form

K0 =U
T
0U0 , (2)

whereU0 is an upper triangular matrix.

2. Assume addition or deletion of members so that the
modified stiffness matrixK and the modified load vec-
torR are given by

K=K0+∆K , (3)

R=R0+∆R , (4)

where ∆K and ∆R are the changes in the stiffness
matrix and in the load vector, respectively, due to the
change in topology.

3. The goal is to find efficient and accurate approxima-
tions of the modified displacements r due to various
changes in the topology, without solving the complete
set of modified analysis equations

Kr= (K0+∆K)r=R0+∆R . (5)

Once the displacements are evaluated, the explicit stress-
displacement relations can readily determine the stresses

σ = Sr , (6)

whereS is the stress transformationmatrix. Thus the pre-
sented approximations of r are intended only to replace
the set of implicit analysis equations (5).
The above formulation is general, it is suitable for dif-

ferent types of structure, and can be extended readily to
include various types of topological modifications. The
solution procedure is presented subsequently in Sect. 3.

2.2
The number of DOF’s is decreased

This type of reanalysis problem is encountered in many
topological optimization problems where some members
and joints are deleted from an initial ground structure,
consisting of numerous members and joints. As a result,
the number of DOF’s is decreased, and the number of an-
alysis equations is changed.
The sizes of the stiffness matrix and the load vec-

tor are decreased according to number of joints deleted
from the structure. The modified stiffness matrix and the
modified load vector can be expressed as

K=K0+∆K=

[
KM 0

0 0

]
, (7)

R=R0+∆R=

{
RM
0

}
, (8)

where K and R are the modified stiffness matrix and
the modified load vector, respectively, of the complete set
of equations, including the original degrees of freedom;
and KM and RM are the stiffness matrix and the load
vector, respectively, of the modified structure with a re-
duced number of degrees of freedom. Since some analysis
equations become zero identities, stiffness analysis of the
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Fig. 3 Stable structures obtained by deletion of two members

Fig. 4 Conditionally unstable structures obtained by deletion of two members

complete set of modified equations cannot be carried out.
The set of modified equations (5) to be solved is reduced
to

KMr=RM , (9)

where r is now a reduced vector of modified displace-
ments.
It has been noted that in many cases the resulting

structure represented by (9) is conditionally unstable.
However, despite the reduction in the size of the stiff-
ness matrix, the number of modified analysis equations
is usually large and efficient reanalysis is still useful.
Approximate reanalysis by the CA method with a re-
duced number of unknowns may provide accurate re-

sults. The solution procedure for such cases is discussed
in Sect. 3.2 and numerical results are demonstrated
in Sect. 4.

2.3
The number of DOF’s is increased

In cases where some members and joints are added to
the initial structure, the number of DOF is increased, the
number of analysis equations is changed, and the sizes of
the stiffness matrix and the load vector are increased ac-
cording to the number of joints added to the structure.
Let us define the augmented stiffness matrixKA and the
augmented load vector RA, with an increased number of
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Fig. 5 Unstable structures obtained by deletion of two members

Fig. 6 Stable structures obtained by deletion of three or four
members

DOF’s, by

KA =

[
K0 0

0 0

]
, RA =

{
R0
0

}
. (10)

Increasing the number of DOF’s, the matrix of changes
∆K and the vector of changes ∆R can be expressed in
terms of corresponding submatrices and subvectors as

∆K=

[
∆K00 ∆K0N

∆KN0 ∆KNN

]
, ∆R=

{
∆R0
∆RN

}
, (11)

where ∆K00 and ∆R0 are the changes in stiffness co-
efficients and in the loads, respectively, for the original
DOF’s; and∆KNN and∆RN are the changes in the stiff-
ness coefficients and the loads, respectively, for the new
DOF’s.
The modified stiffness matrix and the modified load

vector are given by

K=KA+∆K , R=RA+∆R . (12)

Thus, the new degrees of freedom are included in the set
of modified equations (5).
In many cases the number of added degrees of freedom

is relatively small, compared with the original number.
It will be shown subsequently in Sect. 3.3 that in such
cases it is possible to calculate efficiently the modified
displacements.

3
Reanalysis by the CA approach

Most reanalysis methods developed in the past are suit-
able for the relatively simple case where the number of
DOF’s (or analysis equations) is unchanged. The reanaly-
sis approach presented in this section is suitable for prob-
lems where the number of DOF’s and the sizes of K, r
and R are changed. In the procedure presented below,
the computed terms of the binomial series expansion are
used as high quality basis vectors in reduced basis approx-
imations. The unknown coefficients of the reduced basis
expression can be determined by solving a reduced set of
the analysis equations. The efficiency and accuracy are
further improved by introducing an uncoupled set of basis
vectors, using a Gram-Schmidt orthonormalization.

3.1
The number of DOF’s is unchanged

Evaluation of modified displacements by the CA method
for cases where the number of DOF’s is unchanged is
briefly described in this section. A detailed discussion of
the solution process is given elsewhere (Kirsch 1999).
Given the initial stiffness matrix K0 in the decom-

posed form of (2) and the initial displacements r0, calcu-
lation of the modified displacements r for any assumed
changes ∆K, ∆R, in the stiffness matrix and in the load
vector, involves the following steps.

1. The modified stiffness matrixK and the modified load
vector R are first introduced. Since K0 and R0 are
given, this step involves only introduction of ∆K and
∆R.

2. The basis vectors ri are calculated by the following re-
currence relation:

ri =−K
−1
0 ∆Kri−1 =−Bri−1 , i= 2, 3, . . . , s ,

r1 =K
−1
0 R , (13)

where s is the number of vectors considered (it is as-
sumed that s� number of DOF’s) and the matrix B



338

CU 5

CU 9

CU 13

CU 17

CU 6

CU 10

CU 14

CU 18

CU 7

CU 11

CU 15

CU 19

CU 8

CU 12

CU 16

Fig. 7 Conditionally unstable structures obtained by deletion of three or four members

is defined by

B≡K−10 ∆K . (14)

The matrix of the basis vectors rB is defined by

rB = {r1, r2, . . . , rs} . (15)

In cases where ∆R = 0, the first basis vector is sim-
ply r1 = r0. Calculation of the basis vectors by (13)
involves only forward and backward substitutions in
cases whereK0 is available in the form of (2) from the
initial analysis of the structure. For example, assum-
ing that r1 is given, the vector r2 is calculated by

K0r2 =−∆Kr1 . (16)

We solve first for the vector of unknowns t by the for-
ward substitution

UT0 t=−∆Kr1 . (17)

The vector r2 is then calculated by the backward sub-
stitution

U0r2 = t . (18)

Similarly, r3 is calculated by

K0r3 =−∆Kr2 . (19)

3. The reduced matrix KR and the reduced vector RR
are calculated by

KR = r
T
BKrB , RR = r

T
BR . (20)

4. The vector of unknown coefficients y is calculated by
solving the set of (s× s) equations

KRy=RR . (21)

5. The modified displacements r are evaluated by

r= y1r1+y2r2+ . . .+ysrs = rBy , (22)

where y is a vector of s coefficients to be determined.

To improve the efficiency and accuracy of the approx-
imations, the reduced set of simultaneous equations (21)
can be transformed into an uncoupled form. An uncou-
pled set of new basis vectors Vi (i= 1, 2, . . . , s) is intro-
duced using a Gram-Schmidt orthonormalization (Kirsch
1999; Leu and Huang 1998). The new vectors are deter-
mined by the original ones ri from

Vi =
∣∣rT1Kri∣∣−1/2 r1 , (23)

Vi = ri−
i−1∑
j=1

(
rTi KVj

)
Vj ,

Vi =
∣∣∣VTi KVi∣∣∣−1/2Vi , i= 2, . . . , s , (24)

where Vi and Vi are the i-th non-normalized and nor-
malized vectors, respectively. Defining the matrix VB of
new basis vectors and the vector z of new coefficients, the
reduced system (20) becomes uncoupled and the final dis-
placements are given by the explicit expression

r=VBz=VB
(
VTBR

)
. (25)

The displacements, calculated by (25), can be expressed
as an additively separable quadratic function of the basis
vectorsVi by

r=
s∑
i=1

Vi
(
VTi R

)
. (26)

For any assumed number of basis vectors, identical results
are obtained by considering either the original set of basis
vectors or the new set of uncoupled basis vectors. One ad-
vantage in using the new vectors is that all expressions for
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evaluating the displacements are explicit functions of the
original basis vectors. Calculation of any new basis vector
Vi results in an additional term of the displacements ex-
pression (26) that is a function of the original vectors rj
(j = 1, 2, . . . , i). Consequently, additional vectors can be
considered without modifying the calculations that were
carried out already.
The efficiency and accuracy of the results achieved

by the CA method have been demonstrated in previous
studies. The CA approximations provide accurate solu-
tions even in cases where the series of the original basis
vectors (the binomial series) diverges. In many problems
a small number of basis vectors (2–3 vectors) is sufficient
to obtain adequate accuracy. Several criteria for evaluat-
ing the errors involved in the approximations have been
presented. These errors can be reduced by considering
additional basis vectors.

3.1.1
Exact solutions

Exact solutions are obtained by the CA in the general
case where an added basis vector is a linear combination
of the previous vectors. In most problems the CA ap-
proach does not provide exact results. However, the vec-
tors determined by the binomial series are almost linearly
dependent (Kirsch and Papalambros 2001). Therefore,
“nearly exact” solutions are often achieved with a small
number of basis vectors. Exact solutions can be obtained
efficiently by the CA method also in cases of low rank
modifications. In such cases, exact solutions achieved by
the CA method and the Sherman-Morrison-Woodbury
formulae are equivalent (Akgun et al. 1998). As a typical
example consider the case of changes inm truss members
(deletion or addition of members). The exact solution is
achieved by the CA method if one basis vector is intro-
duced for each changed member by

ri =K
−1
0 ∆Kir0 , i= 1, . . . ,m , (27)

where∆Ki is the contribution of the i-th member to∆K.
If some of the basis vectors are linearly dependent, the ex-
act solution is achieved for a smaller number of vectors.
The exact solution is given in this case by (Kirsch and
Liu 1995)

r= r0+
m∑
i=1

yiri , (28)

where r0 is the vector of initial displacements. This pro-
cedure is efficient in cases where the number of changed
members is much smaller than the number of degrees of
freedom.
It is instructive to note that exact solutions can be

achieved efficiently also for geometrical changes by view-
ing these changes as corresponding topological modifica-
tions. For example, modifying the coordinates of a single

joint, it is possible to obtain the exact solution for the new
design by viewing the change in the geometry as two sim-
ultaneous changes in the topology. That is, all members
connected to the joint are deleted, and new members are
added at the modified location (Kirsch and Liu 1997).

3.2
The number of DOF’s is decreased

In cases when some joints are deleted from the structure,
the sizes of the resulting stiffness matrix and load vector
are decreased accordingly. Since the number of DOF’s is
decreased, the number of analysis equations is changed
and complete exact analysis can be employed for the re-
duced set (9). If the resulting structure is conditionally
unstable, the modified stiffness matrix is singular and ex-
act analysis cannot be carried out. However, approximate
reanalysis by the CA method with a reduced number of
unknowns may provide accurate results. Assuming that
the number of basis vectors considered is smaller than the
number of degrees of freedom of the modified structure,
the solution procedure described above in Sect. 3.1 can be
used without any modification. This is the case even when
the modified set of equations is of the form of (7)–(9) with
some zero identities, as will be shown by the numerical
examples in Sect. 4.2.
It is instructive to note that the reduced stiffness ma-

trix used by the CAmethod is usually not singular even in
cases when the modified stiffness matrix is singular. The
reduced matrix is singular when the basis vectors are lin-
early dependent.

3.3
The number of DOF’s is increased

Adding some joints to the structure, the number of
DOF’s is increased. Some procedures for using the CA
method in such cases have been proposed in the past
(Chen et al. 1998; Kirsch and Liu 1997). The procedure
presented is more general and provides more accurate
results. Increasing the number of DOF’s, it is neces-
sary first to establish a Modified Initial Analysis (MIA),
such that the new degrees of freedom are included in
the analysis model. Considering the augmented stiffness
matrix and load vector (10), the MIA model can be se-
lected such that reanalysis will be convenient. Once the
MIA is established, it is then possible to analyse modi-
fied structures conveniently due to addition or deletion
of members, keeping the number of degrees of freedom
unchanged.
Considering the formulation of Sect. 2.3, the MIA is

established as follows. The matrix of changes in the stiff-
ness ∆K is expressed first as a sum of the two matrices
∆K0 and∆KN by

∆K=∆K0+∆KN . (29)
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The above matrices are defined in such a way that the
modified initial analysis will be easy to carry out. The
modified initial stiffness matrixKM is expressed as

KM =KA+∆K0 . (30)

Matrices∆K0 and∆KN are defined as

∆K0 = α

[
0 ∆K0N

∆KN0 ∆KNN

]
,

∆KN =

[
∆K00 (1−α)∆K0N

(1−α)∆KN0 (1−α)∆KNN

]
, (31)

where α is a scalar multiplier to be selected (0 < α ≤ 1).
Substituting the expressions of KA and ∆K0 [(10) and
(31), respectively] into (30) yields

KM =

[
K0 α∆K0N

α∆KN0 α∆KNN

]
. (32)

The rationale of this selection is that, once the decom-
posed form (2) is available, factorization of the modified
initial stiffness matrixKM by

KM =U
T
MUM (33)

is straightforward. Specifically, matrix UM can be
expressed as

UM =

[
U0 U0N

0 UNN

]
, (34)

where the elements of matrix U0 are already given. That
is, the rows and columns corresponding to the original
degrees of freedom are unchanged and only rows and
columns corresponding to the new degrees of freedom are
calculated. In general the number of added joints is small,
and the factorization (33) involves small computational
effort.
As to the selected value of α it can be observed that

α= 1 yields

KM =

[
K0 ∆K0N

∆KN0 ∆KNN

]
. (35)

One drawback of this selection is that matrix KM is not
necessarily positive definite and the factorization (33)
might not be suitable. Still, it would be possible to use the
symmetric factorization

KM = LMDML
T
M , (36)

where LM is a lower triangular matrix andDM is a diag-
onal matrix. However, in this caseKM does not represent

a real structure and experience has shown that the accu-
racy of the approximations deteriorates.
In the procedure presented subsequently, this diffi-

culty is overcome by selecting a small α value such that
matrix KM (32) is a good approximation of the matrix
KA+α∆K [since α∆K00�K0, see (10), (11)]. Consid-
ering the above definitions, the solution procedure in-
volves the following two stages.

1. The modified initial analysis (MIA) is established. As-
suming a small α value, matrixKM is introduced and
factorized. Since the decomposed form (2) is avail-
able, this operation involves a small computational
effort. The modified initial displacements rM are then
calculated by

KMrM =R . (37)

Given the form (33), this calculation involves only for-
ward and backward substitutions.

2. Once rM has been determined, the displacements due
to the remaining change in the stiffness matrix ∆KN
are calculated. Specifically, the modified equations to
be solved are

Kr= (KM +∆KN)r=R , (38)

where ∆KN is defined by (31). This can be done by
the CA procedure described in Sect. 3.1 for the simple
case where the number of DOF’s is unchanged, with
rM , KM , UM and R replacing r0, K0, U0 and R0,
respectively, as initial values.

4
Numerical examples

The approach presented in this study is general and suit-
able for all types of structure. For simplicity of presenta-
tion small-scale truss example structures will be consid-
ered. In all examples, cross-sectional areas of unity have
been assumed.

4.1
The number of DOF’s is unchanged

To illustrate numerical results for conditionally unsta-
ble structures, consider the classical ten-bar truss shown
in Fig. 2, subjected to a single loading condition of two
concentrated loads. The modulus of elasticity is 30 000
and the eight unknowns are the horizontal (to the right)
and the vertical (downward) displacements in joints 1, 2,
3 and 4, respectively. The following cases of deletion of
members have been solved:

1. Deletion of members 2+6, giving the conditionally
unstable structure CU 1 (Fig. 4).

2. Deletion of members 4+9, giving the conditionally
unstable structure CU 3 (Fig. 4).
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3. Deletion of members 5+8+9, giving the conditionally
unstable structure CU 17 (Fig. 7).

4. Deletion of members 4+5+8+9, giving the condi-
tionally unstable structure CU 19 (Fig. 7).

The exact solutions have been achieved for all the above
cases with only three basis vectors, as summarized
in Table 1.
To illustrate results for structures with a larger num-

ber of members, consider the fifty-bar truss shown in
Fig. 8a, subjected to a single concentrated load. The
modulus of elasticity is 10 000 and the forty unknowns
are the horizontal (to the right) and the vertical (down-
ward) displacements at joints 2 through 21, respec-
tively. Deleting ten diagonal members, the modified de-
sign is shown in Fig. 8b. Despite the relatively large
number of deleted members, the exact solution shown

Table 1 Ten-bar truss, various cases of deletion of members

Deleted Displacement
members 1 2 3 4 5 6 7 8

2+6 2.40 5.80 ∗ ∗ −3.60 15.18 −2.40 5.80

4+9 2.11 4.67 3.30 13.62 ∗ 14.81 −1.35 5.57

5+8+9 ∗ ∗ 2.40 19.76 −3.60 20.96 −3.60 10.38

4+5+8+9 1.20 ∗ 2.40 19.76 ∗ 20.96 −3.60 10.38

∗ irrelevant results

(a)

(b)

Fig. 8 (a) Fifty-bar truss initial topology, (b) modified topology

Table 2 Fifty-bar truss, deletion of members

DOG Displacement DOG Displacement DOG Displacement DOG Displacement

1 0.09 11 0.39 21 −0.55 31 −0.40
2 0.14 12 3.13 22 7.07 32 2.28

3 0.17 13 0.42 23 −0.54 33 −0.34
4 0.46 14 4.05 24 6.04 34 1.54

5 0.24 15 0.44 25 −0.52 35 −0.27
6 0.93 16 5.03 26 5.02 36 0.92

7 0.30 17 0.45 27 −0.49 37 −0.19
8 1.55 18 6.05 28 4.04 38 0.45

9 0.35 19 0.45 29 −0.45 39 −0.10
10 2.29 20 7.07 30 3.12 40 0.13

in Table 2 has been achieved with only three basis
vectors.
To illustrate results for deletion of many members and

conditionally unstable structures, consider the 19-bar
tower truss shown in Fig. 9, subjected to a single loading
condition of two concentrated loads. The modulus of elas-
ticity is 10 000 and the 12 unknowns are the horizontal
(to the right) and the vertical (upward) displacements at
joints 2, 3, 4, 6, 7, and 8, respectively. The following cases
have been solved.

1. Deletion of 6 members to obtain the topology shown
in Fig. 10a.

2. Deletion of 7 members to obtain the topology shown
in Fig. 10b.

3. Deletion of 9 members to obtain the topology shown
in Fig. 10c.
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Table 3 19-bar tower truss, deletion of members

Displacement Case 1 Case 2 Case 3
number CA exact CA exact CA exact

1 0.49 0.48 0.78 0.76 0.71 0.70

2 0.27 0.26 0.21 0.21 0.32 0.32

3 1.57 1.58 2.07 2.09 ∗ ∗

4 0.43 0.43 0.33 0.32 ∗ ∗

5 2.88 2.88 3.61 3.62 3.53 3.53

6 0.48 0.48 0.35 0.32 0.54 0.53

7 0.50 0.50 0.72 0.70 ∗ ∗

8 −0.27 −0.27 −0.32 −0.32 ∗ ∗

9 1.54 1.54 2.00 2.03 1.97 1.98

10 −0.42 −0.43 −0.51 −0.53 −0.42 −0.43
11 2.93 2.93 3.64 3.65 3.62 3.62

12 −0.48 −0.48 −0.63 −0.64 −0.42 −0.43

∗ irrelevant results

Fig. 9 19-bar tower truss

(c)(b)(a)

Fig. 10 Modified topologies, 19-bar truss

Considering three basis vectors, the results given
in Table 3 indicate the accuracy of the approximations
achieved by the CA method.

4.2
The number of DOF’s is decreased

To illustrate numerical results for cases where the number
of DOF’s is decreased, consider again the initial ten-bar
truss shown in Fig. 2. The following cases of elimination
of members and joints have been solved (see the modified
topologies in Fig. 6).

1. Deletion of members 2+6+10 and joint 2, to obtain
the modified topology S30.

2. Deletion of members 2+5+6+10 and joint 2, to
obtain the modified topology S33.

3. Deletion of members 2+6+7+10 and joint 2, to
obtain the modified topology S34.

4. Deletion of members 2+6+8+10 and joint 2, to
obtain the modified topology S35.

The exact solutions, summarized in Table 4, have been
achieved for all the above cases with only three basis
vectors.

4.3
The number of DOF’s is increased

To illustrate reanalysis for the case of addition of mem-
bers and joints, consider the initial six-bar truss shown
in Fig. 11a. The six unknowns are the horizontal (to
the right) and the vertical (downward) displacements in
joints 1, 2 and 3, respectively. The initial displacement
vector and decomposed stiffness matrix are

r0 = {1.20, 11.59,−4.80, 20.98,−3.60, 10.39} ,
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Table 4 Ten-bar truss, various cases of deletion of members and joints

Deleted Displacements
members 1 2 3 4 5 6 7 8

2+6+10 2.40 −5.79 ∗ ∗ −3.60 −15.18 −2.40 −5.79
2+5+6+10 2.40 −5.79 ∗ ∗ −3.60 −15.18 −2.40 −5.79
2+6+7+10 3.60 −10.37 ∗ ∗ −2.40 −19.77 −1.20 −11.57
2+6+8+10 1.20 −11.57 ∗ ∗ −4.80 −20.96 −3.60 −10.37

∗ irrelevant results

(a) (b)

Fig. 11 (a) Six-bar truss, initial topology, (b) modified topology

U0 =




10.62 2.77 −2.77 −2.77 0 0

10.25 −2.12 −2.12 0 −8.13

10.03 1.72 −8.31 −1.72

3.78 3.78 −3.78

10.62 2.77

4.67



.

Assume addition of a joint and four members to obtain
the ten-bar truss shown in Fig. 11b. Reanalysis has been
carried out in the following two stages:

1. TheModified Initial Analysis (MIA) is carried out. Se-
lecting α= 0.001, the initial decomposed stiffness ma-
trix UM is given by (34), where U0 is already given.
Thus, it is necessary to calculate only the sub-matrices
U0N ,UNN

U0N =




−0.0078 0

−0.0021 0

−0.0017 0

−0.0038 −0.0220

−0.0028 0.0106

0.0080 −0.0305



,

UNN =

[
0.3356 −0.0872

0.3220

]
.

For the given UM , calculation of the modified initial
displacement vector by (37) involves only forward and
backward substitutions. The result is

rM = {1.22, 11.74,−4.87, 21.28,−3.65, 10.52,

2.44, 20.06} .

Due to the small change in stiffness, the displace-
ments of the original degrees of freedom have changed
slightly.

2. The displacements due to the remaining change in the
stiffness matrix ∆KN are calculated. Employing the
CA procedure described in Sect. 3.1, with rM , KM ,
UM andR replacing r0,K0,U0 andR0, respectively,
as initial values, the exact solution achieved with only
three basis vectors is

r= {2.34, 5.58,−3.17, 13.13,−2.46, 6.01,

2.82, 12.65} .

5
Conclusions

Most structural reanalysis methods developed in the
past are suitable for the relatively simple case where
the number of DOF’s is unchanged. The reanalysis ap-
proach presented in this study is suitable for problems
where the number of DOF’s, and the sizes of the stiff-
ness matrix and the load vector are significantly changed.
A unified approach for reanalysis of all types of topo-
logical modifications has been presented. The modifica-
tions considered include both deletion and addition of
members and joints. In cases when the number of DOF’s
is increased, it is necessary to establish first a modified
initial analysis, such that the new degrees of freedom
are included in the analysis model. A general solution
procedure was presented, where an exact modified ini-
tial solution is calculated efficiently. The modified so-
lution is then used for reanalysis of further topological
modifications.
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Numerical examples show that accurate approxima-
tions are achieved for significant topological modifica-
tions. In cases where the modified structure is condition-
ally unstable, approximate reanalysis by the CA method,
with a reduced number of unknowns, still provides accu-
rate results. Some cases where exact solution is obtained
are demonstrated.
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