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Optimum load and resistance factor design of steel space
frames using genetic algorithm

M.S. Hayalioglu

Abstract In this paper, an algorithm is presented for the
minimum weight design of steel moment-resisting space
frames subjected to American Institute of Steel Construc-
tion (AISC) Load and Resistance Factor Design (LRFD)
specification. A genetic algorithm (GA) is utilized herein
as the optimization method. Design variables which are
cross-sectional areas are discrete and are selected from
the standard set of AISC wide-flange (W ) shapes. The
structure is subjected to wind loading in accordance with
the Uniform Building Code (UBC) in conjunction with
vertical loads (dead and live loads). Displacement and
AISC LRFD stress constraints are imposed on the struc-
ture. The algorithm is applied to the design of three
space frame structures. The designs obtained using AISC
LRFD code are compared to those where AISC Allow-
able Stress Design (ASD) is considered. The comparisons
show that the former code results in lighter structures for
the examples presented.

Key words optimization, space frames, genetic algo-
rithm, AISC, LRFD, AISC, ASD

1
Introduction

A large number of techniques and algorithms have been
developed in recent years for the optimum design of
structural systems. Most of the algorithms deal with con-
tinuous design variables and simple constraints. A few
articles deal with the optimum design of structures
subjected to actual design constraints of code specifi-
cations (Chan 1992; Chan and Grierson 1993; Soegia-
rso and Adeli 1994, 1997) Mathematical programming
techniques and optimality criteria methods with con-
tinuous design variables have been used in all these
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articles. However, the design variables are discrete in
most practical design problems. This is due to the avail-
ability of standard sizes and their restrictions for con-
struction and manufacturing purposes. The aim of this
paper is to develop optimization algorithms for steel
structures subjected to the actual constraints of the
American Institute of Steel Construction (AISC) Load
and Resistance Factor Design (LRFD) and Allowable
Stress Design (ASD) specifications (American Institute
of Steel Construction 1995, 1989), and also to use ac-
tual steel sections as discrete design variables. A number
of methods has been reported for the optimum design
of discrete structural systems (Templeman and Yates
1983; Zhu 1986; John and Ramakrishnan 1987). Math-
ematical programming techniques are used in all these
methods.
Genetic algorithms (GAs), which are applications of

biological principles into computational algorithms, have
been used to obtain the optimum structural design solu-
tions in recent years. They apply the principle of survival
of the fittest into the optimization of structures. They are
also able to deal with discrete optimum design problems
and do not need derivatives of functions like mathemati-
cal programming methods.
In this paper, a genetic algorithm (GA) is presented

for the optimum design of steel space frame structures
subjected to AISC LRFD specifications. A set of avail-
able steel sections (AISCW -shapes ) are used as discrete
design variables. The three space frames are optimized
under displacement and AISC LRFD stress constraints.
The frames are subjected to the horizontal wind load-
ing in accordance with the Uniform Building Code (1991)
in conjunction with vertical loads due to dead and live
load.

2
Genetic algorithms

GAs were originally put forward by Holland (1975).
A broad and useful information can be found in the book
by Goldberg (1989). More information can be obtained
from some articles associated with this topic (Rajeev and
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Krishnamoorthy 1992; Adeli and Cheng 1994; Leite and
Topping 1995).
GA can be used as an optimization method so as to

minimize or maximize an objective function. In this pa-
per, the GA given by Rajev and Krishnamoorthy (1992)
is used. This algorithm has been improved by employ-
ing a uniform crossover operator instead of two-point
crossover and adding a mutation operator. Fitness scaling
as explained by Goldberg (1989) has also been added to
the algorithm in order to prevent significant diversity in
the population.
GAs are search techniques based on the mechanism of

natural genetics and natural selections. They make use of
the artificial survival of the fittest concept with genetic
operators taken from nature to constitute a strong search
mechanism. There are various genetic operators used in
GA. The present work employs a GA with reproduction,
crossover and mutation operators.
A design variable has a sequence number in a given

discrete set of variables in GA. Binary codes are used
for these numbers. Individuals in a population are finite
length strings formed from either 1 or 0 characters. In-
dividuals and the characters are called chromosomes and
artificial genes, respectively, in some literature. A string
may contain some substrings so that each of them repre-
sents a design variable.
The reproduction operator applies the principle of

survival of the fittest in the population. The crossover
operator satisfies that individuals from the mating pool
recombine genetic information to generate new solutions
to the problem. There are several crossover operators
existing in the literature. In the present work, uniform
crossover is utilized, which is given in detail by Syswerda
(1989). The third operator is mutation which preserves
diversification in the search. This operator is applied to
each offspring in the population with a predetermined
probability. The operator flips the gene of an offspring
from 1 to 0 and vice versa at random position.

3
Optimum design problem and its formulation

The optimum load and resistance factor design problem
of a space frame with displacement and stress constraints
can be stated as follows. Find the set of design variables,
Ak (cross-sectional area of the member group k) so that
the weight of the structure,

W (x) =

ng∑
k=1

Ak

mk∑
i=1

ρiLi , (1)

is minimized subject to displacement and stress con-
straints. In (1), mk is the total number of members in
group k, ρi and Li are density and length of member i,
and ng the total number of groups in the frame.

The displacement constraints are

δj�− δ
u
j ≤ 0 , j = 1, . . . , n , �= 1, . . . , n� , (2)

where δj� is the displacement of the j-th degree of free-
dom due to loading conditions �, δuj is its upper bound, n
is the total number of restricted displacements, and n� is
the total number of loading conditions.
The stress constraints are expressed in terms of the

following interaction equations (American Institute of
Steel Construction 1995) for members subject to bending
and axial force:

Pu

φPn
+
8

9

(
Mux

φbMnx
+

Muy

φbMny

)
≤ 1.0

for
Pu

φPn
≥ 0.2 , (3)

Pu

2φPn
+

(
Mux

φbMnx
+

Muy

φbMny

)
≤ 1.0

for
Pu

φPn
< 0.2 , (4)

If the axial force is in tension, the terms in (3) and
(4) for a member can be defined as: Pu = required tensile
strength, Pn = nominal tensile strength,Mux = required
flexural strength about the major axis, Muy = required
flexural strength about the minor axis, Mnx = nominal
flexural strength about the major axis, Mny = nominal
flexural strength about the minor axis, φ = φt = resis-
tance factor for tension (equal to 0.90), and φb = resis-
tance factor for flexure (equal to 0.90).
If the axial force is in compression in (3) and (4), Pu =

required compressive strength, Pn = nominal compres-
sive strength, and φ= φc = resistance factor for compres-
sion (equal to 0.85). The notation of the other terms is
the same as the previous ones. The nominal compressive
strength of a member is computed as

Pn =Ag ·Fcr , (5)

Fcr =
(
0.658λ

2
c

)
Fy for λc ≤ 1.5 , (6)

Fcr =

(
0.877

λ2c

)
Fy for λc > 1.5 , (7)

λc =
KL

rπ

√
Fy

E
, (8)

where Ag is the cross-sectional area of a member, K is
the effective length factor, E is the modulus of elastic-
ity, r is the governing radius of gyration, L is the member
length, and Fy is the yield stress of steel. The effective
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length factor K, for braced and unbraced frames is cal-
culated from the following approximate equations taken
from Soegiarso and Adeli (1997):

K =
3GAGB+1.4(GA+GB)+0.64

3GAGB+2.0(GA+GB)+1.28

(for braced frames), (9)

K =

√
1.6GAGB+4.0(GA+GB)+7.50

GA+GB+7.50

(for unbraced frames), (10)

where subscripts A and B denote the two ends of the col-
umn under consideration. The restraint factorG is stated
as

G=

∑
(Ic/Lc)∑
(Ig/Lg)

, (11)

where Ic is the moment of inertia and Lc is the unsup-
ported length of a column section, Ig is the moment of
inertia and Lg is unsupported length of a girder;

∑
in-

dicates a summation for all members rigidly connected
to that joint (A or B) and lying in the plane of buckling
of the column under consideration. The required flexural
strength of a beam-column member considering second-
order effects is computed from the following relationship:

Mu =B1Mnt+B2M�t , (12)

where Mnt is the required flexural strength in a member
assuming there is no lateral translation of the frame, and
M�t is the required flexural strength in a member as a re-
sult of lateral translation of the frame only. Definitions
of the other terms in (12) and details of formulations are
given in the AISC LRFD specifications (American Insti-
tute of Steel Construction 1995) and repetition will be
avoided here.
GA is convenient for unconstrained optimization

problems. The present problem described by (1)–(4)
is a constrained one and therefore it is necessary to
transform it into an unconstrained problem. This is
achieved by using a transformation based on the viola-
tions of normalized constraints as suggested by Rajeev
and Krishnamoorthy (1992). The normalized form of con-
straints can be expressed as follows:

gj�(x) =
δj�

δuj
−1≤ 0 ,

j = 1, . . . , n , �= 1, . . . , n� , (13)

for
Pu

φPn
≥ 0.2,

gi�(x) =

(
Pu

φPn

)
i�

+

8

9

(
Mux

φbMnx
+

Muy

φbMny

)
i�

−1.0≤ 0 ,

i= 1, . . . , nm , �= 1, . . . , n� , (14)

for
Pu

φPn
< 0.2 ,

gi�(x) =

(
Pu

2φPn

)
i�

+

(
Mux

φbMnx
+

Muy

φbMny

)
i�

−1.0≤ 0 ,

i= 1, . . . , nm , �= 1, . . . , n� , (15)

where nm is the total number of members in the frame.
The unconstrained objective function ϕ(x) is then writ-
ten as

ϕ(x) =W (x)


1+C


 n∑
j=1

n�∑
�=1

vj�+
nm∑
i=1

n�∑
�=1

vi�




 , (16)

where C is a constant to be selected depending on the
problem. A value of 10 was found suitable for C in all de-
sign examples presented in this paper. In (16), vj� and vi�
are violation coefficients which are computed as

if gj�(x)> 0 then vj� = gj�(x) ,

if gj�(x)≤ 0 then vj� = 0 ,

and

if gi�(x)> 0 then vi� = gi�(x) ,

if gi�(x)≤ 0 then vi� = 0 . (17)

The minimum of the unconstrained function ϕ(x) will
be searched by GA. The algorithm requires a criteria to
perform selection among the individuals. This is done
in such a way that the fittest individual has maximum
fitness. Goldberg (1989) suggests that ϕ(x) should be
subtracted from a large constant for the minimization
problem. In the present work, an expression for fitness is
selected as

Fi = [ϕ(x)max+ϕ(x)min]−ϕi(x) , (18)

where Fi is the fitness of the i-th individual, ϕ(x)max and
ϕ(x)min are the maximum and minimum values of ϕ(x)
among the current population; ϕi(x) is the value of the
same function computed for the i-th individual. The in-
dividuals with small fitness die off and the others send
copies to the mating pool proportional to their fitness.
After the mating pool is created, individuals are coupled
randomly and crossover is applied to them.
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It is clear that computation of the fitness of an indi-
vidual requires the values of displacements and stresses
in the frame system. This is achieved by carrying out the
linear-elastic analysis of space frame systems.

4
Analysis of space frame systems

Linear-elastic analysis of a rigidly-connected space frame
system has been carried out by using the matrix dis-
placement method. Each node or joint has six degrees of
freedom and each member has six stress-resultants in the
local coordinates. These are axial tension, two moments
causing curvature in the (z–y) plane, two moments caus-
ing curvature in the (z–x) plane, and twisting moment or
torque (x and y are the principal axes of the cross-section
and z is the axis along the member length). Applying the
known steps of the method, the joint displacements of
structure and stress resultants of members are obtained.
The other member end forces and spanmoments are com-
puted depending on these stress resultants.

5
Optimum design algorithm

The optimum AISC LRFD algorithm for space frame
structures consists of the following steps.
1. Construct the initial population randomly which com-
prises binary digits.

2. Decode the binary codes for the design variables of
each individual and find their sequence numbers in the
available steel section list. Perform the linear-elastic
analysis of each space frame which represents an in-
dividual in the population subjected to given loading
conditions and obtain the response of the frame.

3. Calculate the value of unconstrained function ϕ(x) for
each individual using (13)–(17). Find the maximum
and minimum values of this function in the popula-
tion.

4. Calculate the fitness value for each individual from
(18).

5. Apply linear fitness scaling to the population as ex-
plained by Goldberg (1989) to obtain fast conver-
gence.

6. Apply the reproduction operator. Copy the individu-
als into the mating pool according to their fitness and
couple them randomly. Generate offspring using uni-
form crossover and thus obtain the new population.

7. Apply mutation to each offspring in the new popula-
tion.

8. Replace the initial population by the new population
and repeat steps 2 to 8 until the distance between the
maximum and the average fitness values of current
population falls below a certain threshold. In this case,
the individual with the maximum fitness value in cur-
rent population represents the optimum design.

6
Constraints and objective function for optimum
AISC – allowable stress design

In the present study, an optimum allowable stress design
algorithm has also been developed to compare optimum
designs based on AISC LRFD specifications. The equa-
tion for the normalized displacement constraint is the
same as (13). The combined stress constraints taken from
American Institute of Steel Construction (1989) are ex-
pressed in the following equations.
For members subjected to both axial compression and

bending stresses,

gi�(x) =


 fa
Fa
+

Cmxfbx(
1− fa

F ′ex

)
Fbx

+
Cmyfby(
1− fa

F ′ey

)
Fby



i�

−

1.0≤ 0 , i= 1, . . . , nm , �= 1, . . . , n� , (19)

gi�(x) =

[
fa

0.60Fy
+
fbx

Fbx
+
fby

Fby

]
i�

−1.0≤ 0 ,

i= 1, . . . , nm , �= 1, . . . , n� . (20)

When fa/Fb ≤ 0.15, (21) is permitted in lieu of (19) and
(20)

gi�(x) =

[
fa

Fa
+
fbx

Fbx
+
fby

Fby

]
i�

−1.0≤ 0 ,

i= 1, . . . , nm , �= 1, . . . , n� . (21)

For members subjected to both axial tension and bending
stresses,

gi�(x) =

[
fa

Ft
+
fbx

Fbx
+
fby

Fby

]
i�

−1.0≤ 0 ,

i= 1, . . . , nm , �= 1, . . . , n� . (22)

In (19)–(22), the subscripts x and y, combined with
subscripts b, m and e, indicate the axis of bending about
which a particular stress or design property applies, and
Fa = axial compressive stress that would be permitted if
axial force alone existed, Fb = compressive bending stress
that would be permitted if bending moment alone ex-
isted, F ′e = Euler stress divided by a factor of safety, fa =
computed axial stress, fb = computed compressive bend-
ing stress at the point under consideration, and Cm =
a coefficient whose value is taken as 0.85 for compression
members in frames subject to sidesway.
In (22), fb is the computed bending tensile stress, fa

is the computed axial tensile stress, Fb is the allowable
bending stress and Ft is the governing allowable tensile
stress. Allowable, (0.6Fy) and Euler stresses are increased
by 1/3 in accordance with the specification when pro-
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duced by wind, acting alone or in combination with the
design dead and live loads. Definitions of the allowable
and Euler stresses and other details are given AISC ASD
specifications (American Institute of Steel Construction
1989) and therefore will not be repeated here.
The same form of the unconstrained objective func-

tion as given in (16) is used here providing that (19)–(22)
are used instead of (14) and (15).
The same optimum design algorithm as explained in

Sect. 5 is used for allowable stress design on the condition
that the latest constraints and unconstrained objective
function are adopted.

7
Design examples

The algorithm has been applied to the optimum design of
three space frame structures. The material is steel with
a modulus of elasticity of 200 000MPa and shear modu-
lus of elasticity of 77 000MPa. The yield stress and the
unit weight of material are 344.8MPa and 7850 kg/m3,
respectively. Four different types of loads are employed:
dead load (D), live load (L), roof live load (Lr), and
wind loads (W ). Four load combinations are taken into
account, per AISC LRFD specification: I: (1.4D), II:
(1.2D+1.6L+0.5Lr), III: (1.2D+1.6Lr+0.5L) , and
IV: (1.2D+1.3W +0.5L+0.5Lr).
The same material properties are used and only a load

combination is considered, per AISC ASD specification:
(D+L+Lr+W ). The values of 2.78 kPa for dead load
(D), 2.39 kPa for live load (L), and 2.39 kPa for roof live
load are considered in the three design examples.
The maximum drift is restricted to 0.004H (H = total

height of the structure) for designs based on AISC ASD
specification. This value is increased by 30% to 0.0052 to
include the effect of the coefficient 1.3 in the LRFD wind
load combination. AISC (W ) shapes are used as steel
sections in all design examples considered in the present
study. Wind loading is obtained from the Uniform Build-
ing Code (1991) using the equation p= CeCqqsI, where p
is design wind pressure;Ce is combined, height, exposure,
and gust factor coefficient; Cq is pressure coefficient; qs is
wind stagnation pressure; and I is importance factor. As-
suming exposureB a value of 0.7 is used for Ce. The value
ofCq for inward face is 0.8 and for outward face is 0.5. The
value of qs is 0.622 kPa assuming a basic wind speed of
113 km/h (70mph) and the importance factor is assumed
to be one.

7.1
Design of single-storey 8-member space frame

The one storey 8-member frame shown in Fig. 1 is the
first example. The members of the frame are divided
into three groups as shown in Fig. 1. The horizontal
loads due to wind act in the z-direction at each unre-
strained node. The displacement constraints are given as

(±2.34 cm in the z-direction for each unrestrained node
(equal to 0.0052H). The displacement constraints are
taken as ±1.8 cm (equal to 0.004H) for allowable stress
design. The population size, linear fitness scaling mul-
tiplier (Goldberg 1989), crossover and mutation prob-
ability are selected as 60, 2.0, 0.99, and 0.002, respec-
tively. A minimum weight of 1299.5 kg is found after
60 generations for AISC LRFD with a maximum storey
drift of 0.64 cm. The minimum weight is also obtained as
1812.9 kg after 50 generations for AISCASDwith 0.72 cm
maximum story drift. The displacement values are quite
below their upper bounds and this indicates that stress
constraints govern the designs for both codes of prac-
tice. The optimum design variables for member groups
are given in Table 1 for the two design codes.
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750 cm
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0
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5

0
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1

2 2

3
3

3

3
1

Fig. 1 Single-storey 8-member space frame

Table 1 Optimum design variables for the single-storey
space frame

Group Design Variables

No. LRFD ASD

1 W12×19 W10×26
2 W 5×16 W12×45
3 W10×22 W 6×16

7.2
Design of 4-storey 84-member space frame

The second example is the 4-storey space frame with
a square plan and side view shown in Fig. 2. The struc-
ture has 84 members divided into 8 groups of members.
The groups are organized as follows: 1-st group: corner
columns of 4-th and 3-rd storeys, 2-nd group: outer and
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inner columns of 4-th and 3-rd storeys, 3-rd group: cor-
ner columns of 2-nd and 1-st storeys, 4-th group: outer
and inner columns of 2-nd and 1-st storeys, 5-th group:
outer beams of top storey, 6-th group: inner beams of
top storey, 7-th group: outer beams of 3-rd, 2-nd and
1-st storeys, 8-th group: inner beams of 3-rd, 2-nd and
1-st storeys.

A
B

x

C D

Corner column Outer column

Inner column

Outer beam

Inner beam

6.5 m 6.5 m

6
.5

m
6
.5

m

z

6.5 m 6.5 m

4
3
.6

m
x

(a)

(b)

Fig. 2 Four-storey 84-member space frame: (a) plan, (b) side
view

The horizontal loads due to wind act in the z-dir-
ection at each node on the sides AB and CD. The
displacement constraints are given as ±7.49 cm and
±5.76 cm in the z-direction for the nodes on the top
level for AISC LRFD and ASD specifications, respec-
tively. The population size, linear fitness scaling mul-
tiplier, crossover and mutation probability are selected
as 60, 2.0, 0.99, and 0.001, respectively. A minimum
weight of 16 165.6 kg is found after 83 generations for

AISC LRFD with a maximum storey drift of 3.51 cm.
The minimum weight is also obtained as 18371.2 kg after
94 generations for AISC ASD with 2.31 cm maximum
story drift. Stress constraints govern again the designs for
both codes of practice. The optimum design variables for
member groups are given in Table 2 for the two design
codes.

Table 2 Optimum design variables for the 4-storey space
frame

Group Design Variables

No. LRFD ASD

1 W10×19 W 8×31
2 W12×30 W10×49
3 W 6×25 W 8×35
4 W 8×31 W 8×31
5 W10×17 W 8×18
6 W 8×40 W 8×35
7 W10×22 W12×14
8 W12×26 W12×45

7.3
Design of 10-storey 130-member space frame

The 10-storey space frame with a rectangular plan
and side view shown in Fig. 3 is the third example.
The structure consists of 130 members divided into 9
groups. The groups are organized as follows: 1-st group:
outer beams of top storey, 2-nd group: inner beam of
top storey, 3-rd group: outer beams of storeys from
1 to 9, 4-th group: inner beams of storeys from 1 to
9, 5-th group: outer and corner columns of 10-th and
9-th storeys, 6-th group: outer and corner columns of
8-th and 7-th storeys, 7-th group: outer and corner col-
umns of 6-th and 5-th storeys, 8-th group: outer and
corner columns of 4-th and 3-rd storeys, 9-th group: outer
and corner columns of 2-nd and 1-st storeys.
The horizontal loads due to wind applied in the

z-direction at each node on the sides AB and CD. The
displacements are restricted to ±18.72 cm and ±14.4 cm
in the z-direction for the nodes on the top level for AISC
LRFD and ASD specifications, respectively. The popula-
tion size, linear fitness scaling multiplier, crossover and
mutation probability are selected the same as those of
the previous example. A minimum weight of 40 976.3 kg
is found after 101 generations for AISC LRFD with
a maximum storey drift of 18.71 cm. The minimum
weight is also obtained as 41280.2 kg after 97 gener-
ations for AISC ASD with 14.23 cmmaximum story drift.
Displacement constraints govern the designs for both
code specifications. The optimum design variables for
member groups are given in Table 3 for the two design
codes.
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b a
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x

(a)

(b)

Fig. 3 Ten-storey 130-member space frame: (a) plan, (b) side
view

Table 3 Optimum design variables for the 10-storey space
frame

Group Design Variables

No. LRFD ASD

1 W14×26 W14×38
2 W12×40 W14×26
3 W12×35 W12×35
4 W12×35 W12×40
5 W10×22 W12×35
6 W12×35 W12×40
7 W14×68 W14×68
8 W14×68 W12×53
9 W14×82 W14×68

8
Conclusions

A genetic algorithm based optimum design approach is
presented for steel moment-resisting space frames sub-

jected to both AISC LRFD and ASD specifications. GAs
are quite convenient for practical optimum structural de-
signs, since they treat discrete design variables. Design
variables are discrete in nature in most of structural de-
sign problems. In most mathematical programming tech-
niques and in the optimality criteria approach, an ap-
proximation is made by assigning the obtained optimum
continuous design variables to close standard sections.
Approximate relationships may also be used between
the cross-sectional properties of real standard sections in
these methods. However, GA removes all these approxi-
mations and obtains real discrete sections in a given set of
standard sections. GA is also general and can be applied
to any discrete set of sections produced in accordance
with different standards.
The following conclusions are reached from the de-

sign examples presented, when using GA in the optimum
AISC LRFD and ASD of space frame structures.

– The population size plays an important role in the
value of the minimum weight and in the number of
generations produced. The increase in population size
yields the production of more generations. A popu-
lation size between � and 2�, where � is the chromo-
some length, produces adequate results as mentioned
by Reeves (1993). The chromosome lengths are 18, 48
and 54 for the first, second and third design examples
of the present study and therefore a population size of
60 is used for all of them.

– Fitness scaling and higher crossover probability
increase the speed of convergence. Linear fitness scal-
ing with a value of 2.0 of the multiplier is included
the algorithm and a value of 0.99 is used for crossover
probability. Small mutation probabilities such as
0.001 or 0.002 are found suitable in the examples
considered, since greater values of this probability
cause significant diversity within the population.
The following terminating criterion is used in
the genetic algorithm: (Fmax−Favg)/Fmax ≤ ε, where
Fmax and Favg are the maximum and average fit-
ness values in the current population, and ε is a pre-
scribed small number. Selecting smaller values for ε
causes delay in convergence, but larger values for ε
yields premature convergence. Values between 0.01
and 0.015 are found appropriate in the design exam-
ples presented.

– The three space frames are designed according to both
AISC LRFD and AISC ASD specifications and the
results are compared. Savings in weight for designs
based on LRFD when compared with designs based
on ASD are 28%, 12%, and 0.7% for the first, sec-
ond and third examples, respectively. It appears from
the results that the optimum designs based on LRFD
yields lighter frames providing that stress constraints
are dominant in designs. Almost the same optimum
weights have been obtained for the two design codes
when displacement constraints govern the designs in
the third example.
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