
Struct Multidisc Optim 21, 164–172  Springer-Verlag 2001

On design-dependent constraints and singular topologies�

G.I.N. Rozvany

Abstract A historical perspective of design-dependent
constraints and singular topologies is presented and their
theoretical background as well as fundamental features
discussed, together with methods for treating computa-
tional difficulties. This note contains some rather surpris-
ing new facts about singular topologies and it is hoped
that it will provide both a comprehensive review and ad-
ditional insights.

1
Introduction

The problem of singular topologies caused by design de-
pendent constraints is reviewed in greater detail in this
Special Issue, because they involve severe computational
difficulties in topology optimization. Moreover, they may
result in a complete breakdown of FSD/stress ratio type
methods (Rozvany 2001).
Simple but important examples of design dependent

constraints are limits on stress values. These are only
valid if the cross-sectional area of a member is nonzero
and become ineffective for members vanishing from the
ground structure.
In this text, the history, theoretical background and

basic features of singular topologies are examined, to-
gether with the treatment of computational difficulties
caused by them.

Received June 26, 2000

G.I.N. Rozvany

Dept. of Structural Mechanics, Faculty of Civil Engineer-
ing, Budapest University of Technology and Economics,
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2
Historical perspective and theoretical background

2.1
Discovery of the weight reducing effect of member
elimination (Sved and Ginos 1968)

The first observation of the effect of singular topolo-
gies is due to an ingenious Hungarian-born Australian
researcher George Sved – the author’s close friend who
passed away recently. Sved demonstrated that

• in optimizing a redundant truss for stress constraints
and multiple load conditions, the weight can be re-
duced further if some members are allowed to vanish
(together with their stress constraints), and

• such an optimal solution cannot be reached through
a conventional iterative procedure.

Sved and Ginos (1968) illustrated this phenomenon
with a simple example. The structure under considera-
tion was a three-bar truss (Fig. 1a), with three alterna-
tive load conditions and different permissible stresses for
the members. Using mathematical programming, Schmit
(1960) obtained an optimal three-bar solution for this
problem (Fig. 1b), with a weight ofW = 15.985. The opti-
mal two-bar solution (Fig. 1c) derived by Sved and Ginos
(1968) has a weight ofW = 12.814, a weight difference of
24.7 per cent(!)

2.2
Extensive search technique by Sheu and Schmit
(1972)

Determining the optimal set of member eliminations is
a topological problem involving 0-1 type optimization. To
reduce the size of the problem, Sheu and Schmit (1972)
established bounds on the optimal weight and thereby
a reduced number of candidate designs. However, a sep-
arate optimization of all these potential topologies and
selection of the best design by weight comparison is still
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Fig. 1 (a) Three-bar truss with three alternative loads and
member-dependent permissible stresses; (b) three-bar solu-
tion by Schmit (1960); (c) improved two-bar solution by Sved
and Ginos (1968)

prohibitively expensive for large ground structures used
in practice.

2.3
Pioneering contributions by Hajela (1982)

These findings are of considerable historic and concep-
tual importance and came to the author’s attention only
recently1. Hajela reached the following correct conclu-
sions in his doctoral thesis.

– In iterative procedures (nonlinear programming) for
redundant trusses with side constraints and/or mul-
tiple loading, the design “moves away from a fully
stressed configuration” and converges to an “incorrect
optimum”.

– The cause of this is “constraint stiffening”: “as some
sectonal areas approach zero”, “the ratio |Fi|/σal
increases2, repelling the design away from the config-
uration where a member is to be dropped from the
assembly”.

– Example of the feasible region for such problems is
also given in the thesis (Fig. 2), implying a full expla-
nation of singular topologies and the computational
difficulties caused by them.

1 Prabhat Hajela sent only a copy of a few pages of his Ph.D.
Thesis to the author and the above review had to be inferred
from these excerpts
2 Fi is the force in member i and σal is the allowable stress
in Hajela’s thesis

– The following modified constraint is proposed, result-
ing in “constraint softening”:

g′i =

(
|σi|

σal
−1

)
Ai

Aref
≤ 0 , (1)

where σi is the stress in the member i, σal is the allow-
able stress, Ai is the cross-sectional area of member i
and Aref is “5 to 10 times the starting design value”.

Fig. 2 Illustration in Hajela’s (1982) thesis showing the cor-
rect type of feasible region for singular topologies. The ori-
ginal subtitle of the diagram “Optimum located in ditch.
Problems arise in direct search procedures”

The modified constraint in (1) is satisfied as an equal-
ity if either |σi| = σal or Ai = 0. It therefore admits both
the main body of the (shaded) feasible region and the
(shaded) line segment alongD1 = 0 in Fig. 2. However, it
does not make the latter part (“ditch” or “spoke”) wider
and therefore it is different from the smooth envelope
methods discussed in Sects. 2.10 and 2.11. However, it is
possible that some of the approximations and “cumula-
tive constraints” used by Hajela had a similar end effect
as smooth envelope functions.
Hajela’s pioneering contributions remained largely

unnoticed until this year, as can be seen from the next two
subsections.

2.4
Introduction of the term “singular topology” and its
justification (Kirsch 1990)

The term “singular topology” was introduced by Kirsch
(1990) who also made other important contributions to
this topic. Kirsch

• illustrated this phenomenon lucidly with a two-para-
meter example (Fig. 3a, note variable linking for A2),
which became a popular benchmark problem later;

• pointed out that the “optimal topology might corres-
pond to a singular point in the design space” (without
an exact definition of “singular”);
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• demonstrated that a “statically determinate” approxi-
mation (in which compatibility conditions are ignored,
as in “plastic design”) may generate the correct opti-
mal topology even in the case of singularity.

Fig. 3 Kirsch’s (1990) example of singular optimal topology.
(a) Problem statement; (b) design space

2.5
Limitations of the “statically determinate”
approximation for deriving singular topologies
(Rozvany and Birker 1994)

The limitations of the method based on ignoring elas-
tic compatibility were pointed out in the above paper.
The “statically determinate” approximation (or “plas-
tic design”) indeed does generate the correct topology
if the resulting layout is statically determinate but can
yield an entirely nonoptimal solution if this is not the
case.
Based on detailed proofs of global optimality by

Rozvany and Birker (1994), the optimal plastic design
for two alternative loads is shown in Fig. 4a, in which
elastic compatibility is not enforced. The best elas-
tic design with the same topology is shown in Fig. 4b
and the true elastic optimal design (with two bars)
in Fig. 4c.
It will be seen that that the optimal “plastic ” design

in Fig. 4a is entirely different from the true optimal elas-
tic design in Fig. 4c and the best elastic design based on
the topology derived by ignoring elastic compatibility is
uneconomical (Fig. 4b).

Fig. 4 “Statically determinate” approximation. (a) Problem
statement and optimal “plastic” design (neglecting compati-
bility); (b) elastic design based on optimal “plastic” topology;
(c) true optimal elastic design (after Rozvany and Birker
1994)

2.6
“Connectedness” of the feasible set and general
properties for singular topologies (Cheng and Jiang
1992; Rozvany and Birker 1994)

It was pointed out by Cheng and Jiang (1992) that for sin-
gular topologies the optimal solution is connected to the
main body of the feasible set by an infinitesimally narrow
strip of the design space. Since the above authors (and
others in the field) were clearly unaware of Hajela’s (1982)
prior contributions, this (re)discovery represented consid-
erable progress in dealing with computational problems
caused by singular topologies.
The basic features of singular topologies can be seen

in Fig. 3b which shows the design space for the problem
in Fig. 3a. The optimal solution is at point F and the main
body of the feasible set is BCDE (shaded area). However,
the line segment FD is also contained in the feasible set,
because the stress constraint for σ1 ≤ 20 is not valid any
more if A1 = 0.
In general, in the case of singular topologies the feas-

ible set in n-dimensional design space consists of

• a “solid” n-dimensional region (“main body” of the
feasible set),

• some connected k-dimensional hyperplane segments
with (k < n), (“spokes”),
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• with the optimal solution located in one of these in-
finitesimally narrow “spokes”.

A similar description of singular topologies was given
by Rozvany and Birker (1994).

2.7
Computational difficulties caused by singular
topologies

The main difficulty in iterative computational proced-
ures is caused by the narrowness of the “spokes” of the
feasible set. In Fig. 3b, for example, the iterative proced-
ure would first have to find point D (which represents
a 50% higher weight than point C) and then one would
have to move exactly in the direction of the line segment
DF. In partially randomized search processes this is prac-
tically impossible without modifications of the solution
strategy.

2.8
Insights arising from the exact layout theory
(Rozvany and Birker 1994)

The so-called “exact layout theory” is a generalization of
Michell’s (1904) truss theory by Rozvany and Prager (e.g.
1977), for a detailed review see Rozvany, Bendsøe and
Kirsch (1995). It uses analytical methods and an infinite
number of members in the ground structure. Important
features of this theory are as follows (e.g. Prager and
Rozvany 1977).

• For each optimization problem, there exists an “ad-
joint” strain field, which is defined for all points of the
structural domain (even along vanishing, i.e. nonopti-
mal members of zero cross-sectional area).

• Optimality criteria must also be satisfied, in the form
of inequalities, for vanishing members (i.e. along any
line segment within the structural domain).

• Multiplying the “real” strain for a vanishing member
by Young’s modulusE, we obtain the equivalent of the
“limiting stress”, introduced later by Cheng and Jiang
(1992).

In the above paper, Rozvany and Birker (1994)

• derived singular topologies for exact truss layout prob-
lems (ground structures with an infinite number of
elements);

• explored deeper reasons for singularity (see Sect. 3);
• outlined classes of problems which can never have sin-
gular optima.

It is a pity that very few readers familiarize them-
selves with the basic concepts of optimal layout theory
which would be necessary (and well worth it) for gaining
a deeper insight into singular topologies.

2.9
Modified constraints for the admission of “spokes” of
the feasible set (Cheng 1995)

In the above paper, the following modified constraint was
suggested (in our notation):

(σi−σal)Ai ≤ 0 , (2)

in which σal is the allowable stress. It will be seen that (2)
is an unscaled version of (1), which admits but does not
widen the “spokes” of the feasible set. Again, since Haje-
la’s pioneering contributions were not generally known at
the time, Cheng’s proposal was a major step in the right
direction.

2.10
Introduction of smooth envelope functions (SEF’s)
for stress constraints

The causes of singular topologies and their avoidance
is explained in Fig. 5 which, as explained subsequently,
orginates from 1994. Singularity is due to the fact that,
once a cross-sectional area becomes zero, the permis-
sible stress σal in the corresponding stress constraints
jumps suddenly from a finite value (the permissible stress
σal0 for tensile members) to infinity. The above prob-
lem is even more severe for compression members with
local buckling, because in that case the permissible stress
jumps from a near-zero value (very slender member) to
infinity (vanishing member). The relation between the
permissible stress σal and cross-sectional areaAi or mem-
ber force Fi is shown graphically for tension and compres-
sion members in Figs. 5a and b. A method for making
the feasible set nonsingular involves the use of smooth
envelope functions (broken lines in Fig. 5) to replace the
discontinuous functions σal(Ai).
This proposal, together with Fig. 5, was first put for-

ward in an extended abstract submitted to an AIAA/
NASA/USAF/ISSMO meeting (Rozvany and Kirsch
1994). The author was a cochairman of that meeting and
due to restriction to one presentation by an author the full
paper was not presented. However, the same technique
was proposed in the author’s contribution to a feature
article (Rozvany, Bendsøe and Kirsch 1995, February,
submitted in 1994, p. 72):

“This difficulty” (i.e. singularity) “could be solved
by using smooth envelope functions (SEF’s) for
rounding the above mentioned discontinuity (e.g.
Rozvany and Sobieszczanski-Sobieski 1992)” . . .
“increasing the permissible stress as the cross-
section becomes very small”.

The above quotation makes it clear that the author
proposed a KS function type envelope, which was dis-
cussed in detail for optimality criteria type methods by
Rozvany and Sobieszczanski-Sobieski (1992).
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Fig. 5 The relation between allowable stress (σal) and cross-
sectional (Ai) or member force (Fi) in topology optimiza-
tion (continuous line) and the corresponding smooth envelope
functions (broken line). (a) Tension bars; (b) comparison bars
(after Rozvany and Kirsch 1994; Rozvany 1996a)

KS functions were used extensively by the author’s re-
search group for stress and local buckling constraints (e.g.
Birker 1996).
The proposed smooth envelope function method

and Fig. 4 were repeated in a paper by the author (Roz-
vany 1996a), in which an exponential envelope function
(similar to KS functions) of the form

σal = σal0 exp(A0/Ai) , (3)

was suggested, where A0 is a small prescribed value.
The effect of using smooth envelope functions for

Kirsch’s (1990) problem (see Fig. 3 herein) can be seen
in Fig. 6, in which the feasible set is clearly nonsingular
due to widening of its “spoke” that contains the optimal
solution.
In all SEF methods, one starts off with a highly

smooth envelope function, and later a shape parameter
is changed progressiely to make the corners sharper and
sharper. This is necessary

• to try to avoid the wrong local minimum (by using ini-
tially highly smooth envelope function), and

• to avoid inaccuracies of the approximation (by using
sharp corners at the end, with small deviation from the
true constraints).

In the methods discussed here and in Sect. 2.11,
this procedure (called also “continuation method”) is
achieved by increasing the parameter � progressively in
KS functions, or decreasing the A0-value in (3) or the
ε-value in (4).

Fig. 6 The effect of smooth envelope functions on the feas-
ible set in Kirsch’s (1990) example (after Rozvany 1997, pre-
sented in June 1996)

2.11
The “ε-relaxation” method (Cheng and Guo 1997)
as a special case of smooth envelope functions
(SEF’s)

Cheng and Guo (1997) introduced the so-called “ε-relax-
ation” method, in which the stress constraint in (2) is
changed to (in our notation)

(σi−σal0)Ai− ε≤ 0 . (4)

Clearly, (4) implies the reciprocal relation for the vary-
ing allowable stress value

σal(Ai) = σal0+ ε/Ai , (5)

which is one possible “envelope function” introduced
in Fig. 5.
Using σal0 = 1, A0 = 0.4 in (3) and σal0 = 1, ε = 0.5

in (5) we obtain the smooth envelope functions shown
in Fig. 7. It can be seen that these two curves are al-
most indentical (and could be brought even closer). It
can be concluded that the “ε-relaxation” method repre-
sents one of many possible smooth envelope functions,
which are very similar. However, Cheng’s milestone con-
tributions to the field of singular topologies are of out-
standing importance, because he not only developed in-
dependently a smooth envelope function method (the ε-
relaxation technique) but also studied this method inten-
sively on test examples and introduced additional refine-
ments, such as the “extrapolation approach” (e.g. Guo
and Cheng 2000).
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Fig. 7 Comparison of exponential and reciprocal smooth en-
velope functions for avoiding singularities

2.12
Limitations of smooth envelope function
(= ε-relaxation) methods

It has been shown by Svanberg and Stolpe [2000, see
also Stolpe and Svanberg (2001)] that a smooth enve-
lope function (SEF) method may not converge to the
correct global optimal solution. Some deeper reasons for
the occasional failure of envelope methods and possible
new ways of handling singular topologies are discussed
in Sect. 3.

3
Deeper reasons for the difficulties caused by singular
topologies – simply explained

3.1
Advantages of exact analytical methods and
solutions in explaining and removing computational
difficulties

Exact analytical methods and solutions are useful owing
to the following features.

• They provide a proof of global optimality of a topology
– out of all possible configurations. This can be used
for checking the validity and convergence of numerical
methods.

• They are based on ground structures consisting of an
infinite number of potential members – finite ground
structures often modify and thereby obscure the true
nature of the exact optimal solution.

• Discretized methods often generate a nonoptimal
solution due to various computational pitfalls and
difficulties.

The primary aim of this research field, however, is the
development of reliable and robust numerical methods.

Since few readers are familiar with the rather intricate
concepts of optimal layout theory, we will try to explain
the fundamental causes of singularity through a simple
example.

3.2
A useful benchmark example of an exact optimal
topology (Rozvany and Birker 1994)

The example discussed in this subsection can be used for

• understanding the fundamental reasons for singularity
and

• checking on various methods for locating singular
topologies.

Most other benchmark examples in this field have
some artificial features, such as member-dependent per-
missible stresses (e.g. Sved and Ginos 1968) or cost
functions not proportional to the given member lengths
(Kirsch 1990). In the problem in Fig. 8a, we have a ver-
tical support, a single vertical point load and the stress
constraint

−1/3< σi < 1 . (6)

The truss topology is to be optimized for minimum
weight.
This problem is more natural in the sense that the al-

lowable stresses are not member-dependent and the cost
(weight) is proportional to the member lengths. More-
over, the smaller allowable stress value in compression
represents some allowance for local buckling.
It was shown analytically on the basis of optimal lay-

out theory (Rozvany and Birker 1994) that the optimal
topology for this problem consists of two bars at 30◦ and
60◦ to the vertical (Fig. 8a). This global optimal solution
has the member areas and total weight:

A1 =
√
3/2 = 0.8660 ,

A3 = 1.5 , W = 2
√
3 = 3.4641 . (7)

Moreover, it was proved by Rozvany and Birker (1994)
that any member radiating from the point load within
the shaded cone in Fig. 8a would have a greater strain
than 1 [the upper limit in (6)]. This means that for any
ground structure containing such member(s) the optimal
topology must be singular.
A simple example of such singular problem has one

additional member (2) at 30◦ to the horizontal (Fig. 8b).
It can be easily checked that in the optimal topology
with A2→ 0, the strain in member 2 is ε= 4/3 = 1.3333,
which corresponds to a greater stress than the allowable
one in (6). This means that any stress ratio type (zero-
order) method would produce large increases in the size
of member 2 if it had a small size in the previous iter-
ation. This explains Hajela’s (1982) observation about
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Fig. 8 A benchmark example for singular topologies. (a)
Problem statement and exact optimal topology with shaded
area showing potential singular members; (b) three-member
ground structure with real strains ε; (c) adjoint strains ε

“constraint stiffening” or “repelling the design away from
the configuration where a member is to be dropped from
the assembly”.
The solution in Fig. 8a was first derived by Rozvany

and Gollub (1990). It was also used as an illustration of
an error in Michell’s theory (Rozvany 1996b). The same
solution was also confirmed by Duysinx (1999), who used
a perforated plate formulation.

3.3
Reasons for singularity on the basis of optimal layout
theory

Simply stated, optimal layout theory (e.g. Rozvany 1989;
Rozvany, Bendsøe and Kirsch 1995) uses optimality crite-
ria in which some “layout function”

• must take on given limiting values along optimal mem-
bers, and

• must not exceed the above values for vanishing mem-
bers.

For the elementary stress-based problem in Fig. 8, the
layout function is the “adjoint” strain ε and the limiting
values are (corresponding to 1/σal)

in tension: ε≤ 1.0 , in compression: ε≥−3.0 . (8)

The adjoint strain field, which must be “kinematically
admissible”3, is shown in Fig. 8c. It can be seen that ad-

3 satisfying kinematic boundary and continuity conditions

joint strains in the optimal members (1 and 3) take on the
above limiting values and the adjoint strain in the van-
ishing member 2 can be easily calculated as ε= 0. This
means that the above (sufficient) condition for layout op-
timality is satisfied.
We can draw two important observations from the

above example.
First, if our redesign formula is based on real stresses/

strains (as in the stress ratio method), then we are “bark-
ing up the wrong tree” because in this problem the ad-
joint strain values determine which members are optimal.
An improved numerical technique could utilize the latter
quantities in locating the optimal topology.
Second, in optimal layout theory and optimality cri-

teria methods adjoint strains are defined also for van-
ishing members and must be smaller than or equal to
their limiting values. It follows, for example, that for
so-called self-adjoint problems we never have singular
topologies in the optimal solution (Rozvany and Birker
1994). Moreover, limits on the the adjoint strains are not
affected by the fact that a member vanishes from our
design(!).

4
Other computational difficulties in topology
optimization

It was pointed out by Zhou (1996) that so-called “com-
pressive chains” cause severe computational difficulties in
truss topology optimization for stress and local buckling
constraints. Similar problems occur if global buckling con-
straints are added to the formulation (Rozvany 1996b).
It was suggested by Rozvany and Zhou (1996, p. 1126)
already five years ago that ground structures with over-
lapping members could be used for overcoming such dif-
ficulties. (“Optimal hinge cancellations could . . . also be
achieved by an iterative procedure with overlapping short
and long bars along the same line in the ground struc-
ture”.) However, numerical experiments have shown that
such an iterative procedure tends to move away from the
correct solution.
The suggestion of overlapping bars in ground struc-

tures (Rozvany and Zhou 1996) was followed up by some
outstanding research in this area (e.g. Achtziger 2000;
Cheng et al. 2000).

5
Concluding remarks

The history and fundamental features of conditional con-
straints and singular topologies were reviewed.
The causes of singular topologies can be explained at

two levels.

• One can observe that singularities are caused by a dis-
continuity in the allowable stress σal/member area Ai
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relation. The singularity can be removed by employ-
ing smooth envelope functions (e.g. KS functions, ex-
ponential functions or ε-relaxation = reciprocal func-
tions) which may not always help in finding the global
optimum.

• The above discontinuity in the allowable stress func-
tion does not necessarily cause a singularity. For
delimiting classes of problems with singularity, one
must examine deeper reasons for singular topologies,
namely the correct layout optimality criteria and the
possible differences between the actual strains and
the so-called “adjoint” strains in the members of the
structure.

In view of the detailed historical study in this text, the
author would like to appeal to researchers of the field to
acknowledge prior contributions in their publications.
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