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A heuristic smoothing procedure for avoiding local optima in
optimization of structures subject to unilateral constraints

D. Hilding

Abstract Structural optimization problems are often
solved by gradient-based optimization algorithms, e.g. se-
quential quadratic programming or the method of moving
asymptotes. If the structure is subject to unilateral con-
straints, then the gradient may be nonexistent for some
designs. It follows that difficulties may arise when such
structures are to be optimized using gradient-based opti-
mization algorithms. Unilateral constraints arise, for in-
stance, if the structure may come in frictionless contact
with an obstacle. This paper presents a heuristic smooth-
ing procedure (HSP) that lessens the risk that gradient-
based optimization algorithms get stuck in (nonglobal)
local optima of structural optimization problems includ-
ing unilateral constraints. In the HSP, a sequence of opti-
mization problems must be solved. All these optimization
problems have well-defined gradients and are therefore
well-suited for gradient-based optimization algorithms.
It is proven that the solutions of this sequence of opti-
mization problems converge to the solution of the original
structural optimization problem.

The HSP is illustrated in a few numerical examples.
The computational results show that the HSP can be an
effective method for avoiding local optima.

Key words unilateral constraints, smoothing proced-
ure, gradient-based algorithms, finite elements, method
of moving asymptotes (MMA), trusses

1
Introduction and preliminaries

This paper deals with the problem of optimizing struc-
tures subject to unilateral constraints. The assumptions
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made include linear elastic discrete and finite element
approximated structures under a small displacement as-
sumption. The type of unilateral constraints allowed in-
clude constraints that arise from frictionless contact sup-
ports and members such as elastic ropes, which can sup-
port load in tension only. Examples of such structural
optimization problems may be found in the paper by
Hilding, Klarbring and Petersson (1999) (review of op-
timization of structures in contact) and in the book by
Haslinger and Neittaanméki (1988) (shape optimization).

The following structural optimization problem is con-
sidered:

(P) min c(u(s),p(s),9),

subject tos € S, (1)

where c is the cost function, s € IR™s is the design vari-
able, u € IR™4 is the displacement of the structure, and
p € IR™ is the force due to the unilateral constraints,
e.g. the contact force in case of frictionless contact. The
design space S is the set of allowed designs and s € S
expresses the design constraints, e.g. a limit on the max-
imum weight of the structure or simple upper and lower
limits on the components of the design variable.

Under the assumptions of Theorem 1 in Sect. 3.2, the
state variables of the structure are continuous (but not
in general differentiable) functions of the design. It is as-
sumed that the state problem determining the state vari-
ables u(s) and p(s) has the following form?:

K(s)u(s) + C(s)"p(s) = (s), (2)
(8(s) —C(s)u(s)); 20, (3)
pi(s) 20, (4)
pi(s)(g(s) = C(s)u(s))i =0, i=1...nc, (5)

In a mechanical setting (2)—(5) may be given the follow-
ing interpretation: (2) is force equilibrium combined with
a linear constitutive law, where K(s) is the stiffness ma-

1 Notation: vectors are one column matrices and (w); is the
i-th component of the vector w
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trix and f(s) is the load vector. The inequalities (3) are
the unilateral constraints, (4) ensures that the forces from
the unilateral constraints do not change direction, and (5)
ensures that a force is zero if its associated unilateral con-
straint is not fulfilled as an equality. A detailed derivation
of the state problem (2)—(5) for an elastic structure in fric-
tionless contact can be found in e.g. the paper by Hilding,
Klarbring and Petersson (1999).

Structural optimization problems are often solved
using gradient-based optimization algorithms. Two such
algorithms are sequential quadratic programming (SQP)
(Bazaraa et al. 1993) and the method of moving asymp-
totes (MMA) (Svanberg 1987). Applying a gradient-
based algorithm to (P) has a conceptual problem: due to
the unilateral constraints, u and p are in general not dif-
ferentiable functions of the design variable. Thus, the gra-
dient may not exist at some points in the design space S.
With the motivation that the nondifferentiable points
of (P) often are very scarce, one may use a gradient-
based algorithm anyway. This has indeed been found to
be a valid approach, see Klarbring and Rénnqvist (1995).
However, Hilding, Klarbring and Pang (1999) found that
in such an approach the optimization algorithm tended to
get stuck in (nonglobal) local optima of (P). A possible ex-
planation of why there may be many local optima in (P)
is offered in Sect. 2.

The objective of the present paper is to present
a heuristic, designed to lessen the risk that gradient-based
algorithms get stuck in (nonglobal) local optima of (P).
The procedure will be denoted the heuristic smoothing
procedure (HSP). The HSP is a quite simple technique
and may be used to increase the performance of any
gradient-based algorithm, when applied to structural op-
timization problems with unilateral constraints, i.e. (P).

The HSP is similar to the penalty interior point algo-
rithm (PIPA), Hilding, Klarbring and Pang (1999), which
seems good at avoiding local optima of some structural
optimization problems with unilateral constraints. The
idea of the HSP stems from the experience the author had
with PIPA. The HSP is also most similar to a procedure
described by Facchinei et al. (1999). Compared to the lat-
ter work the novelty in the present paper lies mainly in
the application to structural optimization and the pur-
pose (in the cited work the purpose is not to avoid local
optima).

2
Local optima of (P)

In this section it is argued that the introduction of uni-
lateral constraints in the state problem may introduce
additional nonglobal local optima in (P). The small ex-
ample below serves as an illustration.

Consider the following simple model 1D problem
(ns =n. =ngq =1) of minimizing the tip displacement of
a bar, see the upper part of Fig. 1. The cost function is

¢(u, p,s) = u. For simplicity, let f=1,g=0,C =0, se-
lect the cross-sectional area of the bar as design variable,
i.e. K(s) =s, and set the design space S = {all s such that
0.5 <'s < 2}. The graph of the cost function is displayed in
Fig. 2 and shows that the solution to the problem is s* =2
and that there are no nonglobal local optima.
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Fig. 1 Example problem structure shown both with and
without the unilateral constraint, which models a rigid ob-
stacle

Now introduce a unilateral constraint, modeling a rigid
obstacle with which the bar may come into frictionless
contact, by setting g =1 and C = 1, see the lower part of
Fig. 1. Again, the graph of the cost function is displayed
in Fig. 2 and shows that the solution to the problem is still
s* = 2, but that there are now many local optima. Thus,
in this case, introducing unilateral constraints introduces
additional nonglobal local optima.

2
15
N

SH
O}
2

Q

o
o

Fig. 2 Example problem cost function for all s € S: lower
curve is with and the upper curve is without unilateral con-
straint

The above local optima appeared together with jumps
in the gradients of u and p. These jumps may occur when
s is changed in such a way that a unilateral constraint
changes from being fulfilled as an equality to being ful-
filled as a strict inequality or vice versa. As the jumps
and local optima appeared together, it does not seem far-
fetched to assume that these jumps are partly responsible
for the local optima. If this is the case then a multitude of
local optima might be introduced even for moderate n,



because the amount of possible jumps may grow exponen-
tially in n.. There is evidence, see Hilding, Klarbring and
Pang (1999), that this introduction of nonglobal local op-
tima may occur for realistic instances of (P).

3

The heuristic smoothing procedure

In the previous section it was suggested that the jumps in
the gradients of the state variables u and p, which are due
to the unilateral constraints, are responsible for some of
the nonglobal local optima in (P). A gradient-based op-
timization algorithm may get stuck in these local optima,
see Hilding, Klarbring and Pang (1999).

The HSP is a heuristic that helps a gradient-based
method to avoid nonglobal local optima in (P). In the
HSP a sequence of optimization problems are solved for
decreasing values of a smoothing parameter u > 0,

(Pu) msin c(uy(s) ,Pu(s)v s),
subject tos € S'. (6)

Problem (P,) differs from (P) in that u and p have
been replaced with approximations u,, and p,,, where the
gradient jumps have been smeared out or smoothed. As
the jumps of the gradients have been smoothed in (P,),
it does not seem unlikely (in the light of the argument
in Sect. 2) that (P,) has fewer nonglobal local optima
than (P). If this is the case, then a gradient algorithm is
less likely to get stuck in nonglobal local optima in (P,)
than in (P). Gradient algorithms are well-suited for solv-
ing (P,), because the gradient is always well-defined; see
Theorem 1. This is in contrast to (P), where the gradient
may not exist for some designs.

The smoothing parameter p indicates the level of
smoothing, it is assumed that y = 0 means no smoothing
and larger values of p means more smoothing. It follows
that if o = 0 then (P,) is identical to (P). Selecting large
1 has the advantage that the gradients are smeared a lot,
but the disadvantage that (P,) may be a too poor ap-
proximation of (P) to render useful solutions. To avoid
this problem the following procedure is proposed, which
will be referred to as the heuristic smoothing procedure
(HSP).

The heuristic smoothing procedure (HSP)

Step 0 (initialization). Select an initial design s® € S,
a decreasing sequence of smoothing parameters {uy},
i >0, and set k =0.

Step 1 (main step). Apply a gradient optimization al-
gorithm to (P,, ) starting at s®. This results in a new
iterate s**1.

Step 2 (repetition). Set k = k+ 1, and go to Step 1.
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In the numerical examples the following simple se-
quence was used: {yy} = {10, 1x1073}. In the test prob-
lems, it was found that if p <1x 103 then the difference
between (P) and (P,) was negligible.

3.1
Creating u, and p,,

The idea is to replace the state problem (2)—(5) with the
following smoothed approximation:

K(s)u,(s) +C(s) ' p,(s) = £(s), (7)
Pu((Py(s))i, (8(s) = C(s)un(s))i) =0,

i=1,...,n¢, (8)

where p is the smoothing parameter and the smoothing
function is

du(a,b) = (a+b) — /a0 + 412 (9)
The function ¢, has the property that
bu(a,b)=0&a>0,b>0,ab=p? (10)

which implies that if 4 = 0 then u, =u and p, = p.

The above smoothing function is the same as that of
Facchinei et al. (1999). For other smoothing functions
see e.g. Chen and Mangasarian (1995) and Leung et al.
(1998).

The above approach is not to be confused with the so-
called penalty method, which is sometimes used in the
solution of contact problems.

3.2
Some important properties of (P,)

The question of what is the relation between (P) and
(P,), is to some extent answered in the following theorem.

Theorem 1

Suppose that

(i) the set S is nonempty, bounded, and closed,

(ii) the rows of C(s) are linearly independent for all
se s,

(iii) K(s) is positive definite for all s € S,

(iv) K,f,C, and g are 7 times continuously differen-
tiable, where i > 1, on IR"™s,

(v) cis continuous on IR"d x IR™ x S,

then it holds that

(a) the state problem (2)—(5) has a unique solution u(s),
p(s) foralls € S,

(b) the smoothed state problem (7)—(8) has a unique so-
lution uy,(s), p,(s) for all yand alls € S,



32

(¢) p, — pand u, — uuniformly on S as u — 0,

(d) if p > 0 then u, and p,, are i times continuously dif-
ferentiable on some open set containing .S,

(e) uand p are continuous on S,

(f) both (P,), for all p > 0, and (P) have a least one so-
lution,

(g) let S}; be the solution set of (P,) and S* be the solu-
tion set of (P), then

fim mae i, |8° 5510 = 0. y

Proof: See the Appendix. a

Part (g) of the theorem essentially assures that if u
is small, then a solution of (P,) is close to a solution of
(P). [If p =0 then (P,) is identical to (P), and thus has
the same solutions as (P).] This justifies calling (P,) an
approximation of (P). Note that, if the assumptions hold
and the cost function is differentiable, then (P,) is a con-
strained differentiable optimization problem, for which
there are many standard gradient-based algorithms, cf.
Bazaraa et al. (1993).

3.3
Example problem

To see the effect of the HSP, consider again the small
example problem in Sect. 2. The following sequence of
smoothing parameters is used: {p } = {0.3,0.2,0.1,0.05}.
The graph of the cost function of (P,, ) for k=1,... ,4
and (for comparison) that of (P) can be found in Fig. 3.
It is clearly seen that the gradient jump at s =1 in (P) is
smeared out in (P, ).

From Fig. 3 one may conclude that, as opposed to (P),
(Py,.) has no nonglobal local optima. Thus, any gradient-
based optimization algorithm is most likely to find the
global optima s* = 2 of (Py,), k=1,...,4. The final iter-
ate of the HSP will therefore be s* = 2, which is the global
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Fig. 3 Example problem (case with unilateral constraint).
Curves from below upwards: cost function of (P, ) for k =
1,...,4, followed by that of (P)

optimum of (P). Using the HSP on this simple problem
will therefore lead to that most gradient algorithms will
find the global optimum of (P).

If the HSP is not used and the starting point of the
gradient algorithm is 0.5 <'§ < 1, then the gradient algo-
rithm will get stuck immediately in the nonglobal local
optima s. Thus, for this problem, it is beneficial to use the
HSP.

4
Solving the state problem

To calculate u,(s) and p,(s), (7)-(8) must be solved.
The differentiable (1 > 0) nonlinear system (7)—(8) can
be solved using any Newton algorithm, in the numerical
examples the algorithm of Pang (1990) was used. It was
found that this algorithm worked excellently also when
w=0.

In Newton’s method a system of linear equations must
be solved to find the next iterate. Assuming that the state
problem has a unique solution, smoothing has the bene-
fit that the linear system cannot be singular, which may
happen if smoothing is not used. There is also evidence
that combining smoothing and Netwon’s method may be
a very effective method for solving contact problems, see
Leung et al. (1998). The numerical experiments reported
in Sect. 6 do not contradict this; a very accurate solution
was on the average achieved within less than 6 iterations.
The fast average convergence is partly due to that when
solving the structural optimization problem a large num-
ber of contact problems with quite small differences in
design must be solved. Hence it is possible to get a good
starting iterate for the Newton solver, which implies fast
convergence.

5
Sensitivity analysis

In the main step in the HSP, (P,) is to be solved by a se-
lected gradient-based optimization algorithm. To do this,
besides u,(s) and p,(s), also their derivatives with re-
spect to s must be obtained. The latter is the objective of
the sensitity analysis.

Assuming that (i)—(v) of Theorem 1 holds and that
p > 0, the derivatives of u, and p, can be obtained by
implicitly differentiating (7)—(8) with respect to the de-
sign variable s. This yields the following system of lin-
ear equations for the derivatives du, /dsj and Op 1/ 08k,
k=1,...,n [for convenience the dependence of K, C, f,
g, u,, and p, on s is not written out|:

K

du, _70p, O9f OK ac\"
Gsk +C Gsk a Gsk asku“ 6sk p'u,

0
Di{¢u}((p,)is (8 — Cuy)i) <8%:> +



d
D2{¢u} ()i (8 —Cuy)s) [d_i_
dC 9
row; (E>u“ - rowl(C)%:] 0,
i=1,...,n, (12)

where D;{¢,} is the derivative of ¢, with respect to its
j-th argument,

Di{d.}a,b) =1~ (a—b)//(a— D2 + 4422,
Da{¢.}(a,b) = 1+ (a—b)/y/(a— b2+ 4u2.

In the case that p =0, the above equations for the
derivative are valid as long as not both p; =0 and (g —
Cu); =0foranyi=1,... ,n..

6

Numerical evaluation

To evaluate the efficiency with which the HSP helps
a gradient-based optimization algorithm to avoid non-
global local optima, the following test was carried out.
Starting with an initial design s® the gradient optimiza-
tion algorithm was applied both with and without the
HSP to a structural optimization problem.

Two different gradient algorithms were used in the
tests of the HSP: (i) the implicit programming algorithm
(alternative variant) (IMPAA), see Hilding, Klarbring
and Pang (1999), and (ii) the method of moving asymp-
totes (MMA), see Svanberg (1987). The IMPAA is essen-
tially an SQP algorithm with line-search. Its main feature
is that it is designed to solve also nondifferentiable prob-
lems such as (P). The MMA is a sequential programming
algorithm for differentiable nonlinear programs. The lat-
ter algorithm is known to work well for a large variety of
structural optimization problems.

The structural optimization problem in the test is to
minimize the maximum force from the unilateral con-
straints. The structure is a truss and the cross-section
areas of the bars are taken as design variables. Design
constraints in the form of a maximum volume constraint
and upper and lower limits on the cross-section areas are
used. The problem can be written as follows:

min max  p;(s),

s i€[1,... ,snc]

subject to s\ <s; <s{PP i=1,... n,,

Z 8ili < Vinax ) (13)
=1
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where /; is the length of member ¢, s'°% and s"PP are lower,
respectively upper bounds on the cross-sectional areas,
and Vi,.x is the maximum allowed total volume of the
bars .

The cost function in (13) is continuous, but not differ-
entiable. This poses no problem for IMPAA, but MMA
may have difficulties with nondifferentiable cost func-
tions. Therefore, MMA is instead used together with the
following alternate form of (13), which has a differentiable
cost function:

min r,

S

subject to si‘)Wgsigs;‘Pp, i=1,...,sn,

Ng

Zsi&gvmax, pi(s)<r, i=1,...,sn.. (14)

=1

Test results are reported for two different trusses:
(i) a truss resting on a frictionless support; p is in this case
the contact force; and (ii) a truss supported by nonexten-
sible ropes; p is in this case the force in the ropes. For
truss 1, the test was performed for several different sizes
of the truss.

Illustrations of the trusses can be found in Figs. 4
and 5. In the figures solid lines represent bars, dotted
lines ropes, and the letter F' a force with magnitude
1 MN. All bars have a Young’s modulus of 200 GPa.
For both trusses, the following design limits where used:
5% =0.001m? and s{P? =0.1m?2,i =0, ... , n,. For both
trusses the initial design was set to s¥ = 0.02m?, i =
0,...,ns, and Viyax was set to 1.5 times the volume of

g1 g2 93 94 G5

Fig. 4 Truss 1, a truss in contact with a number of rigid ob-
stacles (5 X 5 nodes case shown)

Fig. 5 Truss 2, a truss supported by a number of nonelastic
ropes
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the initial design (%, s?¢;). The gap between the stair
shaped obstacle and structure in truss 1 is given by g; =
d(i—1)2, where d = 0.001 m. The initial slack of the ropes
in truss 2 is given by g; = 0.005 m.

A stopping criteria is needed for MMA and IMPAA
in Step 1 of the HSP. The iterations in MMA /IMPAA in
Step 1 of the HSP where stopped when the decrease in
the cost function was less than 1x10~8 MN between iter-
ations or when the number of iterations exceeded 30.

Truss 2 fulfills all the prerequisites of Theorem 1.
Truss 1 can make rigid body motions and therefore K(s)
is not positive definite, thus the proof of Theorem 1 does
not hold for truss 1. Though unproven the approach and
implementation seem to be valid anyway. In fact, it is
likely that the conclusions of Theorem 1 hold as long as
the equilibrium problem has a unique solution (which it
has for truss 1).

6.1
Numerical results

The results of the test can be found in Tables 1 and 2.
The tables show that the HSP had a good effect on both
MMA and IMPAA for this structural optimization prob-
lem; the HSP lead to a better optima for all tested trusses
and gradient algorithms (IMPAA /MMA).

Due to the mechanical situation, for truss 1 the cost
function value at a global optimum is at least 1 MN.
When HSP was used, both MMA and IMPA A succeeded
in finding a global optimum, except in one case (5 x 5)
where MMA got stuck in a local optima. For truss 2, when
the HSP was used, IMPAA gave a slightly better result
than MMA. This was due to slow convergence of MMA. If

Table 1 Cost function after optimization of truss 1

max p; (MN)
1€[1,... ,8nc]
Problem with HSP without HSP
size IMPAA MMA IMPAA MMA
3x3 1.000 1.001 3.000 3.000
4x4 1.000 1.000 2.000 2.000
5%x5 1.000 1.250 2.500 2.500
6 X6 1.213 1.500 3.000 3.000

Table 2 Cost function after optimization of truss 2

max p; (MN)
1€[1,...,sn¢]
with HSP without HSP
IMPAA MMA IMPAA MMA
0.882 0.902 1.130 1.130

more iterations had been allowed then MMA would have
given the same result as IMPAA for truss 2.

When the HSP was not used, both MMA and IMPAA
got stuck in (nonglobal) local minima well within the 30
iterations for all tested problems.

7
Conclusions

For the problems tested the HSP performed well, result-
ing in better optima, for both the IMPAA and MMA
algorithms. This indicates that the choice of optimization
algorithm used together with the HSP is not very import-
ant. The HSP is also easy to implement, as it does not
require any modification to the chosen optimization algo-
rithm. Furthermore, if the cost function is differentiable,
then the HSP requires the solution of a constrained differ-
entiable optimization problem, for which a lot of standard
software exists. A better scheme for updating the smooth-
ing parameter pj; might be beneficial, even though the
HSP performed well with the present very simple scheme.

Finally, neither problem (P) nor the test problems
include behavioural constraints, i.e. constraints involv-
ing the state variables, such as a von Mises stress limit.
Including such constraints poses no formal difficulties,
it is only necessary to add the behavioural constraints
to (P) and (P,). It is also possible to extend Theo-
rem 1 to cover behavioural constraints, even though (P,)
must be slightly modified to accomplish this [it is ne-
cessary to add the behavioural constraints to (P,) in a
“relaxed” way, analogously to Chang (1992), Rozvany
and Sobieszczanski-Sobieski (1992) or Cheng and Guo
(1997)].
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Appendix

The proof of Theorem 1.
Proof:

For convenience the dependence of K, C, f, g, u, p, u,,
and p,, on s is not written out in (a)—(d).

(a) Basic matrix operations yield that (2)—(5) has the
same solution set as

(Mp+q); >0, (15)
pi >0, (Mp+q)ipi =0, (16)

u=K *'(f-Cp), i=1,...,n., (17)
where M = CK ' C7 is positive definite due to (ii)—(iii)
and q = g — CK~!f. Because M is positive definite, it fol-
lows from Theorem 3.1.6 by Cottle et al. (1992) that the
linear complementarity problem (15)—(16) has an unique
solution p. The existence and uniqueness of u follows
from that of p together with (17). q.e.d.
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(b) Basic matrix operations together with (10) yield
that (7)—(8) has the same solution set as

(Mp,,+q); >0, (18)
2

(Pu)i >0, (Mp,+a)i(p,)i=pn", (19)

u, =K '(f-Cp,), i=1,... ,nc, (20)

where M and q are the same as in (a). Because M is
positive definite, the prerequisites of Theorem 5.9.13 of
Cottle et al. (1992) are fulfilled, which yields that the
problem (18)-(19) has an unique solution p,, for all .
The existence and uniqueness of u,, follows from that of
p,, together with (20). q.e.d.

(c) Matrix M in (15)—(16) is positive definite, hence
it is a P-matrix. From Proposition 5.10.5 in Cottle et al.
(1992) applied to (15)—(16) it then follows that

1+ Mo

(M) | min(p,, Mp, + @)oo, (21)

IP—Pulo <

where [Proposition 5.10.10 by Cottle et al. (1992)]
(M) = A(M)/ne. (22)

Here A\(M) is the smallest eigenvalue of M. As p, fulfills
(18)—(19) it holds that

| min(p,., Mp,, + @)oo < p. (23)
Combining (21)—(23) results in:

(1 + "MHOO)nc

O (24)

Ip—Puleo <

Since S is compact and [M|~ and A(M) are continuous
on S, it holds that there exists a constant D, which is in-
dependent of p and s € S, such that

Ip—puloc < Dp. (25)

Relation (25) implies that p,, converges uniformly to p
on S as p — 0. That u, converges uniformly to u follows
from (17) and (20) together with the uniform convergence
of p, top.q.ed.

(d) Due to (ii)—(iii) and (10), (7)—(8) are the neces-
sary and sufficient Karush-Kuhn-Tucker conditions for
the solution of the following optimization problem, cf.
Bazaraa et al. (1993),

1 .
min EuZKuM — T, — 42 Z log((g —Cuy);) (26)

u
" i=1

Further, due to (iv), assumptions (ii) and (iii) must
hold also in the closure of some open set S’ containing S.
Thus, u,, is well-defined on the closure of S’.
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Corollary 3.2.5 of Fiacco (1983) (specialized to the
case of an optimization problem without constraints) ap-
plied to (26) yields that u,, is ¢ times continuously differ-
entiable on S’.

Now define p, on S" from u,, through the following
equation:

CC’p, =C(f-Ku,). (27)

Here CCT is invertible on the closure of ', because C
has full row rank on the closure of S’. By inserting (27)
into (7)—(8) it can be checked that the p,, defined by (27)
indeed is the unique solution of (7)—(8) on (the closure
of) S’. By applying standard implicit function theorems
onto (27), the differentiability of p, on S’ follows from
(iv) and the differentiability of u,,. g.e.d.

(e) From (c) and (d), there are series of continuous
functions u, and p,, that converge uniformly to u and p
respectively. By Theorem 7.12 of (Rudin 1976) it follows
that u and p are continuous on S. q.e.d.

(f) From (d) and (e): u,p,uy, and p, (for all u) are
continuous on S. Thus both (P) and (P,) are the problem
of finding a point for which a continuous function, c, at-
tains its smallest value on a nonempty compact (metric)
set, S. It then follows from Theorem 4.16 (Rudin 1976),
that they have a solution. g.e.d.

(g) For the sake of contradiction; assume that (g) is
not true, then there is an infinite series {sj, } of solutions
to (P, ), where py, # 0 and i — 0, such that the small-
est distance (in the co-norm) to the solution set of (P) is
greater than some € > 0 for all k.

As {szk} is contained in the compact, (i), set S
there is a convergent sub-sequence of {sj, }. This con-
vergent sub-sequence is for simplicity denoted {s* }
and its limiting point s;_. (Let &(s) = c[u(s), p(s),s],
cu(s) = c(uu(s), p,(s),s), and s* be asolution of (P).) As
S}, 18 the limit point of {s}, }, the smallest distance be-
tween sy, and the solution set of (P) is greater than e,
i.e.s’_ isnot asolution of (P). Hence there exist ann > 0
such that ¢(sy,__) > ¢(s*) +.

Due to the uniform convergence, (c), of u, and p ., and
the continuouty of ¢, (v), it holds that
kkrfoo Cu (S
It further holds that s* is feasible to (P,) for all . Con-
sider the series {¢,, (s*)}. Due to (c),

i) = (S ) > e(sT) + 1.

kBToo Cuy, (s™) =¢(s™).

This implies that for large enough k: ¢y, (s}, ) > ¢, (s*),
Le. sj, is not a solution of (P, ), but this is a contra-

diction because it was assumed that szk is a solution of

(Py,)- Thus (g) holds. q.e.d. O



