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Robust shape control of beams with load uncertainties by
optimally placed piezo actuators

S. Adali�, J.C. Bruch, Jr., I.S. Sadek, and J.M. Sloss

Abstract The shape of a laminated beam is controlled
by an optimally placed piezo actuator so as to minimize
its maximum deflection. The locations and magnitudes
of the external loads are not known a priori and belong
to a specified load uncertainty domain. The optimal ac-
tuator location is obtained for any load combinations
and locations which are determined so as to produce the
maximum deflection corresponding to the worst case of
loading. In this sense, loading uncertainties lead to an
anti-optimization problem which is coupled to the opti-
mization problem via the design parameter and loading.
The resulting coupled problems are solved simultaneously
to compute the optimal actuator location and the least
favourable loading condition. Multiple load cases are also
considered. Numerical results are given to assess the ef-
fect of load uncertainty and actuator length on the ac-
tuator location and the design efficiency which is defined
with respect to the corresponding uncontrolled beam.

Key words uncertainty, control, piezoelectric, optimal,
robust

1
Introduction

With the advent of smart structures technology, it is now
possible to control the shape and vibrations of structural
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components using a number of different techniques and
materials. A widely employed technique is to exercise con-
trol using piezoelectric actuators which can be integrated
into the structure to provide an actuation force via con-
verse piezo effect. The focus of the present study is the
shape control of a laminated beam subject to load uncer-
tainties with the control force provided by a piezo patch
actuator the placement of which has to be determined
optimally under all load combinations within a given do-
main.

Load uncertainties occur quite often in practice as
the precise locations and magnitudes of loads acting on
a structure may not be known a priori. In such cases,
the location of the actuator has to be selected on the ba-
sis of the worst-case loading in terms of load locations
and magnitudes. Even though uncertainty in loading
is a fairly common occurance, shape control has been
mostly studied for structures under deterministic loads.
Haftka and Adelman (1985) proposed the use of thermal
actuators which are controlled by heating or cooling. Ko-
conis et al. (1994a,b) studied the shape control of plates
and shells with embedded actuators for given voltage
and desired shape. Experimental and analytical results
were given by Austin et al. (1994) on the shape control
of adaptive wings using internal translational actuators.
Nitinol strips were used for the shape control of compos-
ite beams by Baz et al. (1995). Studies on the deflection
control using piezoelectric actuators include Lin et al.
(1996) for plates, and Drozdov and Kalamkarov (1996);
Donthireddy and Chandrashekhara (1996); Bruch et
al. (1997); Eisenberger and Abramovich (1997), and
Kalamkarov and Drozdov (1997) for beams. Placement of
actuators in adaptive structures was studied for trusses
by Hakim and Fuchs (1996) andWeber et al. (1998) where
further references on this topic are given. Optimal place-
ment of piezoelectric actuators were studied for plates
and shells by Koconis et al. (1994a,b), and for beams
by Main et al. (1994); Drozdov and Kalamkarov (1996);
Bruch et al. (1997), and Kalamkarov and Drozdov (1997).
In the above studies, the loading conditions were taken as
deterministic. Closed loop shape control formulation was
given by Chandrashekhara and Varadarajan (1997) for
composite beams for the case when the external loads are
not known precisely. In this case a static feedback control
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approach was used to determine the voltages of actuators,
the locations of which are fixed along the beam.
Examples of design optimization of structural elem-

ents under uncertain loading conditions were given by
Adali (1993); Adali et al. (1995) and by Lombardi and
Haftka (1998). In these studies the design variables of the
problem were ply angles and thicknesses of the composite
structures.
Minimization of the maximum deflection of compos-

ite beams using an optimally placed piezo actuator is the
subject of the present study. The magnitudes and loca-
tions of the external loads acting on the beam are not
known a priori. As such the applied loads belong to an un-
certainty domain which determines the maximum values
of loads. The uncertain load domains can be specified in
different ways and may be, for example, in the form of
a cube or ellipsoid in the load space or in some other ge-
ometric form. The case of a cubic domain is specified in
the present study. The loads could act at any point on
the beam and in this sense the load locations are also
uncertain. The uncertainty variables (load magnitudes
and locations) are determined so as to produce the max-
imum deflection and this constitutes the anti-optimiza-
tion problem of the robust design procedure.
The optimization problem consists of determining the

location of the piezo actuator optimally under any load
combinations. The optimal value of the design variable
(actuator location) and the anti-optimal values of the
uncertainty variables depend on each other leading to
a nested anti-optimization/optimization problem. The
simultaneous solution of this problem leads to a robust
actuator design producing the min-max deflection beam
under any loadings within the uncertain load domain.
The case of multiple uncertain loads is also studied.
Numerical results are given for various load combina-

tions and actuator lengths for simply supported beams
and for beams with an extended section. The efficiency of
the design is assessed by comparing the deflections of con-
trolled beams with uncontrolled ones. It is observed that
the efficiency increases with increasing actuator length. It
also depends on the load combinations and the boundary
conditions of the beam.

2
Shape control with anti-optimization

A uniform beam of length L is under the action of trans-
verse loads 0 ≤ Pin ≤ Pin,max acting at ξin ∈ [0, L] and
momentsMjn,min ≤Mjn ≤Mjn,max acting at ζjn ∈ [0, L]
where i= 1, 2, . . . , I, j = 1, 2, . . . , J , and n= 1, 2, . . . , N
whereN = 1 for a beam under a single load andN ≥ 2 for
a beam under multiple loads. The sets defined by

Un =
{
(Pin, ξin,Mjn)| 0≤ Pin ≤ Pin,max ,

ξin ∈ [0, L] ,Mjn,min ≤Mjn ≤Mjn,max

}
(1)

are the load uncertainty domains. The locations ξin of the
loads are also unknown and they are to be determined as
part of the solution of the anti-optimization problem. The
locations ζjn of concentrated momentsMjn are specified
as input parameters in the present study not to compli-
cate the problem unduly. However, this restriction can be
easily removed and the solution procedure remains the
same.
The magnitudes of the loads Pin and moments Mjn

can take any value within the uncertainty domain Un and
the uncertain load locations can take any value in [0, L].
The uncertain quantities Pin, ξin,Mjn ∈Un are unknown
variables of the anti-optimization problem which consists
of determining the pair (Pin, ξin) and Mjn such that the
maximum deflection of the beam is maximized.
Let wn(x;α, βn) denote the mid-plane deflection of

the beam for a loading in Un where α is the design vari-
able to be defined later and βn = (Pin, ξin,Mjn) is the set
of uncertainty variables. The maximum deflection of the
beam is given by

‖wn(•;α, βn)‖= max
0≤x≤L

|wn(x;α, βn)| . (2)

The anti-optimization problem can be stated as

determine the uncertainty variables βn of the n-th loading
case such that

‖wn(•;α, β
∗
n)‖= max

βn∈Un
‖wn(•;α, βn)‖ . (3)

Thus, the uncertainty variables are determined for
each loading case so as to maximize the maximum deflec-
tion which constitutes the solution of the anti-optimiza-
tion problem which is coupled to the optimization prob-
lem since α and βn are interdependent. Thus the solution
of problem (3) yields the worst case loading on the beam
in terms of load magnitudes and locations in Un for the
given values of the design variable α.
Next the optimization problem and the design vari-

ables are defined. A piezo actuator of length a is sym-
metrically bonded on the top and bottom surfaces of the
beam. Its location is defined by b which indicates the
distance between the left hand support and the actua-
tor. A voltage V is applied on the piezoactuator the sign
of which is given by sgn (V ) = V/|V |. The actuator lo-
cation b and the sign of the voltage sgn (V ) serve as
the design variables of the optimization problem so that
α = [b, sgn (V )] if V �= 0 and α = αu = bu if V = 0 (un-
controlled case). Even though a single actuator is consid-
ered in the present study, the results can be easily gener-
alized to multiple actuators. The beam deflection is to be
minimized by choosing the location 0≤ b < L−a of the
actuator and the sgn (V ) optimally. Thus the optimiza-
tion problem can be stated as

1. Single load case

‖w(•;α∗, β∗1 )‖= min
0≤b≤L

‖w1(•;α, β
∗
1)‖ . (4)
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2. Multiple load case with n= 1, 2, . . . , N

‖w(•;α, β∗n)‖= min
0≤b≤L

max
n
‖wn(•;α, β

∗
n)‖ , (5)

where L= L−a. Clearly the optimal value of α depends
on the anti-optimal values of Pin, ξin and Mjn and vice
versa leading to a nested optimization/anti-optimization
problem. The solution of this problem gives the best lo-
cation of the piezo actuator and the sign of the applied
voltage so as to minimize the maximum deflection of the
beam under the worst possible case of loadings which may
include multiple loads. As such it provides a robust opti-
mal piezo actuator design capable of providing min-max
deflection under any loading which lies within the given
uncertainty space defined as

Su = U1∪U2∪ . . .∪UN . (6)

3
Basic equations of beam/piezo structure

The beam is of rectangular cross-section with height H
and width B. The piezo-actuator has width B, length a,
and thicknesses hp, which are activated by the application
of out-of-phase electric potentials with a voltage V . The
x-coordinate is taken along the midplane of the beam so
that |z| ≤H/2 indicates the beam region and |z| ≥H/2
the piezo layers which are denoted by Sb and Sp, respec-
tively, viz.,

Sb = {(x, z)|0≤ x≤ L , |z| ≤H/2} , (7)

Sp =
{
(x, z)|0≤ b≤ x≤ b+a≤ L ,

−H/2−hp ≤ z ≤−H/2 ,H/2≤ z ≤H/2+hp

}
. (8)

LetMn(x) denote the moment at x under the loading
Un. The equations governing the flexural bending of the
beam are given by

Mn(x) =D1w
′′
n , for x ∈ Sb , (9)

Mn(x) =D2w
′′
n−Mp , for x ∈ Sp , (10)

where Di are the stiffness constants derived below, Mp
is the moment generated by the piezo actuators, and the
prime superscript stands for differentiation with respect
to x.
Let εnx denote the axial strain at x and un(x) the dis-

placement in the x direction for loading βn ∈ Un. Then

εnx = u′n+ zw′′n . (11)

The expressions for the stiffnesses D1 and D2 will be de-
rived for a laminated beam with the thickness of the k-th

layer denoted by tk with the total number of layers includ-
ing the piezo layers denoted byK. The stress σ

(k)
nx for the

k-th layer is given by

σ(k)nx =E(k)x ε(k)nx −E(p)x d31φ3 , (12)

where

E(k)x =
[
E−111 cos

4 θk+
(
G−112 −2ν12E

−1
11

)
cos2 θk sin

2 θk+

E−122 sin
4 θk

]−1
, (13)

with E11, E22, G12 and ν12 denoting the elastic con-
stants of the material of the k-th layer and θk the ply
angle of the k-th layer. In (11), d31 is the piezoelectric
constant and φ3 is the electric field intensity given by
φ3 = V/hp. Let hk denote the signed distance between the
mid-plane and top of the k-th layer with h0 =H/2+hp
and hK =−H/2−hp. The stress resultant Nnx in the x-
direction can be computed from

Nnx =B

K0∑
k=k0

hk∫
hk−1

σ(k)nx dz , (14)

using (11) and (12) where K0 =K−1, k0 = 2 for x ∈ Sb
andK0 =K, k0 = 1 for x ∈ Sp. This computation gives

Nnx =Axu
′
n+Bxw

′′
n , for x ∈ Sb ,

Nnx =Axu
′
n+Bxw

′′
n−N (p)x , for x ∈ Sp , (15)

where

(Ax, Bx) =

B

K0∑
k=k0

E(k)x

[
hk−hk−1,

1

2

(
h2k−h2k−1

)]
, (16)

which gives different Ax and Bx values for x ∈ Sb and for
x ∈ Sp and

N (p)x =B

∫
Sp

E(p)x d31φ3 dz . (17)

Similarly, the moment resultantMnx is given by

Mnx =B

K0∑
k=k0

hk∫
hk−1

σ(k)nx z dz =Bxu
′
n+Dxw

′′
n−M (p)

x ,

(18)

so that

Mnx =Bxu
′
n+Dxw

′′
n , for x ∈ Sb ,

Mnx =Bxu
′
n+Dxw

′′
n−M (p)

x , for x ∈ Sp , (19)
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where

Dx =
1

3
B

K0∑
k=k0

E(k)x
(
h3k−h3k−1

)
, (20)

M (p)
x =B

∫
Sp

E(p)x d31φ3z dz . (21)

Since there is no force in the axial direction, Nnx = 0 and
from (15) it follows that

u′n =−
Bx

Ax
w′′n+

N
(p)
x

Ax
, for 0≤ x≤ L , (22)

whereN
(p)
x = 0 for x ∈ Sb. Substituting u′n from (22) into

the moment expressions (19), we obtain

Mnx =

(
Dx−

B2x
Ax

)
w′′n+

Bx

Ax
N (p)x −M (p)

x ,

0≤ x≤ L , (23)

where N
(p)
x =M

(p)
x = 0 for x ∈ Sb. Comparing (9), (10),

and (23), we obtain

D1 =Dx−
B2x
Ax

, x �∈ Sp ,

D2 =Dx−
B2x
Ax

, x ∈ Sp∪Sp ,

Mp =M (p)
x −

Bx

Ax
N (p)x , x �∈ Sb . (24)

4
Method of solution

Equations (9) and (10) must be solved for a given load-
ing and actuator location. These equations are solved by
finite differences by dividing each region Ri of the beam
into ni intervals. Thus R1 = [0, b], R2 = [b, b+ a] and
R3 = [b+ a, L], and ∆x1 = b/n1, ∆x2 = a/n2, ∆x3 =
(L−a− b)/n3 where ∆xi is the interval length in re-
gionRi. The finite difference expressions for each interval
are given by

δ2wnj =Mnx(xj)/D1 , for x ∈ Sb , (25)

δ2wnj = [Mnx(xj)+Mp] /D2 , for x ∈ Sp , (26)

where δ2wj = (wj+1−2wj+wj−1)/∆x2i , j = 1, 2, . . . , n1
and i = 1 for x ∈ R1, j = n1+1, . . . , n1+n2, i = 2 for
x ∈R2, etc. At the end points of the piezo actuator (x= b
and b+a) an average stiffness given byDa = (D1+D2)/2
is taken. The above formulation leads to a system of linear
equations, the solutions of which give the deflection wnj
at node j for the n-th loading βn ∈ Un.

The maximum deflection computed by the finite dif-
ference method discussed above gives the objective of the
design problem. In order to minimize the maximum de-
flection under load uncertainties, the anti-optimization
problem (3) and the optimization problem (4) for a single
load case and (5) for multiple load case have to be solved.
As these problems are coupled via external loads and ac-
tuator locations, they have to be solved simultaneously.
Thus for a given value of the design parameter, the n-th
anti-optimization problem is solved to obtain the max-
max deflection with n= 1, 2, . . . , N . The design param-
eter is optimized using a one-dimensional optimization
algorithm and in the optimization procedure the usual
analysis phase corresponds to the solution of the anti-
optimization problems. The optimization procedure gives
the optimal location of the actuator and the min-max-
max value of the deflection corresponding to the worst
case loading. In the multiple load case, the min-max-max
value of the deflection is valid for all load cases.

5
Numerical results and discussion

In the following, bopt denotes the optimal b, i.e. the op-
timal distance between the left hand support and the
left end point of the piezo actuator. The effectiveness of
piezo control can be studied by defining an efficiency in-
dex which gives the percent decrease in the uncontrolled
deflection as compared to the controlled one, viz.

If =

[
wmax(αu; 0)

wmax(αopt;V )
−1

]
×100 , (27)

where αu = bu which is taken as bu = (L−a)/2, i.e. the
actuator is located centrally and wmax(αu; 0) = maxn
‖wn(•;αuβ∗n)‖ with V = 0 is the maximum deflection
of the uncontrolled beam under all βn ∈ Un. For the
controlled beam wmax(αopt;V ) = maxn ‖wn(•;αoptβ∗n)‖
with V > 0 and αopt = (bopt, sgn (V )opt). Thus the com-
parison is made with a passive beam where the piezo
actuator contributes only to the stiffness of the beam.
The results are presented in dimensionless form by

using the length L of the beam to nondimensionalize var-
ious quantities,

wn =
wd

L
, an =

ad

L
, bn =

bd

L
, ξn =

ξd

L
, (28)

where the subscripts n and d denote nondimensional
and dimensional quantities, respectively. In the rest of
the discussion, the subscript n is dropped from the
notation. The results are given for a composite beam
made of graphite-epoxy (T300/5280) for which the elas-
tic constants are E11 = 181.0 GPa, E22 = 10.30 GPa,
G12 = 7.17 GPa, ν12 = 0.28.
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The piezo-actuators are made of PZT-5H piezoce-
ramic material with the properties Ep = 62 GPa and
d31 =−274×10−12m/V (see MorganMatroc, Inc. 1993).
In all of the calculations the beam length is taken as
L = 1 m, the thickness as H = 5 mm, the width as B =
10 mm, the actuator thicknesses as hp = 1 mm, and the
beam stacking sequence is chosen as (0◦/90◦/90◦/0◦).
Thus the stacking sequence is symmetrical and is given
by (PZT/0◦/90◦/90◦/0◦/PZT) for x ∈ Sp. The allow-
able voltage for piezoceramic materials is around 500–
1000 volts/mm of piezo thickness (Morgan Matroc, Inc.
1993). In the present study, the voltage is taken as
V = 500 volts in all cases.
In the finite difference scheme ∆x = 0.01L in all re-

gions dividing the beam into 100 intervals. The distances
bopt are computed as multiples of ∆x. Thus the optimal
locations are obtained up to an accuracy of 0.01 and these
results are indicated as dots in the figures with jumps of
0.01 in the value of bopt when the loading changes.

5.1
Single load cases

Figure 1 shows the curves of bopt and If versus the max-
imum load Pmax for a simply supported beam under the
actions of a concentated load 0 ≤ P ≤ Pmax acting at
x = ξa and moment −10 Nm ≤Mr ≤ 10 Nm applied at
x = L. In this case the anti-optimal loading is given by
P = Pmax andMr = 10 Nm with the anti-optimal load lo-
cation ξa depending on the length of the actuator and
the magnitude of Pmax where sgn (V )opt =+1. The re-
sults are given for a= 0.2 (Fig. 1a) and a= 0.4 (Fig. 1b).
At low values of Pmax, the actuator is closer to the right
hand support as the design is dominated by the moment
loading. As Pmax increases, the optimal actuator loca-
tion moves left, i.e. bopt decreases. In the limiting case
of Pmax→∞, ξa→ 0.5 and bopt→ (L−a)/2. Efficiency
of the design is highest for Pmax = 0 and decreases as
Pmax increases. Moreover, higher actuator length leads to
higher design efficiency since 8%≤ If ≤ 38% for a= 0.2
and 18%≤ If ≤ 116% for a= 0.4.
Figure 2 shows the same curves as in Fig. 1 with

0 ≤ P ≤ Pmax and −20 Nm ≤Mr ≤ 10 Nm for a simply
supported beam. For this case the anti-optimal loading
is given by P = 0 and Mr = −20 Nm for low values of
Pmax with the optimal sgn (V ) =−1 and by P = Pmax
and Mr =+10 Nm for high values of Pmax with optimal
sgn (V ) = +1. At the intermediate values of Pmax, both
loadings produce the same deflection. Thus for low values
of Pmax, the loadingMr =−20 Nm dominates the design
and the actuator is closer to the right-hand support. It is
noted that in both cases of loadings (|Mr| ≤ 10 Nm, Fig. 1
and the present one), the optimal actuator location is sen-
sitive to Pmax in certain ranges and less sensitive in other
ranges of Pmax. The design efficiency is not as high as it
was in the previous case due toMr having a larger range.
However, the trend as Pmax increases remains the same.

Fig. 1 Optimal actuator location and efficiency index vs
Pmax for load case 0≤ P ≤ Pmax, |Mr| ≤ 10 Nm with (a) a=
0.2, (b) a= 0.4

Next a beam with a hanging section is studied. The
beam is simply supported at the left-hand support and
the other hinge support is located at x = 0.8L. Fig-
ure 3 shows the bopt and If plotted against Pmax with
0 ≤ P ≤ Pmax acting at x = ξa with a moment |M�| ≤
10 Nm applied at the left hand support x = 0. In this
case the anti-optimal loadings are given byM� =+10 Nm
and P = Pmax (0 ≤ ξa ≤ 0.8L) for low values of Pmax
[ sgn (V )opt =+1] and by M� =−10 Nm and P = Pmax
at ξa = L for higher values of Pmax [ sgn (V )opt = −1].
The results are given for a= 0.2 (Fig. 3a) and for a= 0.4
(Fig. 3b). For low values of Pmax, the actuator is closer to
the left-hand support as the moment loading dominates
the design. As Pmax increases, the actuator approaches
the right support at x= 0.8L. The efficiency drops sub-
stantially as Pmax increases, but the decrease tapers off
after a certain Pmax. For a = 0.2, 13% ≤ If ≤ 51%, and
for a= 0.4, 31% ≤ If ≤ 180% indicating that the longer
actautor leads to higher design efficiency.
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Fig. 2 Optimal actuator location and efficiency index vs
Pmax for load case 0 ≤ P ≤ Pmax, −20Nm ≤Mr ≤ 10 Nm
with (a) a= 0.2 and (b) a= 0.4

5.2
Multiple load cases

In the multiple load cases, the beam is subjected to differ-
ent combinations of uncertain loads. As a first example,
we consider a simply supported beam subjected to the fol-
lowing load cases denoted by LC.

LC1: Concentrated load 0 ≤ P ≤ Pmax acting at 0 ≤
ξ ≤ L with ξa = L/2.

LC2: Moment |Mr| ≤ 20 Nm acting at x= L.

Figure 4 shows bopt and If curves plotted against Pmax
for a= 0.2 (Fig. 4a) and 0.4 (Fig. 4b). For Pmax ≤ 59 N,
bopt is determined by LC2 and for Pmax ≥ 69 N by LC1 in
which case bopt = (L−a)/2. There exists a transition re-
gion for 59 N≤ Pmax ≤ 69 N where both load conditions
have to be taken into account in determining the opti-
mum actuator location.

Fig. 3 Optimal actuator location and efficiency index vs
Pmax for a beam with a hanging section with 0≤ P ≤ Pmax,
|M�| ≤ 10 Nm, (a) a= 0.2 and (b) a= 0.4

As a final example, the case of two concentrated loads
with a given distance between them acting on a simply
supported beam is specified as one of the load cases. Thus
LC1 is given by 0≤ P1 = P2 ≤ Pmax acting at x1 = ξa and
x2 = ξa+d where d is the given distance between the two
loads. LC2 corresponds to |Mr| ≤ 20 Nm at x= L. The
results are given in Fig. 5 for a = 0.2 (Fig. 5a) and 0.4
(Fig. 5b) which indicate a similar pattern as the previous
multiple load case (Fig. 4) with each loading case deter-
mining bopt at certain ranges of Pmax.

6
Conclusions

The problem of locating a piezo actuator optimally on
a beam under uncertain loads was studied. The locations
and magnitudes of the loads are not known a priori and
have to be determined to produce the least favorable load-
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Fig. 4 Optimal actuator location and efficiency index vs
Pmax for the multiple load case (LC1: 0 ≤ P ≤ Pmax, LC2:
|Mr| ≤ 20 Nm) with (a) a= 0.2 and (b) a= 0.4

ing condition with respect to the maximum deflection.
The objective of the design is the minimization of the
maximum deflection under any load combination and this
is achieved by controlling the deflection using a piezo ac-
tuator of a given length.
The loads acting on the beam are defined in an un-

certainty domain and maximizing the deflection over the
loads within this domain constitutes the anti-optimiza-
tion problem. The optimization and anti-optimization
problems are coupled through the design variable (actu-
ator location) and the loading. The solution procedure
requires the solution of the anti-optimization problem for
a given value of the design variable which is optimized
iteratively to obtain the optimal actuator location under
least favourable loading.
Results were given for beams with different boundary

conditions and uncertainty domains with single and mul-
tiple load cases. The effectiveness of the piezo control is
assessed by comparing the maximum deflections of con-

Fig. 5 Optimal actuator location and efficiency index vs
Pmax for the multiple load case (LC1: 0 ≤ P1 = P2 ≤ Pmax,
LC2: |Mr| ≤ 20 Nm) with (a) a= 0.2 and (b) a= 0.4

trolled and uncontrolled beams. It is observed that the
design efficiency depends largely on the uncertainty do-
main, i.e. the load configuration and the maximum values
of the load magnitudes have considerable effect on design
efficiencies which could be more than 100% depending on
the actuator length and loading space. It was observed
that the optimal location of the actuator was confined to
a relatively small range for the load cases studied in the
numerical examples.
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