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Optimal structural topologies with transmissible loads

M.B. Fuchs and E. Moses

Abstract In optimal topological design of structures one
obtains the configuration of optimal structures when the
design domain, the displacement boundary conditions
and the applied loads are specified. In the optimal struc-
ture one often notices a marked difference between the
main bearing structure and the load transfer zones. The
latter are composed of relatively light elements the ex-
act nature of which is not always very distinct. The main
purpose of this paper is to allow the main bearing part
of the structure to emerge. Moreover the actual location
of the load along its line of action is not always a design
requirement. In order to include this relaxed condition
regarding the loading position the concept of transmis-
sible or sliding forces is introduced in topological design of
structures. A transmissible force is a force of given mag-
nitude and direction which can be applied at any point
along the line of action of the force. The optimization
formulation is similar to standard topological design pro-
cedure in addition to the condition of transmissability of
the forces. It is shown that this condition reduces to an
equal displacement constraint along the line of action of
the forces. The method is illustrated by typical structural
examples. It is observed that this numerical method pro-
duces indeed crisp images of the main structural compo-
nents, unblurred by the secondary load transfer elements.
It is also indicated that many results are often replicas
of Prager structures which were previously obtained by
analytical methods.
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1
Introduction

With the exception of a few early landmark results
(Maxwell 1890; Michell 1904) the historical development
of the field of structural optimization (Haftka et al. 1990;
Kirsch 1993) seems to have followed an opposite route to
the actual structural design process. Since its inception,
research in numerical optimal structural design went from
element stiffnesses design, through geometric and shape
optimization to topological design. In a proper sequence
the topological and shape designs come first and then
one can finalize the structure by determining its cross-
sectional characteristics. It is also clear that the major
impact on the structural efficiency, in the sense of stiff-
ness/volume or stress/volume ratios, is determined at the
conceptual state by the topology and shape of the struc-
ture. No amount of fine tuning of the cross-sections and
thicknesses of the elements will compensate for a concep-
tual error in the topology or the structural shape (see for
instance Olhoff et al. 1991).
It is only natural that with the proliferation of cheaper

computing power research was rightly channeled to shape
and topology optimization as can be seen in the review
papers of Haftka and Gandhi (1986), Kirsch (1989) and
Rozvany et al. (1995). A numerical approach to topo-
logical design starts with a domain of material to which
the external loads and support conditions are applied.
The initial domain is homogeneous at the macroscopical
scale, a condition which precludes any preferential or in-
tuitive design concepts. The optimization algorithm then
proceeds with carving out ineffectual material in order to
generate best structural solutions. Auster (1988, p. 132)
in describing Michaelangelo’s notion of sculpture para-
phrases the concept: “the figure is already there in the
material; the artist merely hews away at the excess mat-
ter until the true form is revealed.”
The objective function is often the compliance (Tay-

lor 1977), that is, the flexibility of the structure under the
given loads, subject to a volume of material constraint.
Two classes of structural domains have been used. In
a first instance one considers a trussed structure com-
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posed of a densely packed set of nodes and axial elements
which connect all (or most) pairs of nodes. This is called
the “ground” structure and the premise is that the opti-
mal configuration can be found in the plethora of trusses
embedded in the ground structure. Early solutions can be
seen in the papers of Dorn et al. (1964) and Dobbs and
Felton (1969). Examples of applying the concept to large-
scale structures were presented, for instance, by Zhou and
Rozvany (1991). The other class of structural domains is
a continuous sheet of material in 2D or a block of mate-
rial for 3D structures. The continuum is typically divided
into appropriate finite elements where every element has
intrinsic structural properties.
In the “relaxed” formulation (Allaire and Kohn 1993)

we assume that the material in every element consists of
perforated periodic microstructures. In these composite
materials the inclusion is a low stiffness material, repre-
senting the void inclusions, and the matrix is made of
the basic material of the structure. As noted by Olhoff
et al. (1997) the microstructure should allow for the en-
tire range of densities, and be periodic in order to allow
to compute effective material properties. The design vari-
ables of the optimization problem are the densities of the
elements. By setting the densities of elements to zero or to
one the algorithm removes ineffective material from the
design while keeping structural important regions. The
formal statement of the problem is

min
ρ

{∫
V

um(ρ)bm dV +

∫
S

um(ρ)tm dS|

∫
V

ρ dV = ρoV

}

(summation overm) , (1)

where ρ is the local density function, um, bm and tm are
the components of the displacements, body forces and
surface tractions, respectively, ρo is an initial uniform
density and V is the volume of the design domain. At this
state the ρ function is to be construed as a generic quan-
tity implying the type of local composite and amount of
material. In this raw form the problem statement is rather
simple but finding the optimum is not a trivial affair.
A major contribution to the solution of (1) was made

by Bendsøe and Kikuchi (1988) by formulating the prob-
lem through a finite element representation and by re-
stricting the relaxed formulation to composites with
repetitive rectangular holes (Suzuki and Kikuchi 1991;
see also Diaz and Bendsøe 1992). The design variables
for every element were the density ρ and the angular
orientation θ of the orthotropic material with respect
to the system axis. What ignited the interest in this
approach is that we had now a method for designing
the topology (and shape) of a structure with almost
no specifications other than the location of the load-
ing and the supports. This was in sharp contrast to
previous work in optimization where the general lay-
out of the final structure was fixed a priori. And indeed,

much progress has been made with these new techniques
and many interesting structural instances have been
produced.
One will note that there are several ingredients to the

method incepted by Bendsøe and Kikuchi (1988). First
and foremost is the finite element representation of the
design domain, and the assumption that in every element
i we have a material whose density is a design variable. In
addition an orthotropic composite with repetitive rectan-
gular voids with a density ρi and and a material orienta-
tion θi where used. Other orthotropic materials can also
be employed, such as rank-2 optimal composites (Allaire
and Kohn 1993; Gibiansky and Cherkaev 1984; Vigder-
gauz 1986). In some works we find “Solid Isotropic Mi-
crostructure with Penalty” or SIMPmaterial (Rozvany et
al. 1992) of the form

E =Eoρ
η1 . (2)

Here Eo is the modulus of the material and η1 is an arbi-
trary parameter. This artificial modulus can be tuned in
order to produce 0/1 (material/void) type solutions thus
generating crisp structural topologies.
The second ingredient is the objective function. It

so happens that the success of the method hinges on
the finite element and material modeling but not on the
use of specific objective function. One could very well
consider an “engineering” optimality criterion method
for topological design. Instead of basing the iterations
on the mathematical criteria that a design must fulfill
at the minimum, the structure is modified by remov-
ing understressed material and by adding material in
highly stressed regions thus yielding fully-stressed de-
signs. It was an early attempt for designing structures,
based on the premise that if the material is properly used,
the design can not be all that bad. Although shielded
by mathematical programming methods and more so
by optimality criteria based on the Kuhn-Tucker condi-
tions at a local minimum, the stress-ratio has retained
its popularity. It has now found its way into topology
design class of problems as in the papers by Hinton
and Sienz (1995) and Fuchs et al. (1999) and in the
Hard Kill method as in that of Van Keulen and Hin-
ton (1996). Examples can also be found in the papers
by Mattheck and Burkhardt (1990), Xie and Steven
(1997) and Tanaka et al. (1995) where the iterative pro-
cedure mimics the stress induced growth of bone and
plant material. All these techniques are in fact vari-
ations on the classic stress-ratio theme. The popular-
ity of this iterative approach rests on the premise that
it usually generates very sound engineering structures.
For instance, it is widely accepted that the uniform
stress condition is most probably the criterion which
determines the adaptation of bones in humans and
other mammals. Indeed, bone throughout the life-time
of the individual is responding to the conditions under
which it is being used (Beaupre et al. 1990; Lanyon 1987).
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Citing from Beaupre we note that if bone tissue expe-
riences excess stimulation, additional bone will be de-
posited. If bone tissue experiences insufficient stimula-
tion, it will resorb.
In this paper we propose to further relax the design

problem by allowing the external loads to move along
their line of action. In other words, we have a set of loads
to be supported by the structure but we do not spec-
ify the exact location of the points of application of the
loads. In fact what we are seeking is not only the opti-
mal topology for a set of loads and supports but also the
optimal point of application of the loads. A simple ex-
ample will illustrate the concept. Consider the problem
of designing a symmetric structure to support a force at
two hinged supports as shown in Fig. 1. It is clear that
when the load position is prescribed, as in Fig. 1a the op-
timal topology and geometry depends on that position
of the force. We are interested in case Fig. 1b where we
seek to design a structure for a force without specify-
ing its point(s) of application. Only the line of action of
the force is imposed. The answer will indicate where the
structure would like the force to be in order to optimize
the objective function. In this simple example the optimal
topology for minimum compliance under a constant vol-
ume constraint (the cross-sectional areas can vary) can be
shown to be an isocele truss with 45◦ sloping members as
in Fig. 1c.
The concept of movable loads is structural optimiza-

tion is not new. It appears in the definition of Prager
structures (see Rozvany and Prager 1979). Prager struc-
tures are stress-constrained least-weight trusses where
the sign of the member stresses must be the same in
all elements and the loads are allowed to move along
their line of action. The structure in Fig. 1c is in fact
a Prager truss (Rozvany et al. 1982) for the moving load
and hinged supports.
By using transmissible loads in a topological context

we are isolating the design of the main load bearing part
of the structure from the design of the secondary load
transfer problem. An arch-bridge for instance is com-
posed of the actual arch which transfers the load to
the reactions, a deck to which the load are applied and
local load transfer elements which connect the deck to
the arch. For a lower deck these elements are in tension
and could for instance be cables in tension. With an up-
per deck we will have struts in compression. By using
the present approach we will be designing the arch only,
leaving the secondary load tranfer elements for a later
stage.
In the following section we will describe the general

guidelines for a topological design of structures, in par-
ticular for the design of minimum compliance solutions
under constant volume of material. Next we will adapt
these techniques for the case of sliding loads. A subse-
quent section will illustrate the approach with selected
typical examples. Finally, a concluding section will close
this work and indicate possible directions for future work
on the subject.

2
Standard topological optimization

We will review the main steps of a standard method for
topological design of minimum compliance (1). One starts
from a design domain (region where material can be lo-
cated) to which external loads are applied and where
displacements boundary conditions are specified. The do-
main is meshed into finite elements and every element is
made of a porous isotropic or orthotropic material. The
design variables are the densities ρρρ which determine the
material properties of the elements. In the following we
will assume that the material is isotropic (2) and that ρρρ is
the design vector. The analysis of the structure is relaxed
by requiring that at the optimum the total potential func-
tional be minimized with respect to the nodal displace-
ments. And since at that minimum the total potential is
equal to minus the strain energy (twice the compliance),
problem (1) can now be stated as

max
ρρρ
min
u

{
(u′Ku−p′u)|

∑
j

ρjVj = ρoV

}
, (3)

where u is the nodal displacements vector, p is the ap-
plied loads vector, K is the stiffness matrix of the struc-
ture, ρj is the material density in element j, Vj is the
volume (area times constant thickness) of element j, in-
dex j runs over all the finite elements, and (.)′ is the
matrix transpose operator. It will be noted that the value
of 0≤ ρo ≤ 1 controls the amount of material available for
the design.
One can now build a Lagrangian function

L(ρρρ, λ,u) = (u′Ku−p′u)−λ(ρjVj−ρoV ) , (4)

whereK(ρρρ) =
∑
jKj(ρj) andKj is the stiffness matrix of

element j in global coordinates. Equating the derivatives
of L with respect to ρj , λ and u to zero yields, respec-
tively,

u′
∂Kj
∂ρj
u−λVj = 0 , j ∈ J , (5)

∑
j

ρjVj−ρoV = 0 , (6)

Ku−p= 0 . (7)

Equations (5) and (6) form the basis for the minimization
iterations. The last equation (7) will automatically be
satisfied since we will be using the actual displacements
for the iterations. Equation (5) produces the optimality
condition for minimum compliance

1 =

(
u′
∂Kj
∂ρj
u
)
/Vj

λ
. (8)
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Fig. 1 Optimal topologies for central load on two hinged supports: (a) The design depends on the point of application of the
load, (b) What is the optimal design for a transmissible load? (c) Optimal solution for minimum compliance of a transmissible
load under a constant volume constraint

Since λ is a constant the optimality condition states that
at the minimum the quantity (u′∂Kj/∂ρju)/Vj is a con-
stant. When multiplying both sides of (8) by ρj (a com-
mon practice with optimality conditions) one generates
the iterations formula

ρ
(k+1)
j =


ρj

(
u′
∂Kj
∂ρj
u
)
/Vj

λ



(k)

, (9)

where k is the iterations index.
Very similar equations can be developed by using

a stress-ratio method for generating fully stressed designs
(FSD)

1 =
σj

σ
, (10)

where σj is a representative stress for element j, usually
the von Mises effective stress, and σ is a target stress.
As such it is a measure of the strain energy of distor-
tion Ud = σ

2
e/6G, where G is the shear modulus. The two

quantities, (u′∂Kj/∂ρju)/Vj and σj , although not equal
are nevertheless of a similar structural significance. After
multiplying both sides by the density we obtain the clas-
sical stress-ratio iterations

ρ
(k+1)
j =

(
ρj
σj

σ

)(k)
. (11)

The introduction of ρj in both sides of (8) and (10) is cru-
cial in the topology context. It sets up the iterations on ρj ,
but more so it allows for solutions ρj = 0, which is the
essence of topology design. Thus, if condition (8) or (10)
can be enforced, element j remains in the design. If not,
then the element is removed.
In both iterative procedures we have an undefined

constant (λ in the compliance iterations and σ in the FSD
case). The classical way to deal with these loose param-
eters differs in the compliance and in the FSD approach.
In the former, (9) is introduced in the constant volume

condition (6) to yield the final form of the iterations for
minimum compliance

ρ
(k+1)
j = ρo

V

Vj


 ρju

′ ∂Kj
∂ρj
u∑

j ρju
′ ∂Kj
∂ρj
u



(k)

. (12)

In the stress-ratio iterations the target stress σ is typ-
ically the largest allowable stress. Since ρ cannot exceed 1,
σ was selected by Fuchs et al. (1999) as

σ =max
j
{σj} . (13)

Consequently the densities are automatically confined
within the 0/1 bounds. In the case of multiple load-
ing conditions one usually replaces the compliance by
a weighted sum of compliances as objective function

max
ρρρ
min
u



n�∑
�=1

w�(u
′
�Ku�−p

′u�)|
∑
j

ρjVj ≤ ρoV


 ,
(14)

where w� is a weighting factor for load condition � and
n� is the number of loading conditions. With FSD the ac-
cepted method is to define the representative stress as the
highest among all loading conditions

σj =max
�
{σj�} , (15)

where σj� is the representative stress in element j for load
condition �. There is one more important ingredient. The
densities must remain within the bounds 0≤ ρj ≤ 1. Con-
sequently iterations (12) are supplemented with

if ρj < 0 then ρj = 0 ,

if ρj > 1 then ρj = 1 . (16)

This requires of course an inner loop on the densities in
order to fulfill the constant volume constraint.
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These are the basic forms of the minimum compliance
iterations with a constant volume constraint and the FSD
iterations with a maximum target stress condition.

3
Typical results using the standard approach

Consider the design of a structure to support a dis-
tributed uniform load on two hinged supports (Fig. 2).
The reactions are at the lower corners of a rectangular de-

Fig. 2 Design domain on two hinged supports for supporting
a distributed load on (a) upper boundary, (b) lower boundary
and (c) with transmissible loads

sign domain and two cases are considered: the distributed
load acts (a) along the lower boundary, and (b) along
the upper boundary. The material in every element j is
isotropic, the design variables are the densities ρj in every
element, Poisson’s ratio is ν = 0.3 and Young’s modulus
is given by (2) where Eo is an arbitrary constant with
η1 = 1.5.
Note, the element stiffness matrix in global coordi-

nates is ρη1j K̂j where K̂j is the element stiffness matrix
with Young’s modulus Eo. Consequently, the derivative
in (12) is simply η1ρ

η1
j K̂j and (12) becomes

ρ
(k+1)
j = ρo

V

Vj

(
ρ
η1
j u

′K̂ju∑
j ρ
η1
j u

′K̂ju

)(k)
. (17)

Iterations (17) were used with a total amount of mate-
rial ρo = 0.2, Vj = 1 and V = 24×48 = 1152 finite elem-
ents. Unless specified to the contrary 4-node PLANE42
bilinear isoparametric (Ansys SwansonAnalysis Systems,
Inc. (1992)) elements were employed. The configurations
after convergence are shown in Fig. 3. We should like to
draw attention to the two distinct parts of the design.
There is first the arch which is the actual load-bearing
structure. It is characterized by a concentration of mat-
ter. Next there are the secondary structural components
which transfer locally the applied loads to the arch. These
are lightweight zones which may represent in case (a)
a cable network to transfer the tension forces and in (b)
a set of struts. One notes that both loadings call for an
arch but the primary structure differs in both cases. In
other words, by deciding on the location of the loads one
influences the final design of the primary structure. Al-

Fig. 3 Optimal topologies for a distributed fixed load on two
hinged supports with the load applied (a) to the upper bound-
ary and (b) to the lower boundary. Note the distinct primary
structure (black) and the secondary (grey) load transfer parts
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though there is much to learn from the layouts of the
secondary structures we should like to concentrate on the
“pure” design of the primary structure, the arch in this
example. That is, if we let the equations find best pos-
itions of the applied loads, what would the optimal pri-
mary structure be?
For this purpose we introduce transmissible loads or

sliding loads as in Fig. 2c. The graphic rendering of the
applied loads indicates that the exact location of the ap-
plied forces is also a variable of the design. What is given
is the magnitude and the line of action of the forces.
Moreover, the design stipulation allows for the splitting
of a load into several forces along the same line of action
while keeping the total magnitude constant. An outline
for the inclusion of transmissible structures is given in the
next section.

4
Topology design with transmissible loads

In this section we will essentially retrace the method of
the standard approach while making allowance for trans-
missible forces. For the sake of clarity we restrict the for-
mulation to transmissible forces which are aligned with
a subset of degrees of freedom in global coordinates, as
in example Fig. 2c. The theory remains valid for forces
which are transmissible along other directions since one
can always remesh the domain to make the lines of action
coincide with global degrees of freedom.
An example of transmissible forces can be seen in

Fig. 2c where vertical loads act along lines of action i ∈ I.
Within each group i the applied force pi can can be split
into pims,m ∈M , with the equality constraints∑
m∈M

pim−pi = 0 , i ∈ I , (18)

whereM is the number of nodes along every line of action.
In the particular case of Fig. 2c we have I = 11 transmis-
sible vertical loads where every load can be distributed
amongst M = 7 nodes. The task of the design is thus to
position these loads in an optimal fashion in conjunction
with a topological design of the structure. The compli-
ance minimization problem (3) is now

max
ρ
max
pim

min
u

{
(u′Ku−p′u)|

∑
j

ρjVj =

ρoV ;
∑
m∈M

pim−pi = 0 , i ∈ I

}
. (19)

This leads to the Lagrangian function

L(ρρρ, λ,u, pim, µi) = (u
′Ku−p′u)−λ(ρjVj−ρoV )−

∑
i∈I

µi(
∑
m∈M

pim−pi) . (20)

Equating the derivatives of L(ρρρ, λ,u, pim, µi) with re-
spect to the variables to zero gives respectively (5), (6)
and (7) with the addition of

uim−µi = 0 , i ∈ I , (21)

and (18). Here uim are the displacements corresponding
to pim. The new information is in (21). We find that with
sliding loads the displacements along the lines of action
of the pi are constant, uim = µi. This was to be expected.
In order to design a structure where the position of the
load along the line of action is immaterial one could as-
sume the existence of infinitely stiff axial elements of zero
mass along that line. This also makes the displacements
constant along the line.
An alternative way of looking at the problem is to in-

troduce the sliding loads condition directly into the equi-
librium equations (7). Indeed, let pi be the external loads
vector along line of action i. The condition of transmis-
sability (18) can also be written as

pi = b
′ pi , (22)

where b is 1-valued vector. Using this type of relation for
all the sliding forces in a load transformation equation

p=ΓΓΓ ′p

leads to the reduced equilibrium equations

(ΓΓΓ ′KΓΓΓ )u= p , (23)

with

u=ΓΓΓu .

In this equation the line corresponding to (22) is

ui = b ui , (24)

where ui, or µi in (21), is the common displacement of the
line of action i.
It will be noted that the only difference between the

design for fixed loads and the design for sliding loads is
that in the latter the analysis equations (7) are replaced
by (23). Consequently what has been developed for min-
imum compliance under a constant volume constraint re-
mains valid for an FSD design (11) as long as the analysis
is performed with the congruent transformation in (23).

5
Numerical examples

As an introductory example we will solve the minimum
compliance problem with constant volume of material for
a transmissible load symmetrically reacted by two hinged
supports. The design domain is the ground structure used
by Rozvany et al. (1982). It is composed of densely spaced
isocele two-bar trusses with apex along the line of action
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Fig. 4 Convergence history and intermediate topology for a point mid-way between two hinged supports. The graph gives the
cross-sectional areas distribution as a function of the bar slope after 1, 10 and 20 iterations. The figure at the bottom shows an
intermediate solution

of the load and the design variables are the cross-sectional
areas of the bars. In the context of sliding loads we have
also an infinitely stiff element of zero mass along the line
of action of the force. An intermediate design is shown
in the right of Fig. 4. Clearly, the axial stiffnesses of the
elements pile up along members close to the 45◦ line.
As noted earlier the optimum solution is a 45◦ truss. In
the left graph of Fig. 4 we show the convergence history
of the iterative scheme. The figure depicts the distribu-
tion of the cross-sectional areas as a function of the slope
of the elements after 1, 10 and 20 iterations. One no-
tices the spread of material about the dominant 45◦ angle
element.
We now turn our attention to the solution of the same

problem using a continuous domain (Fig. 1b) and also to
the solution of a similar problem for sliding distributed
loads acting perpendicular to the line connecting two
hinged supports (Fig. 2c). The design domains in Fig. 5
are rectangles of aspect ratios (bottom to top) 0.25, 0.40

and 1.00 and the corresponding volume fractions are 0.1,
0.1 and 0.2. The material is isotropic with an elastic mod-
ulus given by (2) and Poisson’s ratio ν = 0.3. The domain
is redesigned with the use of (12) in conjunction with
a tuning parameter η2.

ρj ← ρo
V

Vj


 ρju

′ ∂Kj
∂ρj
u∑

j ρju
′ ∂Kj
∂ρj
u



η2

. (25)

Parameter η2 is employed for improving the convergence.
The results are shown in Fig. 5 (left) for the single load

and (right) for the distributed load. The reason for se-
lecting different aspect ratios for the design domain is to
compare cases which have to deal with restricted design
domains (aspect ratios 0.25, 0.40) with a “free” design ex-
ample (aspect ratio 1.00). In the case of the point load
we obtain for the lowest aspect ratio a solution were the
applied load is split in two parts were the bottom load
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Fig. 5 Optimal topologies for supporting (left) a transmissible force and (right) a transmissible distributed load on two hinged
supports, as a function of the design domain aspect ratios 0,25, 0.40, and 1.00. In the lower figure 0.65 of the load is taken by the
upper part and 0.35 by the lower part

is connected by tension ties to a pseudo-arch in compres-
sion. We note that the upper portion takes 0.65 of the
load and the lower tension rods the remaining 0.35. With
higher aspect ratios we obtain isocele truss solutions. In
the free design domain the optimal solution is the 45◦

Prager structure. For the distributed load cases (right)
we have in all instances parabolic-type arch structures. In
the case of the free design domain we have superimposed
on the arch a parabola originating at the crown and pass-
ing through the hinged supports. The fit is almost perfect.
The height-to-base ratio of this parabola is h/b= 0.479.
We have also checked analytically the optimal height of
a minimum compliance parabolic arch under a uniform
distributed load with a constant volume constraint. The
design variables were the continuous distribution func-
tion of cross-sectional area and h/b. It was found that
the minimal solution has a constant stress and the op-
timal height is (h/b)min =

√
3/4 = 0.433 which is a little

less that what is shown in Fig. 5. Incidently,
√
3/4 is also

the height of the optimal Prager arch (Rozvany andWang
1983).
It is worthwhile to compare the optimal solution with

sliding distributed forces to the ones with fixed forces in
Fig. 3. We have already mentioned that in the fixed forces
cases the solution includes both the load bearing part (the
arch) and the secondary local load transfer zones. Using

sliding loads produces the optimal load carrying structure
only. The designer can then decide if the optimal location
of the applied loads suits the environmental requirements
or not. In the negative he can add proper load transfer
parts to the structure. The important issue is that with
sliding forces we obtain both the stiffest structure and the
optimal locations for applying the forces. It should be rec-
ognized that with sliding loads the compliance was found
to be 0.506 as compared to 1.09 and 1.04 for the left and
right cases in Fig. 3. The numbers are expressed relative
to some datum structure.
Finally, with regard to the graphic rendering of the

results in Fig. 5, the arches were left in their discretized
configuration and are built-up from square finite elements
whereas the trusses to the left were smoothened out by an
interpolation technique.
With regard to the η1 parameter in the constitutive

law (2) and η2 in (25) the reader is referred to Fig. 6. Here
we have depicted typical intermediate solutions obtained
during the optimization of the distributed load case.Mov-
ing anti-clockwise from the left lower figure we show de-
signs after 1, 3, 9 and 12 iterations. We notice a tendency
for a double arch solution where the primary structure
seems to carry a secondary one. It is however clear that
the upper arch is the result of stress increases at the up-
per domain boundary. In order to clean up the picture the
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Fig. 6 Intermediate steps of the parabolic arch design in Fig. 5. From left corner anti-clockwise at 1, 3, 9, 12 iterations. The upper
arm is due to boundary induced stress concentrations and is gradually eliminated by incrementing η1, the dependence of Young’s
modulus upon the density (2), from 0.5 to 2.0

material parameter η1 was iteratively increased

η
(k+1)
1 = η

(k)
1 +∆η1 , (26)

with η
(0)
1 = 0.5 and ∆η1 = 0.075. The second parameter

was kept constant at η2 = 0.8. Although other numerical
schemes are possible, it seems that initially, when the de-
sign domain is almost homogeneous, values η1 < 1 should
be used. Indeed, they modify the stiffness moderately and
allow the procedure to produce the fundamental patterns.
Gradually, the increasing values of η1 help the design
in eliminating “noise” and in retaining the optimal top-
ology.
The effectiveness of employing sliding loads in top-

ology design is perhaps best emphasized in the design of

Fig. 7 Design domain for uniform distributed sliding loads
normal to a square area and supported on four supports at the
corners

a 3D structure to support a uniform distributed load nor-
mal to a square plane and supported at the 4 corners of
the plane. The initial design domain was a rectangular
parallelepiped loaded and supported as shown in Fig. 7,
the grey domain representing the uniform load. The ma-
terial volume was ρo = 0.1. Using a 17× 17× 17 mesh
(quarter domain), with 8-node SOLID45 isoparametric
elements, lower and upper views of the resulting design
can be seen in Figs. 8 and 9, respectively. The structure is
reminiscent of the two-way vaulting of Gothic structures.
The material densities of all the retained elements is equal
to 1, the shades of grey indicating elevation. We have here

Fig. 8 A 3D example. Starting from a 10×10×10 block of
material supported at the 4 corners and submitted to sliding
distributed loads normal to the ground the optimal solution is
reminiscent of a Gothic vaulting. This result was obtained for
a ρ0 = 0.1. Note, all elements have a density of 1, the shades of
grey indicate elevation
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Fig. 9 Structure in Fig. 8 viewed from above

a series of 4 arches over the adjacent supports and two
arch vaults over diagonal supports. The highest level of
material, shown in a dark shade, is a cross supported at
the crowns of all 6 arches. One will notice discontinuities
running parallel to the side arches. What appears to be
voids are simply regions with large variation of the eleva-
tion. Assumably these “windows” should disappear when
using a higher density mesh. Here also (26), η

(0)
1 = 0.5,

∆η1 = 0.075 and η2 = 0.8.

6
Conclusions

This paper is concerned with the optimum topological de-
sign of structures subjected to transmissible forces. The
term refers to loads for which the line of action is given
but the exact location(s) of the forces along the lines of
action is part of the optimization process. This allows
a further relaxation of the topology design problem. In-
deed, the layout of the optimum topology structure de-
pends heavily on the location of the applied forces. Since
the fundamental premise of topological design is to pro-
duce results which are independent on some preassumed
concepts, fixing the applied forces constitutes an infringe-
ment on this principle. Whenever possible, the forces
should be allowed to move along their line of action. This
has also the merit of generating the pure structural part
of the solution uncluttered by local force transmission
elements. In simple cases the procedure often produces
Prager trusses which are composed of uniformly stressed
structures of same sign. The method can however be ex-
tended to more complex situations.
It is shown that using transmissible forces is equiva-

lent to assuming equal displacements along the line of
action. Alternatively, the structure can be considered to
be embedded with infinitely stiff axial members of zero
mass, along every applied force line. This is a relatively
simple algorithmic requirement and can easily be incor-
porated in FE analysis routines. The numerical technique
converges rather smoothly once the method for eliminat-
ing parasitical parts has been mastered. Indeed, the inter-
action of the infinitely stiff elements with the boundaries
of the design domain may cause stress increases which

have a tendency to draw material. It is shown how a ju-
dicial change of the stiffness-density relations during the
minimization can eliminate the unwanted portions of the
structure thus paving the way for the optimal solution.
Possible further extensions of the concept of transmissible
loads is the topological design of structure under pressure
loads where the external forces are limited to the external
boundary of the material, follow its modifications and are
constrained to act normal to the loaded boundary (Ham-
mer and Olhoff 1999). This could be used in the design
of the dams for instance. Some work along these lines is
presently being pursued.
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