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A gradient based heuristic algorithm and its application to
discrete optimization of bar structures

G. Jivotovski

Abstract In this paper a nonlinear constrained integer
optimization problem with a monotonic objective func-
tion is considered. Customarily, the optimum is located
near the feasible region boundary for this category of
problems. A two-stage heuristic algorithm is developed
which utilizes this peculiarity. Within the algorithm co-
ordinate descents are computed to move within the feas-
ible region towards the region boundary. Motions along
the boundary are performed using discrete antigradients
based on linear approximations of the objective function
and constraints at the last feasible point. Auxiliary rela-
tive vectors are established to find a better point within
a polyhedron formed by hyperplanes tangent to the ob-
jective function as well as the violated constraint surfaces.
In particular, a model for the optimum design of bar
structures is presented. It is demonstrated that both the
algorithm and the model have been successfully applied
to discrete optimization of ten-bar and two hundred-bar
trusses and a single-span two-storey frame.

Key words Discrete value optimization, trusses, rigid
frames, heuristic algorithms, sequential quadratic pro-
gramming (SQP)

1
Introduction

At present, engineering design of real structures is more
and more carried out by combining Finite Element an-
alysis and mathematical programming methods. The the-
ory and software are well developed to solve problems
which can be modelled by differentiable functions and
continuous variables (VMA Engineering 1993). Practical
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structural design, however, often deals with discrete vari-
ables which must be selected from a predetermined set of
discrete values, e.g. standardized profile sizes, standard
sheet thicknesses, material category, number of elements,
etc. In these cases, the structural design converts to a dis-
crete nonlinear constrained problem.

Although the first papers on discrete optimization
were already published in the 60’s, see e.g. Korbut and
Finkelshtein (1969), discrete optimization methods are
still rarely developed and form an important field for
research. Several methods have been proposed to solve
discrete problems. Arora et al. (1994) classify all methods
into the following six categories: branch and bound, simu-
lated annealing, sequential linearization, penalty func-
tions, Lagrangian relaxation, and other methods (among
them heuristic techniques). No ideal method exists to
solve complex discrete problems. Probabilistic methods
including simulated annealing, genetic algorithm and
evolution strategy can find the global minimum without
using any gradient information, therefore being compu-
tationally expensive. Thus, these methods are well elab-
orated only for small and medium-scale problems. The
same holds for branch and bound algorithms. Determinis-
tic approaches do not guarantee that the final point found
is the global minimum. A comparative study of five differ-
ent optimization methods with respect to truss structures
was performed by Bouzy and Abel (1995) who suggested
a two-step procedure. First, a sequential quadratic pro-
gramming method (SQP) is applied to solve an equivalent
continuous problem. Second, the optimum continuous so-
lution is utilized as a starting point for a local discrete
search using a genetic algorithm.

To improve the situation it seems reasonable to de-
velop new heuristic approaches to solve discrete design
problems. One of these approaches is to utilize discrete
gradients. Amir and Hasegawa (1994) reduced constrain-
ed mixed-discrete optimization problems to discrete un-
constrained problems using penalty functions and small
values of increments for a continuous value as a repre-
sentation of discrete variables. A gradient based steep-
est descent technique has been applied to solve discrete
unconstrained problems. Chai and Sun (1996) suggested
a relative difference quotient algorithm. Here, the proced-
ure starts from the minimum point outside the feasible
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region and advances along the direction of the minimum
increment of the objective function and the maximum
decrements of the constraints. Then, discrete gradients
are used to define a search direction.

In the following, similarly to Jivotovski and Perelman
(1997), a new heuristic algorithm is proposed. This ap-
proach is developed to solve integer constrained nonlinear
problems with monotonic objective functions. Thus, the
optimum point is located near the feasible region bound-
ary. This type of problem covers a broad class of real
structural design problems. The actual algorithm is di-
vided into two stages. At first, the motion to the feasible
region boundary using coordinate descent is determined.
Second, discrete antigradients based on linear approxima-
tions of the objective function and violated constraints at
the last feasible point are computed to cut the polyhedron
in the design space. Then, an integer point within the
polyhedron is searched. Finally, the values of the objec-
tive function in a new point and the last one are compared
to each other and a new point is verified with respect to
feasibility. The search procedure for the second stage is
improved in comparison with the one used by Jivotovski
and Perelman (1997). Two auxiliary relative vectors lo-
cated within a polyhedron with the maximum absolute
value of projection equal to 1 and 2, respectively, are es-
tablished to find a better point.

2
Definition of the optimization problem

Beams, plane and spatial trusses, frames, grillages and
arches are considered as different categories of structures
under study. Structural topology and geometry as well
as kinematic boundary conditions are given. Also, quasi-
static loads acting on the structure are assumed, where
NLC is the number of loading cases.

Structures consist of Nbar prismatic bars. Bars are
fabricated from standardized steel or aluminium alloy
profiles or welded from standard sheets. The bars are
linked to Ngr groups according to the design decision

accounting N
(i)
bar bars for the i-th group, i= 1, . . . , Ngr.

The bars in each group are made from the same ma-
terial and have equivalent cross-sections. The bar cross-
sectional shape Vi (e.g. Vi = 1 is a flat bar, Vi = 2 is
a double angle, etc.) and fabrication type Ui (Ui = 1
is standardized, Ui = 2 is welded profile) for the i-th
group are given, i = 1, . . . , Ngr. Alteration of the bar
cross-sectional shape Vi and/or fabrication type Ui for
the i-th group is possible as well as change of quantity
N

(i)
bar, i= 1, . . . , Ngr. A temporary data base is created for

real problems. This data base contains the required ma-
terial data, e.g. allowable stress, Young’s modulus, cross-
sectional area, moment of inertia, etc.

The unknown design parameters are ordinal numbers
of the elements defined in the sets of standardized pro-
file areas as well as standard sheet thicknesses and widths
for welded profiles. The optimum structure has minimum

mass or fabrication cost and meets the strength, displace-
ment and stability requirements of the given codes of
practice. The problem is formulated as an integer nonlin-
ear constrained mathematical programming problem.

2.1
Design variables

The set of design variables {x} consists of a number of
subsets

{x}=
{
{x(1)}, . . . , {x(i)}, . . . , {x(Ngr)}

}
, (1)

where each

{x(i)}=


{x(i)

1 } if Ui = 1 ,

{x
(i)
1 , . . . , x

(i)
j , . . . , x

(i)
Ki
,

x
(i)
Ki+1, . . . , x

(i)
Ki+j

, . . . , x
(i)
2Ki
} if Ui = 2 ,

(2)

is a subset of design variables for the i-th group; x
(i)
1 = n is

ordinal number of the element from the set {A(v)}, which

defines the cross-sectional area A
(v)
n for the bars from

the i-th group fabricated from standardized profiles with
cross-sectional shape Vi = v, Ki is the number of bands
which form a welded profile with cross-sectional shape Vi;
x

(i)
j and x

(i)
Ki+j

are ordinal numbers of the elements from
the sets {t} and {B}, which define the j-th band thickness
t
x

(i)
j

and width B
x

(i)
j

for welded bars from the i-th group.

Elements from the set {A(v)} of the cross-sectional
areas for standardized profiles with cross-sectional shape
v are put in ascending order A

(v)
1 < . . . < A

(v)
n < . . . <

A
(v)
Qv

, where Qv is the number of standardized profiles
with shape v. Elements from the sets of standard sheet
thicknesses {t} and widths {B} are also arranged in as-
cending order t1 < . . . < tn < . . . < tQt , B1 < . . . < Bn <
. . . < BQB , where Qt and QB are the numbers of thick-
nesses and widths for standard sheets, respectively.

Design variables have an integer type and belong to
the corresponding sets {X(v)

1 }, {X2} and {X3}

x
(i)
1 ∈ {X

(v)
1 }= {1, . . . , n, . . . , Qv} , v = Vi ,

if Ui = 1 ,

x
(i)
j ∈ {X2}= {1, . . . , n, . . . , Qt} , if Ui = 2 ,

x
(i)
Ki+j

∈ {X3}= {1, . . . , n, . . . , QB} , if Ui = 2 . (3)

Design variable set (1) is considered as a vector x =

(x1, . . . , xm, . . . , xN )T , where N =
∑Ngr
i=1 Ni is the total

number of design variables.
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Further,

Ni =

{
1 if Ui = 1 ,
2Ki if Ui = 2 ,

is the number of design variables for the i-th group. The
two-dimensional matrix D is established. The element
dm,n of the matrix D denotes the n-th value of the set
{A(v)}, {t} or {B} correspondingly to the m-th design
variable xm = n.

2.2
Objective function

The objective function is the structural mass or fabrica-
tion cost. The structural mass is defined as

C(x) =

Nbar∑
k=1

%kLkAk =

Ngr∑
i=1

%iAi

N
(i)
bar∑
k=1

Lk , (4)

where Lk denotes the length of the k-th bar; %k = %i is the
specific weight of the k-th bar from the i-th group. The
quantity

Ak =Ai =



Avn

v = Vi

n= x
(i)
1

 if Ui = 1 ,

Ki∑
j=1

t
x

(i)
j

B
x

(i)
Ki+j

if Ui = 2 ,

denotes the cross-sectional area of the k-th bar from the
i-th group.

The fabrication cost (without mounting) is given by

C1(x) =

Nbar∑
k=1

Lk(sk + sTk) =

Ngr∑
i=1

(si+ sTi)

N
(i)
bar∑
k=1

Lk , (5)

where s is the labour rate including overheads (cost/hour).
The material price per metre length for the k-th bar from
the i-th group is represented by

sk = si =



%iS(Avn)Avn
v = Vi

n= x
(i)
1

 if Ui = 1 ,

%i
Ki∑
j=1

S(t
x

(i)
j

)t
x

(i)
j

B
x

(i)
Ki+j

if Ui = 2 .

Herein, S(A
(v)
n ) is the material price per kilogram mass

for standardized profile with cross-sectional areaA
(v)
n and

shape v = Vi; S(t
x

(i)
j

) is the material price per kilogram

mass for standard sheet with thickness t
x

(i)
j

; furthermore

Tk, where

Tk = Ti =

{
0 if Ui = 1 ,

T
(i)
weld(Ki−1) if Ui = 2 ,

is labour hour required per metre welding of Ki bands to
form the profile with cross-sectional shape Vi and T

(i)
weld

is labour hour required per metre welding of two bands
from the i-th group depending on the number of welding
junctions.

2.3
Design constraints

The constraints and their number NDC depend on the
class of structure, material and the associated design
codes of practice. The given bar joint connections and
the structural topology define the number of structural
members Nmem and the bar behaviour: whether it be-
haves as a truss (axial tension-compression) or a plane
beam (bending) or a spatial beam (tension-compression,
bending, twisting with bending and tension-compression
if eccentricity takes place). Functional design constraints
may be written as

Gj(x)≤ 1 , j = 1, . . . , NDC , (6)

where the terms

Gi(x) =
1

[σi]
max
k

max
Ψ

max
Wk

∣∣∣σ(Ψ)
k (x)

∣∣∣ ≤ 1 ,

GNgr+i(x) =
1

[τi]
max
k

max
Ψ

max
Wk

∣∣∣τ (Ψ)
k (x)

∣∣∣≤ 1 ,

define the normal and shear stress constraints for bars
from the i-th group, respectively and i= 1, . . . , Ngr, k =

1, . . . , N
(i)
bar, Ψ = 1, . . . , NLC, the quantity

G2Ngr+ξ(x) =

max
k

max
Ψ

max
Wk

∣∣∣P (Ψ)
k (x)

∣∣∣
f min

(
P

(cr)
ξ , P

(cr)
x,ξ , P

(cr)
y,ξ

) ≤ 1

is the overall buckling constraint for the ξ-th compressed-
bending structural member and ξ = 1, . . . , Nmem, k =
1, . . . ,K

(ξ)
bar, Ψ = 1, . . . , NLC,

G2Ngr+Nmem+ξ(x) =

max
k

max
Ψ

max
Wk

√√√√[σ(Ψ)
k (x)

σ
(cr)
ξ

]2

+

[
τ

(Ψ)
k (x)

τ
(cr)
ξ

]2

≤ 1

is the local buckling constraint for the ξ-th compressed-
bending structural member and ξ = 1, . . . , Nmem, k =
1, . . . ,K

(ξ)
bar, Ψ = 1, . . . , NLC,

G2Ngr+2Nmem+`(x) =
1

[δ`]
max
Ψ

∣∣δΨ` (x)
∣∣ ≤ 1

is the nodal displacement constraint for the `-th degree of
freedom and `= 1, . . . , NND, Ψ = 1, . . . , NLC.
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Here the following notations are used:

max
Wk

∣∣∣σ(Ψ)
k (x)

∣∣∣, max
Wk

∣∣∣τ (Ψ)
k (x)

∣∣∣: maximal absolute values

of normal and shear stresses in the volume Wk of the
k-th bar from the i-th group during the Ψ -th loading
case,

[σi], [τi]: allowable normal and shear stresses for material
of bars from the i-th group,

max
Wk

∣∣∣P (Ψ)
k (x)

∣∣∣: maximal absolute value of axial com-

pression force in the volume Wk of the k-th bar from
the ξ-th structural member during the Ψ -th loading
case,

σ
(Ψ)
k (x), τ

(Ψ)
k (x): compression and mean shear stresses

for the flange and web of the k-th bar from the ξ-th
structural member during the Ψ -th loading case,

f : factor of safety,
P

(cr)
ξ , P

(cr)
x,ξ , P

(cr)
y,ξ : collapsing forces attached to nonaxial

compression, longitudinal bending with regard to the
x and y axes for the ξ-th structural member including
the k-th bar

σ
(cr)
ξ , τ

(cr)
ξ : critical values of compression and shear

stresses for the flange and web for the ξ-th structural
member including the k-th bar,

δ
(Ψ)
` (x): calculated displacement along the `-th degree of
freedom during the Ψ -th loading case,

[δ`]: allowable nodal displacement limit along the `-th
degree of freedom,

K
(ξ)
bar: number of bars that compose the ξ-th structural
member,

NND: number of limited nodal directions.

2.4
Problem formulation

An optimum design problem is formulated as a nonlinear
constrained integer mathematical programming problem.
The problem is to find the optimum point x∗ that minim-
izes the objective function C(x) (4) or (5) for a possible
solution set of the vector x and subjected to the con-
straints (3) and (6). Thus, we have

C(x∗) = min
x∈D

C(x) ,

D =

{
x :Gj(x) ≤ 1 , xm ∈ {X

(v)
1 }, {X2} or {X3} ,

m= 1, . . . , N , j = 1, . . . , NDC

}
. (7)

3
Structural analysis

Stress-strain analysis adopted for structural optimization
is carried out primarily on the basis of the finite element
method (FEM) with displacements as unknowns. A single

mesh generation is executed before optimization since the
structural topology remains invariable. Pre-processing
data preparation is fully automatic. Separate subroutines
modify the finite element stiffness matrices according to
the optimization output data. With respect to efficiency
numerous types of finite elements are available for each
structural class. For truss and beam problems finite elem-
ents based on simple Bernoulli-Euler theory can be used.
The stiffness matrix for finite elements with 2 and 3 nodal
degrees of freedom for plane and 3 and 6 nodal degrees of
freedom for spatial problems provide respective standard
matrices for tension-compression, bending in two planes,
tension-bending and twisting (e.g. Jivotovski 1991). As-
semblage of the global stiffness matrix and solution of
FEM equations are accomplished by using frontal tech-
nique of Irons (1970). Nodal displacements, actual inte-
gral forces and moments in bars and corresponding max-
imal normal and shear stresses are defined for each finite
element. In the case of multiple loading cases a corres-
ponding number of right-hand sides of the equation prob-
lem is introduced, but assemblage and triangularization
of the matrix coefficients is performed only once.

Collapsing forces P
(cr)
ξ , P

(cr)
x,ξ , P

(cr)
y,ξ and critical values

of local stresses σ
(cr)
ξ , τ

(cr)
ξ for the ξ-th structural member

are defined by analytical expressions and can be found in
the paper by Jivotovski (1991).

4
Solution to the formulated problem

An optimum solution according to relationship (7) with
monotonic objective function is located near the feasible
region boundary. Thus, the optimization process is separ-
ated into two stages. The first stage is to step forward to
the feasible region boundary. The second stage is to move
along this boundary to a local optimum.

The iterative optimization procedure begins with the
verification of the feasibility at the initial point x(0). Ex-
isting engineering experience or a given continuous so-
lution to the equivalent problem may be applied as an
initial point. It is recommended to take unit values for all
design variables if it is difficult to choose a better starting
point: x

(0)
m = 1, m= 1, . . . , N .

Motion to the feasible region is performed if the point
x(0) is infeasible. The point x(`+1) is defined during the
`-th iteration by

x(`+1)
m =

{
x

(`)
m + 1 if x

(`)
m 6= x

(u)
m ,

x
(u)
m if x

(`)
m = x

(u)
m ,

m= 1, . . . , N , (8)

where x
(u)
m is the maximum value of the m-th design vari-

able equal to Qv, Qt or QB.
The procedure is terminated if all design variables

have their maximum values

x(`)
m = x(u)

m , m= 1, . . . , N . (9)
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If the point x(u) is infeasible, then as a rule the formu-
lated problem has no solution.

The point x(`+1) is taken as an initial point for the
next (`+ 1)-th iteration if it is infeasible. Then, Step (8)
is repeated.

If the initial point x(0) is feasible or Step (8) leads
to the feasible point x(`+1), the algorithm switches to
the simplified Gauss-Seidel descent strategy. The `-th it-
eration begins with the verification of the convergence
criterion at the feasible point x(`). The procedure is ter-
minated and the point x(`) is the global minimum if all
variables are equal to unity

x(`)
m = 1 , m= 1, . . . , N . (10)

The explorative discrete step per m-th coordinate di-
rection is performed from the last feasible point x(`) to
a neighbour point x(`,m) if criterion (10) is not satisfied
and the m-th design variable is not equal to unity

x(`,m) = x(`)−e(m) , (11)

where ` is the iteration index, m is the coordinate di-
rection index and e(m) is the unit vector, whose compo-
nents e

(m)
j have the value zero for all j 6=m and unity for

j =m.
The point x(`,m) is taken as an initial point x(`+1) =

x(`,m) for the next (`+ 1)-th iteration if it is feas-
ible. Then, Step (11) is repeated. Otherwise, the next
(m+ 1)-th coordinate direction is taken for the motion to
the feasible region boundary.

The step forward process (11) is illustrated in Fig. 1
for a two variable case using black and white circles for
infeasible and feasible points, respectively.

Fig. 1 Graphic representation of the first stage

In the case that the explorative steps in all coordi-
nate directions lead to the infeasible point x(`,m), m =
1, . . . , N the first discrete derivatives of the objective
function and NV C violated constraints are computed at
the current design point x(`) by evaluating the functions
at neighbour points

∂C

∂x
(`)
m

=


C[x(`)]−C[x(`,m)]

dm,n−dm,n−1
if n= x

(`)
m 6= 1 ,

C[x(`)+e(m)]−C[x(`)]

dm,2−dm,1
if x

(`)
m = 1 ,

m= 1, . . . , N , (12)

∂Gj

∂x
(`)
m

=


Gj [x

(`)]−Gj [x
(`,m)]

dm,n−dm,n−1
if n= x

(`)
m 6= 1 ,

Gj [x
(`)+e(m)]−Gj [x

(`)]

dm,2−dm,1
if x

(`)
m = 1 ,

m= 1, . . . , N , j = 1, . . . , NVC . (13)

The constraint j∗ is selected from the NV C violated
constraints by evaluating the expression

cosβj∗ = min
j

cosβj , j = 1, . . . , NVC , (14)

where

cosβj =
N∑
m=1

[
−
∂Ce

∂x
(`)
m

] [
−
∂Gej

∂x
(`)
m

]
(15)

is the cosine of the angle between the normalized unit vec-
tors of the discrete antigradients of the objective function,
−∇Ce, and the j-th violated constraint, −∇Gej , at the

current design point x(`). The projections of the normal-
ized unit vectors of the discrete antigradients are com-
puted by

−
∂Ce

∂x
(`)
m

=−
∂C

∂x
(`)
m

[
N∑
m=1

(
∂C

∂x
(`)
m

)2
]−1/2

,

m= 1, . . . , N , (16)

−
∂Gej

∂x
(`)
m

=−
∂Gj

∂x
(`)
m

[
N∑
m=1

(
∂Gj

∂x
(`)
m

)2
]−1/2

,

m= 1, . . . , N , j = 1, . . . , NVC . (17)

The vector λ is established

λ=−∇Ce−∇Gej∗ . (18)

This vector λ is located within the polyhedron formed
by hyperplanes tangent to the objective and violated
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constraint function surfaces at the current design point
x(`). The hyperplanes approximate these surfaces and are
perpendicular to the corresponding antigradient vectors
−∇Ce and −∇Gej at the current design point x(`), where
j = 1, . . . , NVC.

The vector of design variable changes ∆x is attrac-
tive for consequent motion if the point x̃ = x(`) +∆x lies
within the polyhedron and the constraints (3) are satis-
fied. Point x̃ belonging to the polyhedron implies that the
following conditions are met:

N∑
m=1

−
∂Ce

∂x
(`)
m

(dm,n+p−dm,n)≥ 0 ,

N∑
m=1

−
∂Gej

∂x
(`)
m

(dm,n+p−dm,n)≥ 0 ,

n= x(`)
m , p=∆xm , j = 1, . . . , NVC . (19)

Two auxiliary relative vectors λ(1) and λ(2), coplanar
to the vector λ with the maximum absolute values of pro-
jections equal to 1 and 2, respectively are as follows:

λ(1) =
λ

λmax
, λ(2) = 2λ(1) , (20)

where λmax = max
m
|λm|, m = 1, . . . , N is the maximum

absolute value of the vector λ projection. These vectors
are used to define the design variable changes∆x

∆xm =

{
0 if |λ

(1)
m |< ε1 ,

±1 if |λ(1)
m | ≥ ε1 ,

m= 1, . . . , N , (21)

∆xm =


0 if |λ(2)

m |< ε1 ,

±1 if ε1 ≤ |λ
(2)
m |< ε2 ,

±2 if |λ
(2)
m | ≥ ε2 ,

m= 1, . . . , N . (22)

Herein, 0.5 ≤ ε1 < 1.0 and 1.5 ≤ ε2 < 2.0 are positive
values that define the number of design variable changes
equal to ±1 and ±2, respectively. The sign of design
variable change ∆xm depends on the sign of the corres-
ponding projection λm.

Design variable changes ∆x are taken according to
(22) using minimum values of ε1 and ε2. Conditions (19)
are verified at the point x̃. The point x̃ that satisfies con-
ditions (19) is taken as an initial point x(`+1) = x̃ for the
next (`+ 1)-th iteration if the value of the objective func-
tion in it is less than in the last feasible point x(`)

C (x̃)<C
(
x(`)

)
, (23)

and it is feasible that

Gj (x̃)≤ 1 , j = 1, . . . , NDC . (24)

The search procedure continues from Step (11) if con-
ditions (23) and (24) are satisfied. If one of the conditions
(19), (23) or (24) is violated, the values ε1 and ε2 are
increased and new vector of design variable changes ∆x
is constructed according to (22). If ε1 and ε2 take their
maximum given values, design variable changes ∆x are
computed by (21), the initial value of ε1 is equal to 0.5.
The search procedure is terminated if there is no point
that complies with conditions (19), (23) or (24) for all
possible combinations of vector ∆x. A local minimum is
the last feasible point x∗ = x(`).

The second stage is illustrated in Fig. 2 for a two vari-
able case.

Fig. 2 Graphic representation of the second stage

The iterative steps of the algorithm are given below.

1. Take the iteration index `= 0. Choose an initial point
x(0).

2. If point x(`) is feasible, go to Step 5. Otherwise, con-
tinue.

3. Check Criterion (9). If (9) is satisfied, terminate.
Otherwise, construct x(`+1) using (8) and continue.

4. Take x(`) = x(`+1), let `= `+ 1 and return to Step 2.
5. Check Criterion (10). If (10) is satisfied, go to Step 13.

Otherwise, let m= 1 and continue.
6. Construct x(`,m) = x(`)−e(m).
7. Take x(`+1) = x(`,m) if point x(`,m) is feasible. Let `=

`+ 1 and return to Step 5. Otherwise, continue.
8. Ifm<N , increase the coordinate direction indexm=

m+ 1 and return to Step 6. Otherwise, continue.
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9. Compute the normalized unit vectors −∇Ce and
−∇Gej . Select the constraint j∗. Establish vectors λ,

λ(1) andλ(2). Take ε1 = 0.5 and ε2 = 1.5 and continue.
10.Construct∆x according to (22) or (21) and check con-

ditions (19). If (19) are satisfied, go to Step 12. Other-
wise, continue.

11. Increase ε1 and ε2. If ε1 < 1.0 and ε2 < 2.0, return to
Step 10. Otherwise, go to Step 13.

12.Check conditions (23) and (24). If (23) and (24) are
satisfied, take x(`+1) = x̃, let `= `+ 1 and go on with
Step 5. Otherwise, go to Step 11.

13.Take x∗ = x(`) and terminate.

Table 1 The cross-sectional characteristics of standardized
profiles in Example 1

n An (cm2) Wn (cm3) In (cm4)

1 118.392 1690.16 41623.0
2 144.922 2290.85 62435.0
3 167.342 2842.498 83246.0
4 187.096 3360.34 104058
5 204.594 3852.73 124869
6 221.374 4324.92 145681
7 236.658 4780.51 166492
8 251.019 5222.00 187304
9 264.593 5651.39 208115

5
Numerical examples

In this article the well-known problems of the ten-bar
and two hundred-bar trusses and of the frame with two
storeys and a single span are presented to show the effi-
ciency of the algorithm.

5.1
Portal frame

The structural geometry of a frame with two storeys and
a single span is shown in Fig. 3, where (1), (2) and (3)
represent three loading cases, respectively.

The bars are linked to four groups. The first group in-
cludes bars 1 and 5, the second bars 2 and 4, the third
only bar 3 and the fourth only bar 6. The bars in all
groups have the same cross-sectional shape Vi and fabri-
cation type Ui, i= 1, . . . , 4. The material is steel with the
following properties: specific weight %i = 76 999.34 N/m3,
Young’s modulus Ei = 206.88 kN/mm2, allowable nor-
mal stress [σi] = 163.86 N/mm2, i= 1, . . . , 4. The objec-
tive function of the problem is the weight of the struc-
ture. Normal stress constraints are imposed. The dis-
placements of nodes 2, 3, 4 and 5 are limited to [δ`] =
25.4 mm in horizontal direction, `= 1, . . . , 4. In this ex-
ample two different cases are considered.

Fig. 3 Frame with two storeys and a single span

5.1.1
Case 1

The frame is fabricated from standardized profiles, Vi = 1
and Ui = 1, i= 1, . . . , 4. The cross-sectional characteris-
tics are presented in Table 1. Herein, Wn and In denote
the n-th element from the sets of section modulus {W}
and moments of inertia {I} for standardized profiles with
shape Vi = 1, respectively.

The results for the first case are given in Table 2. Only
35 constraint computations are necessary to obtain the
optimum solution from the unit initial point x

(0)
m = 1,m=

1, . . . , N . The difference between the optimum weight of
Chai and Sun (1996) and the optimization by the present
method is 1.05%.

5.1.2
Case 2

Welded profiles with I shape are optimized, Vi = 2 and
Ui = 2, i = 1, . . . , 4. The sets of standard sheet thick-
nesses {t} and widths {B} include Qt = 26 and QB = 10
elements, respectively: {t}={5; 6; 7; 8; 9; 10; 11; 12; 13;
14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28;
29; 30} in mm and {B}={100; 200; 300; 400; 500; 600;
700; 800; 900; 1000} in mm.

The results for the second case in comparison with
the continuous solution to the equivalent problem are
listed in Table 3, where NFE means number of finite elem-
ent analyses. Initial design variables were taken equal
to unity for discrete problem. Lower and upper bounds
of continuous variables correspond to t1 = 5 mm, B1 =
100 mm and tQt = 30 mm, BQB = 1000 mm, respectively.
A sequential linear programming method (SLP) gives
the best result in comparison to the feasible directions
method and to the sequential quadratic programming
method (see VMA Engineering 1993).
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Table 2 The results computed for portal frame, Case 1

Weight The optimum point, area (cm2)
Method C(x∗) (N) x∗1 A∗1 x∗2 A∗2 x∗3 A∗3 x∗4 A∗4

Method of Chai and Sun (1996) 42979 6 221.374 2 144.922 2 144.922 6 221.374
Present method 42534 5 204.954 2 144.922 2 144.922 7 236.658

Table 3 The results computed for portal frame, Case 2

Group Bar The optimum continuous The optimum discrete point.
number number Member point. SLP Present method.

i k x∗j (mm) A∗i (cm2) x∗j t∗j or B∗j (mm) A∗i (cm2)

Lower 5.742 2 6
shelf 280.5 3 300

1 1 Upper 5.858 81.85 1 5 83.0
5 shelf 269.1 3 300

Wall 5.0 1 5
999.6 10 1000

Lower 6.403 3 7
shelf 100.01 1 100

2 2 Upper 6.403 62.77 2 6 63.0
4 shelf 100.01 1 100

Wall 5.0 1 5
999.0 10 1000

Lower 6.382 3 7
shelf 100.20 1 100

3 3 Upper 6.382 62.74 4 8 65.0
shelf 100.20 1 100
Wall 5.0 1 5

999.0 10 1000

Lower 17.118 6 10
shelf 127.6 2 200

4 6 Upper 17.118 93.65 6 10 90.0
shelf 127.60 2 200
Wall 5.0 1 5

999.2 10 1000

NFE 543 1369
Weight C(x∗) (N) 17523.1 17555.3

5.2
Ten-bar truss

The geometry and nodal coordinates of a ten-bar plane
truss structure are shown in Fig. 4.

Each group contains only one bar. All bars are fab-
ricated from aluminium alloy standardized profiles with
the same cross-sectional shape, Vi = 1 and Ui = 1, i =
1, . . . , 10. The data are as follows: specific weight %i =
27150.68 N/m3, Young’s modulus Ei = 68.96 kN/mm2,
allowable normal stress [σi] = 172.4 N/mm2, i = 1, . . . ,
10, the loads P1 = 667 340 N, and P2 = 222 450 N. There
are 10 design variables. The objective function is the
weight. The constraints are the member normal stresses
and the vertical displacements of nodes 1, 2, 3 and 4.
The allowable displacement limit for all nodes is [δ`] =

Table 4 The cross-sectional areas in Example 2

n An (cm2) n An (cm2) n An (cm2)

1 0.645 2 3.23 3 6.45
4 12.9 5 19.4 6 25.8
7 32.3 8 38.7 9 41.9
10 45.2 11 48.4 12 51.6
13 54.8 14 58.1 15 61.3
16 64.5 17 70.9 18 77.4
19 83.9 20 90.3 21 96.8
22 103.0 23 110.0 24 116.0
25 123.0 26 129.0 27 135.0
28 142.0 29 148.0 30 155.0
31 161.0 32 168.0 33 174.0
34 181.0 35 187.0 36 194.0
37 200.0 38 206.0 39 213.0
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Table 5 The results computed for the ten-bar truss

Group and The optimum The optimum discrete point, area
bar number continuous point Present method Method of Chai and Sun (1996) Evolution strategy

i= k A∗i (cm2) x∗i A∗i (cm2) x∗i A∗i (cm2) x∗i A∗i (cm2)

1 151.9 31 161.0 26 129.0 30 155.0
2 0.645 1 0.645 1 0.645 1 0.645
3 163.12 30 155.0 26 129.0 30 155.0
4 92.62 20 90.3 22 103.0 21 96.8
5 0.645 1 0.645 1 0.645 1 0.645
6 12.71 4 12.9 4 12.9 4 12.9
7 79.92 19 83.9 15 61.3 19 83.9
8 82.64 19 83.9 29 148.0 19 83.9
9 131.2 26 129.0 28 142.0 26 129.0
10 0.645 1 0.645 1 0.645 1 0.645

Weight C(x∗) (N) 20808.0 20882.9 21557.0 20985.0

Fig. 4 Ten-bar truss

50.8 mm, `= 1, . . . , 4. The set of the cross-sectional areas
includes 39 elements and is presented in Table 4.

Initial design variables were taken equal to unity. The
results are given in Table 5 in comparison with the so-
lution of Chai and Sun (1996) using a relative difference
quotient algorithm, the solution of Grill (1997) using an
evolution strategy as well as the continuous solution of
Haug and Arora (1979). The present method gives the
best result with 1075 constraint computations. The num-
ber of finite element analyses using an evolution strategy
is 11160.

The solution obtained by Chai and Sun (1996) is in-
feasible. The reason is that the stress constraints have
no monotonic property for statically indeterminate struc-
tures. Omitting the stress constraints and increasing the
value of the bar cross-sectional area on the second level
optimization can violate the stress constraints. In par-
ticular, the stress in the fifth bar is σS = 280.9 N/mm2 =
1.63[σ].

A change in material and shape according to DIN2448
(2.81), steel pipes gives the optimum weight C(x∗) =
21 665 N. Accounting for stability requirements using
Euler’s buckling formula for compressed bars does not
change the solution, since only displacement constraints
are active.

5.3
Two hundred-bar truss

The geometry and sizes of a plane two hundred-bar truss
structure are shown in Fig. 5. The bars are linked to 96
groups. All bars are fabricated from standardized pro-
files with the same cross-sectional shape, Vi = 1 and
Ui = 1, i= 1, . . . , 96. The material is steel with the fol-
lowing properties: specific weight %i = 0.283 lb/in3 (for
references ksi-units are chosen), Young’s modulus Ei =
30 000 ksi, allowable normal stress [σi] = 30 ksi, i = 1,
. . . , 96.

There are three loading cases.

1. One kip acting in positive x direction at nodes 1, 6, 15,
20, 29, 34, 43, 48, 57, 62, 71;

2. 10 kips acting in negative y direction at nodes 1, 2, 3,
4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, . . . ,
71, 72, 73, 74, 75;

3. Cases 1 and 2 acting together.

The objective function is the weight of the structure.
Stress constraints are applied to each group. Displace-
ment constraints are applied on all nodes for both ver-
tical and horizontal directions. The allowable displace-
ment limit is [δ`] = 0.5 in, ` = 1, . . . , 150. The set of the
cross-sectional areas includes 30 elements. The areas are
taken according to DIN1028, double angle profiles and
presented in Table 6.

Initial design variables were taken equal to discrete
upper neighbours of the continuous solution of Haug and
Arora (1979). The optimum weight of Haug and Arora
(1979) is 28 963 lb. Bouzy and Abel (1995) obtain the
minimum weight 28 880 lb using the sequential quadratic
programming method with 5600 constraint computa-
tions. The optimum discrete solution of Cai and Thierauf
(1994) using a parallel evolution strategy is 29 737 lb. The
number of finite element analyses is 70316. The present
method gives the optimum weight 29 168 lb with 81075
constraint computations. The results are given in Table 7.
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Fig. 5 Two hundred-bar truss

6
Conclusions

In this paper a method for solving integer nonlinear pro-
gramming is described. The proposed approach is a ro-
bust tool for a particular class of problems with mono-

Table 6 The cross-sectional areas in Example 3

n An (in2) n An (in2) n An (in2)

1 0.100 2 0.347 3 0.440
4 0.539 5 0.954 6 1.081
7 1.174 8 1.333 9 1.488
10 1.764 11 2.142 12 2.697
13 2.800 14 3.131 15 3.565
16 3.813 17 4.805 18 5.952
19 6.572 20 7.192 21 8.525
22 9.300 23 10.850 24 13.330
25 14.290 26 17.170 27 19.180
28 23.680 29 28.080 30 33.700

tonic objective function. The algorithm makes use of
discrete antigradients to move along the feasible region
boundary towards an optimum which is located near this
boundary. The algorithm only searches for integer points.
It is very simple and natural to engineers. The algorithm,
however, terminates on a quasi-optimum and does not
guarantee a global solution.

A model of structural optimization for systems of bars
is constructed. Design variables are ordinal numbers of
the elements from the sets of standardized profile areas as
well as standard sheet thicknesses and widths for welded
structures.

Test results for the ten-bar and two hundred-bar
trusses and a frame with two storeys and a single span
indicate a satisfactory convergence. The solutions for all
problems considered by the present method are better
than results found in the references. The number of fi-
nite element analyses performed before convergence is
modest for problems with 4, 10 and 24 design variables.
The structural analysis effort increases significantly for
the problem with 96 design variables. The greatest part
of the computations, however, is performed during the
last iterations with a small decrement of the objective
function.

The inherent efficiency of the method suggested ren-
ders it potentially suitable for nonlinear optimization
with different numbers of design variables and functional
constraints.
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