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On optimal shapes in materials and structures

P. Pedersen

Abstract In the micromechanics design of materials, as
well as in the design of structural connections, the bound-
ary shape plays an important role. The objective may
be the stiffest design, the strongest design or just a de-
sign of uniform energy density along the shape. In an
energy formulation it is proven that these three objec-
tives have the same solution, at least within the limits
of geometrical constraints, including the parametrization.
Without involving stress/strain fields, the proof holds for
3D-problems, for power-law nonlinear elasticity and for
anisotropic elasticity.

To clarify the importance of parametrization, the
problem of material/hole design for maximum bulk
modulus is analysed. A simple optimality criterion is de-
rived and with a simple superelliptic parametrization,
agreement with Hashin-Shtrikman bounds are found.
More general examples including nonequal principal
strains, nonlinear elasticity and orthotropic elasticity
show the versatility of the optimality criterion approach.
In spite of this, the mathematical programming approach
will be used in the future study of the multiparameter
and/or multipurpose problems.

Key words Shape optimization, stiffness design, stress
design, uniform energy density, nonlinear elasticity

1
Introduction

Many results are available within optimal shape design,
but a number of important issues still need to be ad-
dressed. The literature gives a picture of three different
research directions. In mechanical and civil engineering
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focus has for more than 25 years been on design for min-
imum stress concentration, see Ding (1986). In the ma-
terial and more mathematical oriented research the focus
has been on design for minimum compliance, see Vigder-
gauz (1997). Some heuristic approaches have focussed on
design for uniform stress, see Xie and Steven (1997). Not
many mutual references are given among these three re-
search directions. A goal of the present paper is to show
that a unification is possible, because the three different
objectives will give the same solution under certain con-
ditions.

In order to make the background for the paper clear,
some subjective points of view will be given.

– In general stress/strain fields cannot be found ana-
lytically, but the finite element method can give us
a solution to almost any degree of accuracy. The as-
pect of stress/strain analysis will not be commented
on.

– The notion of energy density concentration or en-
ergy density uniformity will be used instead of the
stress/strain quantities. First of all, because exten-
sions to nonlinear and anisotropic elasticity enforce
a need for definitions alternative to, say, the von Mises
stress, but also because energy densities more directly
relate to the theoretical proofs.

– Design of a boundary in a material or a transition in
a structure are in principle identical problems. How-
ever, for structures we mostly assume the external
loads to be given, while in material design the loads
are evaluated from forced displacements and they are
therefore design dependent.

– General theoretical results must often be based on
idealized assumptions and it is important to study the
influence from violation of these assumptions. Also
the influence from simple parametrization must be
studied with values and graphs for specific solved
problems.

In a short review of a variety of problems solved we
especially concentrate on the problems setup to min-
imize stress concentration. We note for all the exam-
ples that the energy density along the designed bound-
aries is uniform, independent of model dimensions, model
anisotropy, model nonlinearity, and model loads. The
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goal therefore has been to obtain a simple proof of this
general behaviour. This proof is given in Sect. 3 with fol-
low up comments in relation to material design. To state
it briefly: the stiffest design is also the strongest design
and uniform energy density will be the result under cer-
tain conditions.

A simple parametrization of the boundary shape for
a hole is presented. With given relative size of the hole
this only involves two parameters and still it enables a de-
sign description that agrees with the asymptotic results
for relative large as well as for relative small holes. The
analytical treatment of this parametrization shows that
an analytical optimality criterion can be derived and a so-
lution procedure based on this is then described.

The first example to be discussed is related to the
Vigdergauz (1986) shapes that result in maximum two-
dimensional “bulk” modulus. Primarily a one-parameter
study shows the influence of the details of the shape.
The bulk modulus is rather insensitive to the details,
but the concentration of energy density is very sensitive.
The maximum bulk modulus agrees with the Hashin-
Shtrikman bound.

After these theoretical results, the method based on
the optimality criterion derived is applied to a case of
nonequal mean values of the principal strains. Stable con-
vergence is found and again the focus is put on concentra-
tion of energy density. The formulation and the method of
solution also holds for orthotropic material and for non-
linear elasticity. The final example shows an application
to such a case.

2
A variety of solved problems

Studying the results of a variety of rather different shape
design problems, it can be seen that very general know-
ledge can be obtained. The striking generality is the prop-
erty of uniform energy density along the designed shapes
for all the different formulations mentioned in the Intro-
duction. Mainly from formulations with minimum stress
concentration we shall here list a number of analytically
and/or numerically obtained results and then the theor-
etical background for this will be given in Sect. 3.

2.1
The 2D-fillet problem

The 2D-fillet problem, defined with the goal of min-
imizing stress concentration was solved by Tvergaard
(1973) using a finite difference method for stress an-
alysis. Kristensen and Madsen (1974, 1976) and Fran-
cavilla et al. (1975) solved the same problem using the
finite element method for stress analysis. Within the
limits of the imposed geometrical constraints (length of
the fillets and the parametrizations) the results of op-
timization give constant tangential stress along the de-

signed shape. At this boundary we have a unidirectional
state of stress and therefore constant energy density
as well as constant von Mises stress. Thus these early
papers point towards the importance of constant energy
density.

2.2
The 3D-fillet

The 3D-fillet of an axisymmetric solid was optimized by
Pedersen and Laursen (1982–83). Tension, bending and
torsion were all treated as separate load cases and the
length of the fillet was imposed as a geometrical con-
straint. The detailed stress distributions in the paper all
show constant von Mises stress; until a point of the de-
signed shape where the geometrical constraint imposes
a decrease in this stress. Note that von Mises stress and
energy density are only proportional for isotropic, incom-
pressible materials (see Pedersen 1998).

2.3
The 2D-hole-problem

The 2D-hole-problem is illustrated in Fig. 1 and shown
with a biaxial load case. Numerical results for this case
are also contained in the paper by Kristensen and Mad-
sen (1976) and these are compared to what is mentioned
as the “analytical” results. Analytical studies of the prob-
lem are reported by Banichuk (1977) with reference to
even earlier results by Cherepanov (1974). These ana-
lytical studies prove that a constant tangential stress
σt = σ1 +σ2 is obtained with an elliptical shape design
where the ratio of the two half axes a, b equals the ratio
of the stresses, i.e. a/b = σ1/σ2, assuming equal signs
for σ1 and σ2. More recent studies by Cherkaev et al.
(1998) deal with nonequal signs for σ1 and σ2. In all these
cases constant energy density is obtained but it should
be remembered that the hole is assumed infinitesimally
small.

2.4
The 2D-hole with orthotropic material

With the increasing use of anisotropic material, like
laminated composites, there is a need for shape design
also for nonistropic material. The orthotropic case was
studied by Pedersen et al. (1992). As expected, the op-
timal shape design is very dependent on the level of
anistropy. Results for the case illustrated in Fig. 1 are
shown in Fig. 2. The important conclusion from this
study is that we obtain constant strain energy density
along the designed boundary. Another important conclu-
sion is that the optimal design is not influenced much
by the finite element modelling. This holds for a change
in element type as well as for a change in the num-
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Fig. 1 Hole problem and applied materials for the discussions to follow

ber of elements (modelling refinement). Naturally, the
stress/strain/energy values are sensitive to the accuracy
of the finite element modelling, but the designed shape is
not.

Fig. 2 Optimal boundary shapes for different “degrees” of
orthotropy. For the four orthotropic materials, the resulting
variation of strain energy density along these shapes are only
0.2, 0.3, 1.4 and 3.8% (from Pedersen et al. 1992)

2.5
The 2D-hole with nonlinear material

In a recent thesis by Stokholm (1998) we can find op-
timal shape designs based on a constitutive behaviour
that follows from the stress energy density uc given by
uc = σn+1

e /[(n+ 1)En] where n ≥ 1 and σe is the effect-
ive stress, as defined by Pedersen (1998). This material
constitutive behaviour is illustrated in Fig. 1, noting n=
1/q. The results with this material constitutive model
are again uniform strain energy density along the de-
signed boundary shape for the problem in Fig. 1. In real-
ity the optimal shape differs so little from the shapes

obtained with linear elasticity that a more detailed nu-
merical study is necessary to conclude that there is a dif-
ference. This is one of the goals of the present paper.

2.6
The cavity problem in 3-D

For the cavity problem in 3-D the shape of an inclusion
with minimum stress concentration has also been studied
analytically as well as numerically. As expected in an
infinite model, the optimal shape is an ellipsoid, which
follows from the work of Eshelby (1957). The von Mises
reference stress will be constant on the surface of the cav-
ity. Dybbro and Holm (1986) gave the optimal ellipsoidal
half axis a, b and c implicitly in terms of the three prin-
cipal stresses, and the ellipsoidal axes are aligned with
the principal stress directions. A numerical study was
also performed by Dybbro and Holm (1986) and within
the accuracy of the applied finite element model, uniform
energy density was found on the boundary of the shape.
Also for composite materials we find three-dimensional
studies, as the one by Vigdergauz (1994). However, the
number of studies are limited and it is not expected that
the analytical results from 2D-models (based on analyt-
ically determined stress fields) can be extended to 3D-
models.

2.7
Conclusions on the basis of examples

Numerical procedures and solutions are reviewed in the
surveys by Ding (1986) and Haftka and Grandhi (1986).
Among the results obtained with ODESSY (see Ras-
mussen and Lund 1997), we find a brake arm and sev-
eral 3D-models. It is interesting to note that also for
these problems, with one load case and stress constraints
only, we obtain uniform reference stress at least within
the given geometrical limits. The general result for the
examples are uniform energy density at the designed
boundary shape, independent of model dimension, model
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anisotropy, model nonlinearity, model loads, and model
objective (compliance or stress concentration). In the
next section it is our goal to obtain a proof of this general
behaviour.

3
Theoretical results

In this section we shall set up the conditions for ob-
taining the same optimal shape with the three differ-
ent objectives: minimum energy concentration (strongest
design), minimum compliance (stiffest design) and uni-
form energy density. We shall extend earlier results to
cover anisotropic, nonlinear elastic behaviour for inhomo-
geneous structures with one arbitrary load case. As will
be noted, the derivations are kept on the energy level
without involving specific stress/strain calculation.

The theoretical results for size optimization are more
developed than for shape optimization. Let us therefore
start with some basic knowledge from size optimization,
as can be seen in the paper by Pedersen (1998) for non-
linear elasticity and in the paper by Wasiutynski (1960)
for linear elasticity. If the objective is to minimize compli-
ance (extremize elastic energy) for given total mass, then
from Pedersen (1998) we have: for optimal stiffness design
with homogeneous assumptions the ratio between subdo-
main energy and subdomain mass should be the same in all
the design subdomains.

Let the design parameters be hi, then homogeneous
mass relations are obtained with M =

∑
hmi Mi, where

M is the total mass, m is a given positive value andMi

are independent of the design parameters. The homoge-
neous energy relations are obtained with U =

∑
hni Ui,

where U is the total strain energy, n is a given positive
value and the Ui are explicitly independent of the design
parameters. Then restricted to problems with constant
mass density we obtain, in all design domains, the same
mean energy density. Furthermore, if the model has con-
stant energy density within a design domain, then the
result u∗ for the optimal design will have uniform energy
density u, i.e.

u∗i = u for all free design domains i , (1)

where lower and upper size constraints are not reached.
For any other design the total energy U is larger

U =
∑

uiVi >U∗ = uV = u
∑

V ∗i =

u
∑

Vi =
∑

uVi , (2)

where V is the total volume (of free domains) and V ∗i is
the optimal volume of the design domain i. For an alter-
native design with design volumes Vi we have the same
total volume V =

∑
Vi =

∑
V ∗i . From (2) we have∑

(ui−u)Vi > 0 . (3)

With positive volumes Vi we read from (3) that at least
one ui will not be less than u. Thus if the strongest de-
sign is defined by min(max ui), then the stiffest design
characterized by the optimality condition (1) will also be
the strongest design. We note again that the strength may
also be defined in relation to the von Mises stress or an
alternative effective stress, and these measures are not al-
ways proportional to the energy density. For a detailed
discussion of these aspects see Pedersen (1998).

In the following we shall use the same kind of reason-
ing to draw conclusions about shape optimization, with-
out involving a solution to the actual stress problem.
Thus the knowledge gained will be general, valuable for
3D as well as 2D problems, for nonlinear as well as for lin-
ear problems, for anisotropic as well as for isotropic prob-
lems, for any external load, for inhomogeneous as well
as for homogeneous problems, and independent of the
solution procedure. In order to simplify the mathemat-
ics, the design parametrization is chosen as illustrated
in Fig. 3. An alternative parametrization with expansion
in terms of shape design functions is formulated by Dems
and Mroz (1978), a paper closely related to this one. We
assume a homogeneous state for the energy density ui
within the volume Vi related to the shape parameter hi.
Let us now subject the shape to variation from only two
parameters hi and hj . Furthermore, let the total volume
V of the structure (continuum) be fixed, then

∆V =
∂V

∂hi
∆hi+

∂V

∂hj
∆hj =

dVi
dhi

∆hi+
dVj
dhj

∆hj = 0 , (4)

because we also assume the domain values to be depen-
dent only on one design parameter with a positive gradi-
ent (to be used later),

Vi = Vi(hi) and dVi/dhi > 0 . (5)

Fig. 3 Discretized design parametrization, showing two de-
sign domains i and j

In shape optimization for extremum elastic energy
the increment of the objective for increments ∆hi, ∆hj
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is

∆U =
∂U

∂hi
∆hi+

∂U

∂hj
∆hj , (6)

which for power-law nonlinear elasticity (for 1D models:
σ =Eεq, see Fig. 1) can be written as

∆U =−
1

q

(
∂U

∂hi
∆hi+

∂U

∂hj
∆hj

)
fixed strain field

. (7)

This is proven by Pedersen (1998) for design indepen-
dent loads. Therefore only the local energies Ui = uiVi
and Uj = ujVj are involved and the variations in the en-
ergy densities ui, uj need not be determined. We have

∆U =−
1

q

(
ui

dVi
dhi

∆hi+uj
dVj
dhj

∆hj

)
. (8)

Inserting (4) into (8) we obtain

∆U =−
1

q
(ui−uj)

dVi
dhi

∆hi . (9)

A necessary condition for optimality ∆U = 0 with
dVi/dhi > 0 is therefore ui = uj. With all design param-
eters, (4) and (8) are written

∆V =
∑
i

dVi
dhi

∆hi , ∆U =−
1

q

∑
ui

dVi
dhi

∆hi , (10)

and we conclude that a necessary condition for optimality
∆U = 0 with constraint ∆V = 0 is ui equal to a con-
stant. For the stiffest design the energy density along the
shape(s) to be designed us must be constant

us = u . (11)

We now relate the stiffest design (minimum compli-
ance) to the strongest design (minimum maximum energy
density). Let us assume that the highest energy density
is at the shape to be designed. With index s referring to
shape design domains and index n referring to domains
not subjected to design changes, this means that for the
stiffest design we assume

u= us > un . (12)

A design domain (index s) that depends on design par-
ameter hs and a design domain which is not subjected
to design change (index n) are shown in Fig. 4. The total
elastic energy U is obtained from

U = US +UN =
∑
s

Us+
∑
n

Un =

∑
s

usVs+
∑
n

unVn = u
∑
s

Vs+
∑
n

unVn . (13)

With unchanged domains n from U > U∗ we obtain∑
s

usVs+
∑
n

unVn >
∑
s

uV ∗s +
∑
n

u∗nV
∗
n ,

i.e.
∑
s

(us−u)Vs >
∑
n

(u∗n−un)Vn , (14)

as
∑
uV ∗S =

∑
uVS and V ∗n = Vn.

Fig. 4 Illustration of a shape related domain with energy
density us and volume Vs. With index n a domain not con-
nected to the boundary and thus with fixed volume Vn

The right-hand side might be negative, so we cannot
conclude as from (3). However, in a complementary fo-
rumlation we can prove that the right-hand side is zero
and then the proof holds as from (3). The proof of increas-
ing energy in the shape domain is as follows. We write
the total stress energy UC as the sum of stress energy in
the shape domain UCS and stress energy in the nonshape
domain UCN and obtain

UC = UCS +UCN ⇒
dUC

dh
=

dUCS
dh

+
dUCN
dh

. (15)

From dUC/dh= (∂UC/∂h) in a fixed stress field (prin-
ciple of complementary virtual work) we have

dUC

dh
=

(
∂UCS
∂h

)
fixed stress field

+

(
∂UCN
∂h

)
fixed stress field

,

(16)

where the last term will be zero when h has no direct in-
fluence on the nonshape domain. Finally for the stiffest
design we have dUC/dh > 0 and thereby conclude(
∂UCS
∂h

)
fixed stress field

=
dUCS
dh

=
1

q

dUS
dh

> 0 . (17)

Summarizing the theoretical results of this section,
for the general three-dimensional case with anisotropic,
power law nonlinear elastic material in an inhomogeneous
structure, and for any design independent load case we
have that
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Fig. 5 A three-parameter (α, β, η) description of an internal central hole in a rectangular domain

– the minimum compliance shape design (stiffest shape
design) will have uniform energy density along the
designed shape, as far as the geometrical constraint
makes this possible;

– if we furthermore assume that the highest energy den-
sities are found at the designed shape, then the stiffest
design will also be the strongest design, as defined by
a design which minimizes the maximum energy dens-
ity.

Note that these results are obtained without calcu-
lating the stress/strain fields and without specifying the
constitutive behaviour. This behaviour need not be ho-
mogeneous and thus we can also include the multimate-
rial case. The many different problems in Sect. 2 support
these results.

4
A simple parametrization and optimality criterion

In the theoretical results we have added a note “as far as
the geometrical constraints makes this possible”. Also it
was commented that normally the shape parametrization
implies such geometrical constraints. In the following two
sections we shall illustrate the importance of such a shape
parametrization, and at the same time present an alterna-
tive solution procedure for problems in material design.

The problem of material design for maximum bulk
modulus (see the Appendix) has been studied in a num-
ber of papers by Vigdergauz, as referenced and explained
by Grabovsky and Kohn (1995). Related to this we shall
discuss in more detail the two-dimensional problems
where the shape of an internal, central hole in a rectangu-
lar domain is designed.

The primary parameters of the problem are shown
in Fig. 5 and the three-parameter shape of the hole is de-
scribed by

( x

αA

)η
+

(
y

βB

)η
= 1 , (18)

i.e. a superelliptic shape. With the known area of the
hole we have two parameters and if futhermore symme-
try is enforced, α= β, we only have one parameter, say η.
The great flexibility even for this one-parameter descrip-
tion is shown in Fig. 6. This parametrization naturally
has its limitation, but for small as well as for large holes
(α⇒ 0 or 1 and β→ 0 or 1), the parametrization gives
well-known solutions. Thus we have great expectations
and futhermore the extension to 3D-problems is straight-
forward,( x

αA

)η
+

(
y

βB

)η
+

(
z

γC

)η
= 1 . (19)

The area of the hole is

4

αA∫
0

βB
[
1−
( x

αA

)η]1/η
dx= 2αβABg(η) ,

Fig. 6 Shapes giving equal relative volume density ρ= 0.75
corresponding to shape powers η = 0.75, 1.25, 1.75 and 3.00
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with

g(η) := Γ

(
1

η

)
Γ

(
η+ 1

η

)
/Γ

(
2

η

)
, (20)

where Γ is the Gamma-function. With the rectangular
area being 4AB the relative area of the hole φ (relative to
the area 4AB) and the relative area of the solid ρ are

φ=
1

2
αβg(η) = 1−ρ . (21)

An optimal design problem is formulated in order to
extremize the elastic energy U for the constant relative
area

extremize U subject to φ(α, β, η) = φ . (22)

That this problem includes some of the Vigdergauz prob-
lems follows from the Appendix.

Within the possibilities of the three parameters α, β,
η, this will also minimize energy concentration and return
constant energy density along the boundary of the hole,
as discussed in the previous section. Using the result (7)
from sensitivity analysis we determine the differential of
the elastic energy (q = 1 for linear elasticity)

dU =−
1

q

(
∂U

∂α
dα+

∂U

∂β
dβ+

∂U

∂η
dη

)
fixed strains

, (23)

and the differential of the constraint follows from (21)
(with application of Mathematica to differentiate the
Gamma-functions)

dφ= φ
[
dα/α+dβ/β+p(η)dη/η2

]
,

with

p(η) := 2Ψ(2/η)−Ψ(1/η)−Ψ [(η+ 1)/η] , (24)

where Ψ is the Psi-function. To illustrate that the func-
tions g(η) and p(η) are well-behaved functions, we show in
Figs. 7 and 8 these functions, available in Mathematica as
well as in Fortran libraries.

The condition of dU = 0 when dφ = 0 is a necessary
condition for optimality and thus (as in general with only
one constraint) from (23) and (24) we obtain the optimal-
ity criterion by proportional gradients, i.e.

[
α∂U/∂α= β∂U/∂β = η2(∂U/∂η)/p(η)

]
fixed strains .

(25)

In a fixed strain field the energy densities u are con-
stant and only the volume of domains (elements) con-
nected to the hole boundary will change. Thus in a finite

Fig. 7 The g-function and its derivative as a function of the
shape power η

Fig. 8 The p-function and its derivative as a function of the
shape power η

element formulation the optimality criterion (25) is writ-
ten

α
∑
s

us
∂Vs

∂α
= β

∑
s

us
∂Vs

∂β
=

η2

p(η)

∑
s

us
∂Vs

∂η
, (26)

where index s refers to an element connected to the hole
boundary. The only information needed in addition to
the results from analysis is ∂Vs/∂α, ∂Vs/∂β and ∂Vs/∂η,
i.e. only information from geometry. We note, in agree-
ment with Sect. 3, that if us is constant along the hole
boundary then

∑
∂Vs/∂α = ∂V/∂α = φ/α etc., and the

optimality criterion (25) is satisfied by usφ= usφ= usφ.
Thus a constant energy density along the boundary of
the hole implies stationary total elastic energy. However,
we can have stationary energy without constant energy
density, if the possible designs are restricted. This will be
illustrated in the next section.

The problem is how to find a boundary shape that
satisfies (25) or in finite element formulation (26). The
heuristic approach of successive iterations could be to es-
timate the Lagrange multiplier λ by the mean value

λ=
1

3

[
α
∂U

∂α
+β

∂U

∂β
+η2 ∂U

∂η
/p(η)

]
, (27)
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and then redefine α, β, and η by

αnew = λ/(∂U/∂α)old , βnew = λ/(∂U/∂β)old ,[
η2/p(η)

]
new

= λ/(∂U/∂η)old , (28)

with iterations on λ to satisfy the constraint of (22)

φnew =
1

2
αnewβnewg(ηnew) = φ . (29)

Let us assume that the three-parameter boundary
shapes do not in a satisfactory way give constant energy
density along the boundary shape, i.e. the energy concen-
tration must be made smaller. We can then add modifi-
cation functions fi(s) where s is the natural coordinate
of the three-parameter description, and the functions fi
for i= 1, 2, . . . are chosen as described by Pedersen (1988)
and used by Pedersen et al. (1992). The added design
parameters will be the amplitudes ci of the modification
functions and gradients ∂φ/∂ci or ∂Vs/∂ci must be eval-
uated, numerically or eventually analytically. Better solu-
tions to problem (22) can then be obtained. Alternatively
we may formulate the problem directly as a minimum en-
ergy concentration problem,

min
α,β,η,ci

( max
all elements

ue) ,

subject to φ(α, β, η, ci) = φ . (30)

Solutions can be obtained with the integrated FEM-
SLP approach (see Pedersen 1981). With the modifica-
tion functions we also have the possibility of introducing
discontinuities in the slope of the boundary shape.

5
Examples

Based on finite element modelling and the application
of the optimality criterion method (25)–(29) specific ex-
amples are shown. The goal is to illustrate the versa-
tility of the simple parametrization and the possibility
of solving also problems with anisotropic and nonlinear
material.

Even when we restrict ourselves to the central hole
design in Fig. 5, many aspects are involved. Most of the
following examples will be covered:

– quadratic domains (A=B)
– rectangular domains (A 6=B)
– different relative densities (0 < φ< 1)
– forced displacements at the external boundaries (vx

at x = A and vy at y = B for a model in quadrant
one)

– specifically forA=B the case vx = vy (pure macro di-
latation)

– prescribed stresses (loads) at the external boundaries
(σxx at x=A and y =B)

– specifically marco hydrostatic loads for A = B in the
case σx = σy

– isotropic material with influence from Poisson’s
ratio ν

– nonlinear power-law material behaviour
– orthotropic material behaviour

The first case is related to the problem of optimizing
the two-dimensional “bulk” modulus κ, which is the en-
ergy density when isotropic material is subjected to pure
dilatation (see the Appendix). For this case we impose

A=B , α= β , vx = vy , linear isotropic material,
(31)

and solutions are found in the parameter space of η =
η(φ, ν) with solution

κ= umean = U/(4tAB) , (32)

where t is the constant thickness of the elements.

5.1
A one-parameter study

Without a primary interest in optimization we shall first
perform a parameter study with a given relative volume
density ρ= 0.5. Changing the shape parameter η and ad-
justing the relative axesα= β to satisfy 2(1−ρ) = α2g(η)
we obtain the results shown in Fig. 9 in terms of the
“bulk” modulus (mean elastic energy density) and also
showing the minimum and maximum energy densities
along the hole boundary.

For this study we conclude that the bulk modulus is
rather insensitive to the design details, but the concen-
tration of energy density is very sensitive. This may tell
us to primarily formulate the optimization as a min-max-
energy density problem. The three different aspects

1. maximum bulk modulus = minimum compliance
2. minimum maximum energy density ≈minimum max-

imum stress
3. minimum variation of energy density along the bound-

ary hole

are obtained at three different, although close, shape
parameters η. This is due to the one-parameter retric-
tion and for a free parameter design, these three as-
pects would have been obtained simultaneously. With re-
stricted parametrization the most important problem to
solve is the min-max-energy density problem.
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Fig. 9 Bulk modulus (thick line) as a function of the shape parameter η. Also shown are the maximum (umax)s and the
minimum (umin)s energy densities along the boundary shape. Relative densities are ρ = φ = 0.5 and material by E = 1 and
ν = 0

Fig. 10 Optimal shape parameter η as a function of relative volume density ρ. Based on isotropic, zero Poisson’s ratio material
and the Hashin-Shtrikman bound is reached
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Fig. 11 Hashin-Shtrikman upper bounds on the “bulk” modulus in 2D as a function of Poisson’s ratio ν (plane stress assump-
tion), with relative mean density ρ as parameter (E1 = 0, E2 = 1)

Fig. 12 Hashin-Shtrikman upper bounds on the “bulk”
modulus in 2D as a function of the relative mean density ρ,
with Poisson’s ratio ν (plane stress assumption) as parameter
(E1 = 0, E2 = 1)

5.2
Zero Poisson’s ratio solutions

The parameter study presented above was based on zero
Poisson’s ratio, i.e. ν = 0. We shall keep this assump-
tion and show the optimal solutions for a variety of rela-
tive volume densities. The optimal shape parameter ηopt

as a function of ρ is shown in Fig. 10 together with il-
lustrations of some of the shapes. For all these solu-
tions close agreement between the three aspects of op-
timization is again found. Also these solutions return
the Hashin-Shtrikman upper bounds on the bulk modu-
lus and the shapes are in agreement with the reported
Vigdergauz shapes as far as it can be compared.

5.3
Hashin-Shtrikman bounds

Very close agreement (five digits) with the H-S upper
bounds on the bulk modulus is found for the solutions
shown in Fig. 10. With void material in the hole (E1 = 0)
this bound is given by

(κmax)bound =
ρE2

2[(2−ρ)−νρ]
, (33)

and this function is illustrated in Figs. 11 and 12. Thus
the mid-curve in Fig. 12 for ν = 0 is the bulk modulus for
the designs shown in Fig. 10.

5.4
Optimal design for nonzero Poisson’s ratio

From a physical point of view it is to be expected that
the optimal design will depend on Poisson’s ratio. How-
ever, the dependence is very weak, and is only due to
the incomplete uniform distribution of energy density
along the hole boundary. Optimal designs for different
Poisson’s ratios are presented in Fig. 13 and agreement
with bounds in Fig. 11 for ρ = 0.75 is found. Although
the present results are based on the simple one-parameter
(η) description, very close agreement with the bounds are
found.

5.5
Optimality criterion iterations

Let us return to the optimization procedure as pre-
sented in Sect. 4. To illustrate the generality we shall
treat biaxial forced displacements with displacement in
the x1-direction being twice the displacement in the x2-
direction. This means that the mean principal strains
are related by ε1 = 2ε2. In Fig. 14 we show the results
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Fig. 13 Hashin-Shtrikman upper bounds on the “bulk” modulus in 2D as a function of Poisson’s ratio, together with the optimal
solution for a one-parameter shape with relative density 0.75

when starting from α = 2β and η = 0.2 or 0.3, assuming
ρ= 0.75.

We again note that the total energy (compliance) is
rather insensitive to design changes, in contrast to the
uniformity of the energy densities along the hole bound-
ary. Note also that the two starting designs with almost
the same compliance have quite different maxima of en-
ergy densities, 2.05 and 1.66.

5.6
Optimal design with nonlinear elasticity

Next we illustrate that solutions can also be obtained
with nonlinear elasticity (in 1D: σ = Eεq). The optimal
designs are close to the solution with linear elasticity, but
there is a minor influence. Again this might be due to the
incomplete uniform distribution of energy density. A re-
sult is illustrated in Fig. 15. Note that in designs which
allow for a completely uniform energy density (say thick-
ness design) the optimal design will be independent of the
power of the nonlinearity (see Fig. 1). This is proven by
Pedersen and Taylor (1993). Thus the influence of non-
linearity for shape design must come from the nonuni-
form energy density, when we go away from the boundary
shape.

6
Conclusions

From a theoretical point of view the main conclusions
are that the minimum compliance shape design (stiffest

shape design) will have uniform energy density along
the designed shape, as far as the geometrical constraints
make this possible. If we furthermore assume that the
highest energy densities are found at the designed shape,
then the stiffest design will also be the strongest design, as
defined by a design which minimizes the maximum energy
density.

To study the influence from parametrization we have
focussed on the micromechanics problem of shape de-
sign for maximum bulk modulus. With a one-parameter
parametrization we can describe the optimal shape and
close agreement with the Hashin-Shtrikman (H-S) upper
bounds are obtained. Results directly as a function of the
relative volume density are presented.

Then results for nonlinear elasticity were presented
and also examples with nonequal principal mean strains
were shown. In general, the approach of the present paper
is also valid for anisotropic behaviour, for nonlinear elas-
ticity, for inhomogeneous or several materials, and for
general load cases. In follow up studies we will extend the
examples.

In relation to load cases it should be noted that the
case of bulk modulus maximization is formulated with
forced displacements of the cell external boundaries, be-
cause the boundary stresses are unknown. However, even
for this case the sensitivity analysis gives all the main as-
pects, such as the simple optimality criterion derived.

A few aspects related to the stress distribution should
be mentioned. In relation to fatigue, not only the max-
imum stress is important but also the size of the domains
where these stresses are found is important. The paper
by Lund (1998) shows this aspect of optimal design for-
mulation. Especially in optimal design with anisotropic
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Fig. 14 Boundary strain energy density plot for a two-
parameter optimal design of the case with ε1 = 2ε2. From
two different starting designs and with relative volume density
ρ= 0.75

material we have noted resulting stress fields with high
stress gradients. This might also be critical and then con-
straints on stress gradients need to be incorporated. With
the tools available this is possible from a numerical point
of view, but it is outside the goal of this paper.

In a follow up paper we shall concentrate on the prob-
lem of minimum energy concentration and study the dif-
ference between solutions to given boundary stresses and
to given boundary displacements.
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Appendix: Bulk modulus, energy density and
eigenvalues

Here we shall concentrate on isotropic cases and give
some comments to the relations between energy density,
bulk modulus and eigenvalues for consititutive matrices.
In the three-dimensional case, only for the principal com-
ponents we have for {σ}= [L]{ε},

[L] =
E(1−ν)

(1 +ν)(1−2ν)

1 ν̃ ν̃
ν̃ 1 ν̃
ν̃ ν̃ 1

 , ν̃ :=
ν

1−ν
, (34)

and for a pure hydrostatic stress state σ and a pure dilata-
tional strain state

{σ}= {σ, σ, σ} , {ε}= {ε, ε, ε}/3 , (35)

because dilatation ∆V/V is (ε+ ε+ ε)/3 = ε.
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The bulk modulus K is physically defined as the ratio
σ/ε, i.e. from (34) and (35)

σ =
E(1−ν)

(1 +ν)(1−2ν)
(1 + 2ν̃)

1

3
ε=

E

3(1−2ν)
ε

⇒ K =
E

3(1−2ν)
. (36)

The strain energy density u1 for {ε} = {1 1 1}/
√

3
gives

u1 =
1

2
{ε}T [L]{ε}=

E

2(1−2ν)
. (37)

The largest eigenvalue λmax of the constitutive matrix
[L] is 3K, and thus for the 3D-case we have

K =
2

3
u1 =

1

3
λmax =

E

3(1−2ν)
. (38)

(The eigenvector corresponding to λmax is {ε}= {1 1 1}/√
3.)

The “bulk” modulus κ is the two-dimensional case de-
pends on the modelling from 3D to 2D and thus has a less

physical definition. With a plane stress assumption we
have for {σ}= [C][ε]

[C] =
E

1−ν2

[
1 ν
ν 1

]
,

{σ}T = {σ σ} , {ε}T = {ε ε}/2 , (39)

and with the definition κ= σ/ε we have

κ=
E

2(1−ν)
. (40)

The strain energy density u1 for {ε}T = {1 1}/
√

2
gives

u1 =
1

2
{ε}T [C]{ε}=

E

2(1−ν)
, (41)

and the largest eigenvalue λmax (with the eigenvector
{ε}T = {1 1}/

√
2) is

λmax =
E

(1−ν)
. (42)

Thus the relation for the 2D-case is

κ= u1 =
1

2
λmax =

E

2(1−ν)
. (43)


