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Optimization of acoustic response — a numerical and
experimental comparison

M. Tinnsten

Abstract Acoustic optimization within structural dy-
namics involves automatic changes of structural design
variables such as geometric dimensions, shell thickness,
material parameters, fiber density and orientation angles,
and others to obtain minimum noise or a specified sound
quality in specified regions inside or outside the struc-
ture. The objective of the present paper is to compare
numerical optimization results with experimental ones.
The analysed structure is geometrically simple; a closed
cylinder. The objective function is the sound intensity
at specified points outside the structure. The variable
used is the shell thickness. The structural dynamic be-
haviour is analysed with the finite element method and
the acoustic analysis is performed with the boundary
element method.

1
Introduction

To reduce the development time and cost and to make
simulations for new products possible, it is today ne-
cessary to use a number of numerical tools in the de-
sign process. Computer aided engineering, CAE has be-
come a natural part of the design process which uses
numerical and computer based tools/methods. Natural
tools/methods in CAE are, among others, CAD (com-
puted aided design), CAM (computed aided manufac-
turing), and FEM (finite element method). The use of
modern optimization tools in conjunction with the above
has increased in recent years. A very simple and straight-
forward problem formulation for optimization together
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and Division of Computer Aided Design, Lule̊a University of
Technology, SE-971 87 Lule̊a, Sweden
e-mail: Mats.Tinnsten@ter.mh.se

with stress analysis could be: minimize the structural
weights such that the maximum stresses in the struc-
ture do not exceed some given value. Or the other way
around: minimize the maximum stress in the structure
such that the weight does not exceed some given value.
The present paper deals with optimization in relation to
acoustic response. The necessity to determine and con-
trol the sound field generated by vibrating mechanical
structures has gained in importance. As machines, espe-
cially in the vehicle industry, become lighter in weight,
i.e. as the ratio between stiffness and weight increases,
the problem with noise generation increases. Low noise
has also become a competitive factor for products on the
market. By optimization of acoustic response, that is, the
optimization of the sound field generated by vibrating
structures, a minimization of noise is usually meant. How-
ever, not all vibrating structures produce noise; a mu-
sical instrument, for example, produces a sound field
called music and a great effort is therefore made to op-
timize the sound, i.e. to get the right sound out of the
structure. Also in industrial machines it is sometimes
desirable to obtain a certain quality of the sound pro-
duced, for example a Ferrari should sound like a Ferrari
and not like a sewing machine. A typical formulation of
a problem involving acoustic response could be: min-
imize the sound intensity in a certain domain in the
surroundings of the vibrating structure such that the
structural weight does not exceed some given value. If
we also apply stress analysis to the problem the resul-
tant multidisciplinary optimization task could be for-
mulated as: minimize the structural weight such that
the sound intensity in certain domains and the max-
imum stress in the structure do not exceed some given
values. A more thorough discussion of the formulation
of optimization problems involving acoustic response is
given by Christensen et al. (1998a,b). In order to cal-
culate acoustic-related quantities, such as sound inten-
sity in an open or closed domain, a code based on the
boundary element method (BEM) has been developed
(see Tinnsten 1994; Tinnsten et al. 1998). The BEM
code is linked together with a modified version of the
finite element code FEMP (see Nilsson and Oldenburg
1983) and the optimization code MMA (see Svanberg
1987, 1993) to achieve an acoustic optimization program
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Fig. 1 The acoustic optimization process

which involves structural design changes in an automatic
fashion. The idea of this process is shown schematically
in Fig. 1.

MMA has been used with great success for a variety
of problems (see Esping 1995). There are many optional
ways with which to change the sound field emanating
from a vibrating structure. Discrete masses, with re-
spect to weight and location, can equally well be used
as optimization variables (Constants et al. 1998; St.
Pierre and Koopmann 1995; Christensen et al. 1998a,b).
In shell structures the thickness can serve as variable
(Belegundu et al. 1994; Lamancusa and Eschenauer
1994). Optimization involving fiber-reinforced material
offers many possible choices of variables. The fiber di-
rection can be fixed and the variable can be the vol-
ume fraction between fiber and matrix (Lamancusa and
Eschenauer 1994). Or the volume fraction can be con-

stant and the fiber direction chosen as variable (Tinnsten
et al. 1998).

The BEM code for acoustic calculations has, when
compared with analytical and experimental results,
proven to be satisfactory (see Tinnsten et al. 1998). The
process of acoustic optimization has been implemented
and tested in an earlier study (see Tinnsten et al. 1998).
The test cases there in had the geometry of a rectangular
box with the dimensions: length = 0.4 m, width = 0.2 m,
and height = 0.1 m, according to Fig. 2.

Fig. 2 Test structure for earlier study

The material in the structure was orthotropic with
Young’s modulus: E1 = 14554 and E2 = 1022 MPa (white
spruce). The excitation forces were perpendicular to the
top surface (z = 0), harmonic and in phase with each
other, and applied from the middle of edge 2 to the middle
of edge 4 according to Fig. 2. In the response analysis of
the top surface (the only moving part in the model) edges
1 and 3 were simply supported and edges 2 and 4 were
free. This simulates a very soft connection of edges 2 and 4
to the walls on the model and that the walls are very weak
in bending. The optimization problem was formulated
as: minimize the sound intensity such that the structural
weight does not exceed a given value. The objective func-
tion (sound intensity) was calculated 0.1 m directly above
the centre of the box (x, y, z = 0.2, 0.1, 0.1 m). The vari-
ables used were plate thickness at nodes, and the fiber
orientation angle, of the top surface. The four different
analyses performed gave satisfactory results. In one of
the analyses, the frequency of the excitation forces was
constant and below the lowest eigenfrequency and the
variables were the plate thickness at nodes on the top sur-
face. The fiber orientation was fixed so that E1 coincided
with the x-axis. The initial thickness was t = 6 mm and
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the lower and upper limit for the thickness was 5 ≤ t ≤
15 mm. The analysis converged rather quickly, according
to Fig. 3.

Fig. 3 Iteration history. Sound intensity in [dB] (objective
function) versus no. of iterations

The objective function decreased from 81.7 dB to
53.8 dB at optimum. The structural weight increased by
80%, reaching its upper limit, and the plate stiffness in-
creased by approximately 265%. The plate thickness at
optimum is shown schematically in Fig. 4.

Fig. 4 Plate thickness at optimum

It seems reasonable that the analyses try to push the
eigenfrequencies as far as possible from the frequency of
the excitation forces. The plate thickness at optimum in-
dicates that the allowed structural weight is distributed
in such a way that it affects the intensity calculation at
most. These analyses were not compared with analytical
results or experimental measurements. The present inves-
tigation is mainly concerned with the comparison of the
results from numerical acoustic optimization and from
experimental measurements.

2
Problem definition

Earlier results, discussed above, indicated that the idea
of the automatic acoustic optimization process seems to
hold. In order to, as far as possible, eliminate problems
associated with geometrical complexity, the chosen geom-
etry for the comparison between numerical and experi-
mental results is simple. The optimization analysis is per-
formed on a structure that has the form of a cylinder with
top and bottom plates as in Fig. 5.

Fig. 5 Structure used in the numerical calculations

For the numerical calculations a cylindrical structure
according to Fig. 5 is used, with diameter D = 200 mm
and height H = 100 mm. The initial thickness t is con-
stant over the surface. The structure consists of two ma-
terials, steel and aluminum; the cylindrical wall is of steel,
the top and bottom plates of aluminum with Young’s
modulus E = 70 GPa, Poisson’s ratio ν = 0.3, and dens-
ity ρ= 2750 kg/m3. The cylindrical wall and the bottom
plate are much stiffer than the top plate so they are mod-
elled as rigid in the numerical analysis. The top plate is
excited with a harmonic force applied perpendicular to
the surface at its centre. The optimization problem is for-
mulated as

min
x
I(x) ,

such that

w(x) ≤ w , xj ≤ xj ≤ xj ; j = 1, j .

That is, minimize the sound intensity I(x) perpen-
dicular to the top surface in such a way that the structural
weight w(x) does not exceed the upper limit w, where
xj are the design variables with lower limit xj and up-
per limit xj . The optimization process is carried out in
two different cases, one where the top plate edge is free
(Case 1) and one (Case 2) where the top plate edge is
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clamped. The objective function, the sound intesity, is
in each case computed in one point above the top plate.
In Case 1 the intensity is computed in the point (35, 35,
100 mm) and in Case 2 in the point (7, 7, 100 mm). The
structure is discretized in a symmetric manner with con-
stant triangular element. The discretization of the top
plate is shown in Fig. 6.

Fig. 6 Discretization of top plate

As can be seen in Fig. 6 the nodes are collected at
six different radii on the top plate. These radii are: R =
0, 20, 40, 60, 80, and 100 mm. For manufacturing purposes
the thicknesses are held constant in the circumstantial di-
rection. The design variables are the thicknesses at the
different radius, i.e. variable one is the thickness at the
centre, variable two at radius R = 20 mm, variable three
at radius R = 40 mm, and so on. This means that the
optimization problem has six variables (J = 6). Figure 7
shows an axisymmetric picture of the top plate together
with the design variable x1−x6.

3
Experimental setup

For comparison with the numerical calculations experi-
ments on the structure were performed. The experimental
setup is sketched in Fig. 8.

The experimental setup consisted of: Pos. 1: imped-
ance head B&K type 8001 measuring force and accelera-
tion; Pos. 2: vibrator model 200 (Ling Dynamic System);
Pos. 3: steel cylinder with outer diameter 204 mm, height
350 mm, and thickness of material 9.5 mm; Pos. 4: alu-
minum top plate, with the initial thickness of 3 mm, and
optimum thickness according to Cases 1 and 2 in Table 1
and Fig. 12; Pos. 5: foam rubber with thickness of 70 mm;
Pos. 6: soft insulating mat, thickness approximately
50 mm; Pos. 7: aluminum bottom plate, thickness 10 mm;

Fig. 7 Axisymmetric picture of top plate with design vari-
ables. Dimensions in [mm]

Fig. 8 Experimental setup. Pos. 1: impedance head. Pos. 2:
vibrator. Pos. 3: steel cylinder. Pos. 4: aluminum top plate.
Pos. 5: foam rubber. Pos. 6: soft insulating mat. Pos. 7: thick
aluminum bottom plate. Pos. 8: heavy coach work mat

and Pos. 8: heavy coach work mat, thickness 4 mm, glued
to the steel cylinder. The remaining empty space in the
steel cylinder was filled with a lightweight, woolly damp-
ing material. The impedance head was calibrated with
B&K 4291. The force and acceleration signals were ampli-
fied with B&K 2635 before entering the dual channel FFT
analyzer B&K 2032. The intensity was measured perpen-
dicular to the top plate at specified points. The intensity
probe used was B&K 3519, calibrated with B&K 3541.
The signal from the intensity probe was amplified with
B&K 2804 before entering the 16-channel measurement
system (LMS CADA-X with a HP Paragon front end).
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Table 1 Objective and variable values

Values on objective function and variables

Case 1 (free) Case 2 (clamped)

Var./
obj. fun. initial optimal initial optimal

x1 [mm] 3.0 2.0 3.0 2.0
x2 [mm] 3.0 2.0 3.0 10.0
x3 [mm] 3.0 2.0 3.0 5.3
x4 [mm] 3.0 6.1 3.0 2.0
x5 [mm] 3.0 2.4 3.0 2.0
x6 [mm] 3.0 2.9 3.0 2.0
I [dB] 83.6 79.6 109.7 95.0
∆I [dB] 4.0 14.7

Two different cases were measured; Case 1 where the
top plate edge (4. in Fig. 8) was free in the numerical an-
alysis and Case 2 where the top plate edge was clamped
in the numerical analysis. For both cases two measure-
ments were performed with the same boundary condition:
one with initial thickness (3 mm) and one with optimal
thickness of the top plate, according to the numerical re-
sults in Table 1. In all measurements the impedance head
was joined to the centre of the top plate mechanically
(screwed). In order to simulate the free case (Case 1), the
top plate was placed on three short, thin (�= 0.6 mm).
wires which were attached to the end face on the top of
the steel cylinder with a soft adhesive polymeric paste
(Plastic Padding art. no. 415) in an axisymmetric man-
ner according to Fig. 9. To avoid sound leakage from the
interior of the cylinder an elastic rubber tape (vulcan-
ization tape) was affixed over the gap between the top
plate and the steel cylinder (see Fig. 9). To simulate the
clamped case (Case 2), the edge of the top plate was glued
with epoxy cement to the end face on the top of the steel
cylinder.

4
Result

4.1
Numerical results

The optimization process was performed for two cases.
In both cases the cylindrical wall and the bottom plate
were modelled as rigid, i.e. the only moving part in the
model was the top plate. Due to the discretization, illus-
trated in Fig. 6, the model of the top plate is not axisym-
metric. The normal velocity for the BEM element at the
top plate was determined by the response analysis in the
FEM code, for all other elements in the model the normal
velocity was given as zero. In both cases the excitation
force was harmonic, perpendicular to the top plate with
the amplitude 2.0 N, and applied at the centre of the sur-
face. In the first case the edge of the top plate was free in

Fig. 9 Experimental setup for Case 1 (free). Pos. 1: wire of
diameter 0.6 mm. Pos. 2: top plate. Pos. 3: soft rubber tape.
Pos. 4: steel cylinder. Pos. 5: soft adhesive polymeric paste

the response analysis and in the second case the edge was
clamped. Proportional damping is included in the analy-
sis as [C] = α× [K]. In Case 1 the frequency of the excit-
ing force was 600 Hz, the sound intensity (the objective
function) was calculated at the point (35, 35, 100 mm),
and the damping factor α was given the value 1.0×10−4.
In Case 2 the frequency of the exciting force was 700 Hz,
the intensity was calculated at the point (7, 7, 100 mm),
andα= 1.0×10−5. In both cases a weight increase of 10%
was allowed. The initial thickness t of the top plate had in
both cases the constant value of 3 mm (constant distribu-
tion). The lower limit for the plate thickness was in both
cases 2 mm. The iteration histories for the two cases are
given in Figs. 10 and 11.

The sound intensity decreased from an initial 83.6 dB
to 79.6 dB at optimum (∆I1 = 4.0 dB) in Case 1 and from
109.7 dB to 95.0 dB (∆I2 = 14.7 dB) in Case 2. The thick-
ness and the value for the objective function at optimum
are given in Table 1 and sketched in Fig. 12.

4.2
Experimental results

The intensity was measured perpendicular to the top
plate, which in this case was axisymmetric, 100 mm above



127

Fig. 10 Iteration history for Case 1 (free). Sound intensity in
[dB] (objective function) versus no. of iterations

Fig. 11 Iteration history for Case 2 (clamped). Sound inten-
sity in [dB] (objective function) versus no. of iterations

it (z = 100 mm in Fig. 5), and 49.5 mm from the centre-
line in Case 1 and 9.9 mm from the centreline in Case 2,
according to Figs. 5 and 12. For each radii the intensity
was measured at three points; the mean value was then
used in the comparison with the numerical result. In both
cases the excitation force was harmonic with the ampli-
tude of 2.0 N. The frequency of the excitation force was
600 Hz in Case 1 and 700 Hz in Case 2. The results from
the measurements are presented in Tables 2 and 3.

5
Discussion and conclusions

A comparison study of numerical acoustic optimization
results and experimental results has been performed. To
make the comparison as unambiguous as possible, the
structural geometry studied was simple, a closed cylin-
der. The wall and the bottom plate of the cylinder were
modelled as rigid, i.e. the only moving part in the model

Fig. 12 Axisymmetric figure of top plate with sketched re-
sults from optimization process. Dimensions in [mm]

was the top plate. The top plate was excited at its cen-
tre with a constant force and at constant frequencies. The
variables used were the top plate and the sound intensity
(the objective function) were calculated and measured at
specified points above the top plate. The optimization
problem was formulated as: minimize the sound intensity
at a specified point such that the structural weight of the
top plate does not increase by more than 10%. A compar-
ison of numerical and experimental results was performed
for two different cases; one where the edge of the top plate
was modelled as free (Case 1) and one where the edge of
the top plate was modelled as clamped (Case 2). In both
cases the excitation force was harmonic with the ampli-
tude of 2.0 N. The frequency of the excitation force was in
Case 1 (free) 600 Hz and in Case 2 (clamped) 700 Hz. The
initial thickness of the top plate was in both cases 3 mm
with uniform distribution.
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In the free case (Case 1) the calculated sound intensity
converged quite slowly from the initial value of 83.6 dB to
the value of 79.6 dB at optimum, i.e. a decrease in inten-
sity with 4.0 dB. The corresponding experimental result
was 86.1 dB at initial geometry and 838. dB (2.3 dB de-
crease) at optimal geometry according to the numerical
analysis.

In the clamped case (Case 2) the calculated sound
intensity converged quickly from the initial 109.7 dB to
95.0 dB at optimum, i.e. a 14.7 dB decrease of the inten-
sity. The corresponding experimental result was 112.4 dB
with initial thickness and 92.9 dB (19.5 dB decrease) with
optimal thickness according to the numerical analysis.
In Table 4 the comparison of measured and numerical re-
sults is presented.

Proportional damping was included in the analysis as
[C] = α× [K]. In Case 2 the top plate is lightly damped
and the damping factor α was set at 1.0×10−5. In Case 1
the damping is however more complex. Here there were
three small spots with adhesive polymeric paste between
the top plate edge and the end face on the top of the
steel cylinder. There was also an elastic rubber tape (vul-
canization tape) placed over the gap between the top
plate edge and the end face of the steel cylinder accord-
ing to Fig. 9. This case was assumed to be free which gives
large deflection at the edge of the top plate. Due to the

Table 2 Measured intensity for Case 1. Radius, R, according
to Figs. 5 and 12

Case 1 (free)

Intensity (experimental) [dB]

Point R initial optimal
[mm] thickness thickness

1 49.5 86.4 83.8
2 49.5 86.4 83.9
3 49.5 85.6 83.8
Imean 86.1 83.8
∆Imean 2.3

Table 3 Measured intensity for Case 2. Radius, R, according
to Figs. 5 and 12

Case 2 (clamped)

Intensity (experimental) [dB]

Point R initial optimal
[mm] thickness thickness

1 9.9 112.2 92.9
2 9.9 112.4 92.8
3 9.9 112.5 92.9
Imean 112.4 92.9
∆Imean 19.5

Table 4 Comparison between numerical and experimen-
tal results. 1Intensity calculated by numerical analysis.
2Measured intensity in the experiments. 3Difference between
numerical and measured intensity

Case 1 Case 2
(free) (clamped)

Intensity
[dB] initial optimal initial optimal

1Inum 83.6 79.6 109.7 95.0
2Iexp 86.1 83.8 112.4 92.9
3Inum− Iexp −2.5 −4.2 −2.7 +2.1

polymeric paste and the tape a damping factor α of 1.0×
10−4 was chosen for Case 1, i.e. ten times the damping
factor in Case 2. The damping factor had greatest influ-
ence on two numerical results, namely the top plate with
optimal thickness in Case 1 and with initial thickness in
Case 2. A reduction of the damping factor from 1.0×10−4

to 5.0×10−5 in Case 1 increased the intensity for initial
thickness with insignificant 0.3 dB but decreased the in-
tensity for optimal thickness with 2.5 dB. In Case 2, an
increase of the damping factor from 1.0×10−5 to 2.0×
10−5 gave a decrease of the intensity of 2.2 dB for initial
geometry and of 0.2 dB for optimal geometry.

In the numerical analysis of Case 2, the edge of the
top plate is clamped. To simulate this in the experiment
the edge of the top plate was glued to the end face on the
top of the steel cylinder with epoxy cement. This does not
give an absolutely clamped boundary condition. Never-
theless, since the distribution of the epoxy cement was
approximately 2–3 mm in radial direction and the top
plate is less stiff the boundary condition is assumed to
simulate a clamped condition quite well.

In the numerical analysis the only moving part of the
model is the top plate. During the experiments the sound
intensity parallel and perpendicular to the steel cylinder
were measured. The levels were insignificantly low and
are therefore not considered to contribute to the sound
intensity measured above the top plate. Another differ-
ence between the model used for the numerical analysis
and the actual structure is the hole at the centre of the
top plate in the actual structure. The purpose with the
hole was to join the impedance head to the top plate
mechanically (screwed). This hole was not present in the
numerical analysis. With a diameter of 5 mm and the esti-
mated decrease of plate stiffness approximately 2.5%, the
hole was assumed to have insignificant influence on the
results. There is also a difference in the geometry of the
top plate in the numerical analysis and in the experimen-
tal study. While the top plate is not axisymmetric in the
numerical analysis due to the discretization into constant
elements it is so in the experimental study. This difference
is dependent on manufacturing demands and may influ-
ence the response.
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6
Future considerations

In the optimization analysis some parameters are chosen
as variables and some are chosen as constants. The op-
timization process minimizes (or maximizes) a function
without violating any constraints through changes in the
variables while some parameters are held constant. In op-
timization of real structures it could be of value to do
sensitivity analyses also on the constant parameters after
the optimum is found. This to gain an idea of how sensi-
tive the structure or design is to imperfections in different
parameters.
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