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Topology optimization of continuum structures subjected to
pressure loading

V.B. Hammer and N. Olhoff

Abstract This paper presents a generalization of top-
ology optimization of linearly elastic continuum struc-
tures to problems involving loadings that depend on the
design. Minimum compliance is chosen as the design
objective, assuming the boundary conditions and the
total volume within the admissible design domain to be
given. The topology optimization is based on the usage of
a SIMP material model.

The type of loading considered in this paper occurs
if free structural surface domains are subjected to static
pressure, in which case both the direction and location of
the loading change with the structural design.

The presentation of the material is given in a 2D
context, but an extension to 3D is straightforward. The
robustness of the optimization method is illustrated by
some numerical examples in the end of the paper.

Key words Design dependent loads, pressure loading,
topology optimization

1
Introduction

The field of structural topology optimization has de-
veloped extensively in the last two decades and has suc-
cessfully addressed a variety of problems within a wide
range of applications, see e.g. Bendsøe (1995), Rozvany
et al. (1995), Olhoff and Rozvany (1995), and Gutkowksi
and Mróz (1997). However, although being very com-
mon, the class of problems where applied surface loads on
a continuum structure depend on the design of the struc-
ture itself in terms of both location and direction, seems
to be considered for the first time in the present paper (see
also Hammer and Olhoff 2000).
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The first optimum topology (layout) solutions for
loads of design dependent locations were the so-called
“Prager structures” (Rozvany and Prager 1979), see also
Rozvany (1989, pp. 330–341), and Rozvany et al. (1995)
and references cited therein. A Prager structure is a (3D
or 2D) Michell structure in which the permissible stress
for either compression or for tension tends to zero and the
loads are movable along their line of action (but not in
terms of direction as well, as in the present paper).

Design dependent loads manifest themselves in many
everyday structural design problems where the location,
size, and direction of the loading is directly coupled to
the shape or topology of the structure. As a few examples
we may mention wind and snow loading on civil engin-
eering structures; internal and external pressure loading
in pump housings and pressure containers, and on un-
derwater storage constructions, respectively; and loading
due to internal and external fluid flows in ducts, diffusers,
and turbomachinery, and around aircraft wings and fuse-
lages, respectively. For simplicity, this paper primarily
deals with the problem of optimizing a structure exposed
to static pressure loading in which case both the direction
and the location of the loading change with the design.

The outline of the paper is as follows. The basic
problem formulation of minimum compliance subject to
a constraint on the total structural volume is stated in
Sect. 2. For the problem under study, the principal exten-
sions relative to the usual topology design methodology
comprise an enhanced design model that encounters one
or more parameterized, smooth surface domains associ-
ated with a prescribed iso-volumetric density of material.
The(se) surface domain(s) serve to define the action of
the design dependent loading on the structure, and is
(are) determined by the design variables, i.e. the distri-
bution of the volumetric densities of material in the fi-
nite elements of the analysis model. How these surfaces
are defined and represented is described in Sect. 3. In
Sect. 4 the pressure applied to the iso-volumetric density
curves in the design model is related to the finite elem-
ent analysis model by derivation of the consistent nodal
forces. The optimization itself is performed by applica-
tion of a new, simple and effective fixed-point type opti-
mality criterion. This criterion is derived in Sect. 5 from
the Lagrange function of the problem, and the follow-
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ing Sect. 6 briefly presents the sensitivity analysis of the
design dependent loads. Finally, in Sect. 7 some numer-
ical examples illustrating the topology optimization are
shown.

2
Problem formulation

The problem considered in the following is the basically
classical one of distributing a limited amount of mate-
rial in the most favourable way. Figure 1 shows the de-
sign domain, Ω ∈ IR2 (or IR3), with parts being void, Ωv,
and parts containing material,Ωm ≡Ω \Ωv. The descrip-
tion is standard except for the pressure loadings p acting
on parts Γp of the surface of the material domain, Ωm.
Therefore, if the domain Ωm changes, the pressure load-
ings p change accordingly.

The compliance W of the structure is written

W (u) =

∫
Ω

bu dΩ+

∫
Γt

tu dΓ +

∫
Γp

pu dΓm , (1)

where b is the vector of body forces, t the traction vec-
tor working on Γt ⊂ Γ, Γ ≡ ∂Ω, and where the vector of
displacements u are in agreement with the prescribed dis-
placements on Γu. The last part in the expression of the
compliance yields the effect from the pressure p work-
ing on the surface Γp ⊂ Γm, Γm ≡ ∂Ωm. The optimiza-

Fig. 1 The reference domain Ω parted in domains of void,
Ωv , and material, Ωm. The pressure force p acts on one or
more parts Γp of the surface of the material domain

tion problem consists in minimizing the compliance of the
structure subject to a constraint on the volume V

min
ρ(x), x∈Ω

W (u∗) ,

s.t. V [ρ(x)] =

∫
Ω

ρdΩ ≤ V ∗ . (2)

Here, x denotes the coordinates of any point belonging
to the admissible design domain Ω, and W (u∗) is the
compliance given by the displacement field u∗ at equi-
librium. W is then the work done by the external forces,
which equals twice the total elastic energy at equilibrium.
The design variables are the volume densities of material,
0< ρ(x)≤ 1.

To enhance black and white (1-0) solutions, Bendsøe’s
(1989) approach is used, which was also derived indepen-
dently and implemented extensively in 1990 by Zhou and
Rozvany (Rozvany and Zhou 1991, presented in 1990)
who termed it SIMP (Solid Isotropic Microstructure with
Penalty, e.g. Rozvany et al. 1992). Intermediate densities
are penalized by expressing the elasticity matrix of the
SIMP material, [E], as

[E(x)] = ρ(x)n [E∗] . (3)

Here [E∗] denotes the elasticity matrix of the solid,
isotropic material for the structure and n is a penal-
ization power, 1 ≤ n ≤ 4, which is increased gradually
during the optimization process. For a Poisson’s ratio of
the solid isotropic material of e.g. ν = 1

3 , (which is the
value used throughout this study), a penalization fac-
tor of n ≥ 3 assures that the SIMP material satisfies
the Hashin-Shtrikman bounds for a two-phase material
(Bendsøe and Sigmund 1999). Furthermore, Bendsøe and
Sigmund (1999) have shown that a realization of the ma-
terial can be obtained using composites.

3
Identification and representation of the surfaces
subjected to pressure

The loading is applied to subdomains of the structural
surface of the structure. As the design configuration is
changing, the parts where the pressure loading p acts
must still be identifiable (and of course meaningful as
well).

In 2D a surface segment on which the pressure acts
is defined as a line of contour connecting two points cho-
sen a priori. These two endpoints are either defined as
fixed points in the structure (for instance associated with
a nodal boundary condition), or as points allowed to move
according to the density distribution but only along some
predefined lines, as sketched in Fig. 2. This definition im-
plies an implicit decision on the connectivity in parts of
the structure, namely that material somehow will connect
the chosen endpoints. It is thus a fundamental and crucial
assumption for the optimization, that the basic definition
of the load carrying surfaces is meaningful.

The definition of the load carrying surfaces in 3D can
be made in an analogous manner, only here the pres-
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Fig. 2 A structural domain with a pressure applied to the
material contour between the two points marked with crosses.
One endpoint is fixed whereas the other moves along a ho-
rizontal line according to the current density distribution

sure works on contour surfaces bounded by a priori chosen
curves.

The finite element method is used to perform the opti-
mization analyses. However, as is common in topology op-
timization, the finite element mesh of the analysis model
of the structure is kept unchanged throughout the op-
timization process with the drawback of yielding some-
what jagged designs. Thus a design model is needed to
describe where and how the pressure acts in the current
iteration.

3.1
The surface representation

A smooth surface representation is primarily needed in
the domains where the surface loading acts. This is ex-
tracted from the density distribution in a way following
to a large extent the work of Maute and Ramm (1994,
1995).

As the design variables (volume densities of material)
are assumed to be constant within each finite element, the
volume density of material is first calculated in every cor-
ner node as the average of the densities of all the elements
sharing the corner node. Interpolation from these corner
node values then gives a set of points {xf} where the vol-
ume densities equal a preselected value for a surface of
iso-volumetric density, ρc. Along the outer boundaries of
the structure the corner node densities are determined as
if there is a fictitious outer layer of elements with zero
density around the structure. This way and by a care-
ful choice of the surface density ρc, the surface is forced
to lie strictly inside the structural domain which is of
great advantage when performing the sensitivity analy-
sis, as the problem of nondifferentiability arises when the
line or surface of loading coincides with a finite element
boundary.

Next a set of Bézier cubic splines are used to fit these
points {xf}. The control points {xc} of the splines are
found by solving the least square problem of minimizing
the distance between the data points {xf} and the corres-

ponding points on the splines {xg}

min
{xc}

∑
i

∥∥xfi −xgi∥∥ . (4)

The necessary conditions for a minimum lead to the fol-
lowing set of equations:

[B]
T

[B] {xc}= [B]
T {xf} , (5)

where the matrix [B] contains the basis functions for the
Bézier splines. Equation (5) is solved by singular value
decomposition. The number of Bézier curves used is in-
creased gradually from one until a predefined measure of
the fit to the data points {xf} is obtained. Figure 3 illus-
trates for a 2D problem the procedure described above to
find a curve of a given iso-volumetric density.

Fig. 3 A sketch of the parametrization of a load carrying
surface based on nonuniform density distribution. (a) A 2D
design with non-uniform and discontinous density distribu-
tion. (b) Points of equal density, {xf}. (c) The fitted Bézier
curves and their control points {xc}

Alternatively, as a very fast and straightforward pro-
cedure, the piece-wise linear curve connecting the points
of equal volume density {xf} can also be used as a sur-
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face representation, although this of course often leads to
a somewhat more rough appearance.

4
Usage of the iso-volumetric density curves for load
application

The pressure loading is related to the finite element an-
alysis model as sketched in Fig. 4. All the finite elements

Fig. 4 The design model and the consistent nodal loads
on the finite element analysis model. (a) The design model.
(b) The analysis model

intersected by the curve for load application carry a part
of the loading. The curve is approximated by a straight
line in each finite element determined by its two intersec-
tion points on the element boundary (x1, y1) and (x2, y2).
In the finite element model, the element vector of consis-
tent nodal forces {Ae} is determined as the integration
along the line of loading L over the matrix of shape func-
tions [N ] and the vector of loading {Φ} (see e.g. Cook et
al. 1989),

{Ae}=

∫
L

[N ]
T {Φ} dL=

pt

x2∫
x1

[N ]
T

{
− y2−y1
x2−x1

1

}
dx . (6)

In the above equation p is the size of the pressure, and t
the element thickness. Hereby, the load on an element is
distributed to all the nodes of the element, thus in a sense
dispersing the load. This in turn implies that the situ-
ation of the curve for load application jumping past nodes
is less severe than if the loads were applied to, e.g. a single
row of nodes.

5
The successive optimization scheme

A simple fixed-point type of optimality criterion algo-
rithm (Cheng and Olhoff 1982) is used to determine the
density distribution that yields minimum compliance.
The optimality criterion is derived from the Lagrange
function for the optimization problem, see e.g. Cheng and
Olhoff (1982) or Bendsøe (1995), only here the design
dependent loads give rise to an additional term in the ex-
pression for the update of the design variables.

Writing the Lagrange function L for the optimization
problem, (2), in a finite element formulation gives

L= {D}T [S] {D}+λ (V −V ∗) +{µ}T ([S] {D}−{A})

+
∑
e

ae (ρmin−ρe) +
∑
e

be (ρe−ρmax) , (7)

where {D} and {A} are the vectors of displacements and
external forces, respectively, and [S] is the global stiffness
matrix of the system. Thus the first term equals the com-
pliance, the second expresses the volume constraint, and
the third the equilibrium requirement. Finally λ, {µ}, ae,
and be are the Lagrange multipliers for the volume and
equilibrium constraints and for the lower and upper limits
imposed on the design variables, respectively. Stationar-
ity conditions on the Lagrange function L with respect to
the displacement vector {D} and the design variable ρe of
the finite element e give

2 {D}T
∂ {A}

∂ρe
−nρ(n−1)

e {De}
T [S∗e ] {De}+λAe−

ae+ be = 0 . (8)

Here {De} and [S∗e ] refer to the local displacement vec-
tor and the local stiffness matrix independent of the vol-
ume density variable, and Ae to the area of the e-th
element. If the side constraints on the design variable
are inactive, the Lagrange multipliers ae and be equal
zero, whereby one upon rearranging obtains the following
condition:

Ke =

1

λAe

(
nρ(n−1)

e {De}
T [S∗e ] {De}−2 {D}T

∂ {A}

∂ρe

)
= 1 .

(9)

This condition can be interpreted so that the energy-like
expression Ke is constant equal to one – or the design
should be fully stressed – for all intermediate densities.
Based on this expression a fix-point type update algo-
rithm of the design variable in the (i+ 1)-th iteration can
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then be written as

ρi+1
e =


α if ρie (Ke)

0.8 ≤ α

ρie (Ke)
0.8

if α≤ ρie (Ke)
0.8 ≤ β

β if ρie (Ke)
0.8 ≥ β

,

α= max
[
(1− ξ)ρie, ρmin

]
,

β = min
[
(1 + ξ)ρie, ρmax

]
, (10)

where the superscripts i and (i+ 1) refer to the iteration
number. Move-limits are imposed on the design variables
by the parameter ξ. As the volume V is a continuous and
monotone decreasing function in the Lagrange multiplier
λ, the latter can easily be found in an inner iteration loop
by means of e.g. bisection or a Newton-Raphson method.

As can be seen from (9), the factor Ke can become
negative due to the sensitivities of the loads. In this case
Ke is taken as zero in the update algorithm, meaning that
the updated value of the design variable ρi+1

e in (10) takes
its minimum value of α. However, this case of Ke < 0 can,
if at all, only occur for the elements just around the line
or surface of loading, as the sensitivities of the load vector
∂{A}
∂ρe

are zero in all other elements.

The optimization process is performed by successive
iterations making use of the finite element analysis model
with fixed mesh on the one hand, and the design model
with the parameterized iso-volumetric density curve for
the pressure loading on the other. The optimization per-
formance can be tuned by optimizing the structure for
fixed loading a couple of iterations before moving the
pressure, and by the choice of ρc.

6
Sensitivity analysis of the design dependent loads

As explained above the load curves in the design model
are controlled by the density distribution in the finite
element model and in turn fully determine the global load
vector of the finite element model. Thus the sensitivity
analysis is based on both the analysis model and the de-
sign model. In the update algorithm also the sensitivities
of the load vector {A} with respect to a design change
must be evaluated. This is determined by partial differen-
tiation as

∂{A}

∂ρe
=
∂{A}

∂{xc}

∂{xc}

∂{xf}

∂{xf}

∂ρe
, (11)

where in turn the effect of a density variation on the
points {xf} of fixed density, on the control points {xc} of
the Bézier curves, and finally how this affects the nodal
loads on the finite element model, must be evaluated.
All parts of the sensitivity analysis are determined an-
alytically under the provision that the density variation
is considered so small that the contour curve will stay

within the same set of finite elements. If this is not the
case, i.e. if the pressure load acts exactly on the boundary
of a finite element, then the (nonexistent) sensitivities of
the finite element loads are disregarded in the optimiza-
tion. However, this case is to a large extent avoided by the
way the volume densities in the corner nodes along the
outer boundaries of the structure are calculated, in com-
bination with a careful choice of the density value for the
iso-volumetric density line ρc. The sensitivities of the de-
sign dependent loads are zero for most elements except for
those lying in a narrow band around the iso-volumetric
density line.

7
Numerical examples

The method developed in this paper is first illustrated by
the optimization of the simple short cover-like structure
shown in Fig. 5a. The finite element analysis model con-

Fig. 5 Topology optimization of a cover-like structure.
(a) The design domain with the initial pressure distribution
from below. (b) The optimized topology for a volume fraction
of 50%. In (b) the black domain corresponds to ρ = 1 and
the grey line marks the curve for load application in the final
design, ρc = 0.6

sists of 2440 elements with one design variable per elem-
ent. The structure is clamped in both lower endpoints
and is subjected to a constant pressure loading from be-
low. The pressure is restricted to act on the curve of iso-
volumetric density of ρc = 0.6. As this curve varies from
one iteration to another, so does the loading. In the very
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first iterations the optimization algorithm primarily adds
mass around the supports which causes the line of loading
to be broken and thus meaningless in this context. This
problem is avoided by keeping the curve for the load ap-
plication fixed independently of the density distribution
during the first few iterations. As is seen from Fig. 5b, the
fixed-point type of optimality criterion algorithm used
to determine the density distribution yielding minimum
compliance, results in a quite distinct black (ρ = 1) and
white (ρ = 0) design. The dependency of the optimiza-
tion procedures on the symmetry in the initial design is
insignificant, which was tested by also starting the op-
timization from an uneven and very asymmetric design
(and thus also an asymmetric initial pressure distribu-
tion), which lead to the same optimal and symmetric
design.

In the next example, Fig. 6a, the admissible design do-
main is a little longer and the pressure is applied from
the sides and from above. Again the optimization yields
a very compact structure as seen in Fig. 6b.

Fig. 6 The design model and the resulting optimal topology.
(a) The design domain with the initial pressure distribution
from the sides and from above. (b) The optimized topology for
a volume fraction of 50%

The next example in Fig. 7 investigates how two lev-
els with a gap in between should be closed. As in the
previous examples an even density distribution was used
first as the initial design leading to the curve of iso-
volumetric density following the structural boundary
(Fig. 7a). The optimized design shown in Fig. 8a was
however somewhat counterintuitive, so a different ini-
tial design and thus curve for the pressure application

Fig. 7 The design domain with two different initial pressure
distributions; (a) along the structural boundary, and (b) in-
side the structural domain as the consequence of an uneven
distribution of mass as illustrated by the shades of grey

Fig. 8 The optimized topologies obtained from two different
initial designs. The volume fractions are 30%. (a) Optimized
from the initial design shown in Fig. 7a. Resulting total elas-
tic energy, U = 0.164. (b) Optimized from the initial design
shown in Fig. 7b. Resulting total elastic energy, U = 0.104

was tried out (see Fig. 7b). The resulting optimal design
shown in Fig. 8b yields a compliance as low as 63.4% of
the optimized design obtained first. This example clearly
demonstrates the need for testing different initial designs
to reduce the risk of ending up in local optima.

The last example models the inlet from a channel to
a larger pressure chamber. The material around the in-
let is prescribed to be solid and nonchangeable. Here, two
domains of the structural surface are subjected to pres-
sure, and the initial pressure distribution is shown along
with the design domain in Fig. 9a. The value for the iso-
volumetric density line ρc was initially chosen to be 0.25,
and then gradually increased to ρc = 0.85. The optimized
material distribution exhibits a gradual change on the up-
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per part and only a small stiffener in the lower part of the
pressure chamber as shown in Fig. 9b. Other shapes of the
initial small channel leading the pressure from the inlet
to the chamber could of course have been chosen, but the
final design seems unaffected hereof.

Fig. 9 Optimization of an inlet. Two separate parts of the
structural surface are subjected to pressure loads. These are
marked with grey lines in the optimal design. (a) The design
domain with the pressure initially distributed to the parts of
the structural boundary drawn with thick lines. (b) The opti-
mized topology for a volume fraction of 40%

8
Summary

A generalization of the methodology of topology opti-
mization of elastic continuum structures to problems in-
volving loadings that depend on the design has been pre-
sented. While the formulation of the new topology op-
timization problem is based on commonplace usage of
a SIMP material model and a fixed finite element mesh
with the volumetric density of material within each finite
element as a design variable, the extension to design de-
pendent surface loading adds two types of complexities to
the problem. First, based on the analysis model for the
problem, it is necessary to develop a design model where
the load carrying surfaces are defined by a given value
of the volumetric density of material and represented by
spline functions with control points that depend on the
design variables. This smooth surface representation pro-
vides the basis for the definition and calculation of the

design dependent surface loading, which upon transform-
ation into consistent nodal forces on the finite elements
intersected by the surface, constitutes the link back to
the analysis model. Secondly, the sensitivity analysis be-
comes more involved relative to usual topology design
problems due to the need to include sensitivities of the
loading with respect to design. These sensitivities are
established in conformity with the above dependencies
and derived analytically by implicit partial differentia-
tion. The topology optimization problem is then solved
by successive iterations based on a fixed-point optimality
criterion algorithm, and the applicability and efficiency
of the proposed approach for solution of the new type
of problem are demonstrated via example problems that
have all resulted in quite distinct “black and white” top-
ology designs.
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