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Structural design using cellular automata

E. Kita and T. Toyoda

Abstract This paper presents a shape and topology op-
timization scheme for structures by using the concept of
a cellular automaton (CA). A design domain is divided
into small square cells and then the thicknesses of the
individual cells are taken as the design variables. Consid-
ering the cells as the finite elements, the stress analysis is
performed by the finite element method. The design vari-
ables are modified by applying a local rule to the stress
states of the cell and its neighbouring cells. The present
scheme is applied to a two-dimensional elastic problem in
order to confirm its validity.

1
Introduction

A self-reproduction automaton was first presented by Von
Neumann. Following Ulam’s suggestions, he reformulated
it to what would be known as the first cellular automaton
(CA) (Levy 1992; Waldrop 1992) The cellular automaton
is considered a discrete simulation scheme. The domain
occupied by the object under consideration and the time
are discretized with physical quantities usually taken on
the set of the finite values. A cellular automaton consists
of regular square cells with discrete variables. The quan-
tities at each cell are updated simultaneously based on
the quantities of the cell and its neighbouring cells at the
preceding step and according to a definite set of “local
rules”. Since the local rule is defined so as to govern only
local relationships among the neighbouring cells, the gov-
erning equation for the whole domain is not necessary.
Therefore, the cellular automaton is considered to be very
effective for simulating physical phenomena whose gov-
erning equations are unknown. Many researchers have
been applying the cellular automaton to the simulation
of different phenomena such as, for example, the traffic

Received October 8, 1998
Revised manuscript received January 18, 1999

E. Kita and T. Toyoda

Department of Mechano-Informatics & Systems, Nagoya Uni-
versity, Nagoya 464–8603, Japan

flow, the diffusion phenomena of the particles and the li-
quid flow (Doolen et al. 1987; Eissler et al. 1992; Clayton
1993; Wolfram 1994; Garzon 1995; Gaylord and Nishidate
1996) This paper considers the application of the cellu-
lar automaton to the optimal design of two-dimensional
structures.

The application of the cellular automaton to shape op-
timization of structures has already been presented by
Inou et al. (1994, 1998), Kundu et al. (1997a,b), Tada et
al. (1995), Xie and his colleagues (Xie and Steven 1993,
1994a,b, 1996; Zhao et al. 1997, 1998; Yang et al. 1998;
Kim et al. 1998; Young et al. 1998; Guan et al. 1998; Chu
et al. 1998; Nha et al. 1998), and others (Umetani and
Hirai 1975; Chaudouet-Miranda and El Yafi 1987; Payten
et al. 1998; Payten and Law 1998; Payten 1998).

The basic idea was described by Inou et al. (1994,
1998). In those papers, the design domain is divided into
many small cells and the von Mises equivalent stress dis-
tribution on the whole domain is estimated by the finite
element method. Then, the reference stress which is in-
dividually specified at each cell is updated by applying
a local rule to the stress distribution. Young’s modulus for
each cell is taken as a design variable, which is modified
so that the equivalent stress at the updated cell is to be
equal to the reference stress. The cells with relative small
Young’s modulus are removed and therefore, the shape
and topology of the structures are modified. The local
rule in this study is defined as the nonlinear relationship
between the equivalent stress distribution and Young’s
modulus. Since the local rule is derived from the numer-
ical experience, the mathematical relationship between
the rule and the optimization problem is not obvious.
Also, since the reference stress for each cell is individually
modified by the local rule during iterative process, it may
be difficult to introduce the stress constraint conditions
to the optimization problem.

On the other hand, Xie and his colleagues presented
the evolutionary structural optimization (ESO) scheme
(Xie and Steven 1993, 1994a, 1996; Zhao et al. 1997; Kim
et al. 1998). In this scheme, the reference value is firstly
specified. After the stress analysis by the finite elem-
ent method, one removes the cells where the stresses are
smaller than the reference value. In their newer studies,
the ESO scheme was extended to the bi-directional evolu-
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tionary structural optimization (BESO) scheme (Yang et
al. 1998; Young et al. 1998). In this scheme, two reference
values are introduced. Some cells are removed according
to the first reference value, while other cells can be added.
The physical meaning of the reference values, however, is
not obvious and therefore, should be specified according
to numerical experiments or users’ experiences.

To overcome the above difficulties, we present the fol-
lowing algorithm. The design domain is divided into small
square cells and the thicknesses of the cells are taken as
the design variables. The optimization problem for the
whole structure is reformulated as the individual opti-
mization problem for each cell by introducing special con-
straint conditions, so-called “CA-constraint condition”.
The functional of the problem is analytically defined and
the local rule can be derived by setting the first variation
of the functional equal to zero. Since, in this case, the ref-
erence stress at each cell is not changed by the local rule,
it is easy to add the stress constraint conditions to the op-
timization problem. Moreover, the formulation does not
include the new parameters, whose physical definition is
not clear.

This paper is organized as follows. In Section 2, the
cellular expression of structures and the finite element
formulation for the two-dimensional elastic problem are
described briefly. In Section 3, the derivation of the local
rule is explained in detail. In Section 4, the present
scheme is applied to the topology and shape optimiza-
tion problem of a two-dimensional elastic body. Finally,
Section 5 summarizes some conclusions.

2
Cellular automaton and the finite element method

2.1
Cellular expression of structures

The design domain is typically divided into small square
subdomains (Fig. 1). The subdomains are considered
as the elements and then, the stress distribution on
the whole structure is estimated by the finite element
method. The subdomains act as the cells in the cellular
automaton simulation. In the usual cellular automaton
simulation, the physical quantity or the function of each
cell is taken on the set of the finite values. In this study,
however, the functions are described by continuous ones.

The function of each cell is updated simultaneously
based on the function values of the cell and the neigh-
bouring cells at the preceding step and according to
a local rule. Figure 2 shows the neighbourhood relation-
ship among the cells. The cell 0 denotes the cell whose
function is to be updated and the neighbouring cells are
indicated as the cells 1 to 8. If the cell 0 is on the bound-
ary, some of the neighbouring cells, of course, do not exist
and therefore, in such a case, only existing cells are con-
sidered as neighbouring cells.

Fig. 1 Design domain

Fig. 2 Moor neighbourhood

2.2
Finite element method

We explain the finite element formulation briefly so that
the derivation of the local rule in the next section may
easily be understood (Bathe 1982; Zienkiewicz and Taylor
1991).

The principle of the virtual work without the body
forces is given as∫
Ω

δεεεTσσσdΩ =

∫
Γt

δuT tdΓ , (1)

where Ω, Γu and Γt, respectively, denote the domain oc-
cupied by the object under consideration, its displace-
ment- and traction-specified boundaries and the whole
boundary Γ = Γu

⋂
Γt. The vectors u, t, εεε and σσσ respec-

tively denote the vectors of the displacement, traction,
strain and stress components in the two-dimensional elas-
tic problem. The symbol δ and the superscript T , respec-
tively, denote the virtual changes and the transpose of the
matrix or vector. The relationship between the displace-
ment and the strain components are given as

εεε= Au , (2)
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where A is defined as

A =

∂/∂x1 0
0 ∂/∂x2

∂/∂x2 ∂/∂x1

 . (3)

The relationship between the strain and the stress com-
ponents are given as

σσσ = Dεεε , (4)

where D is defined as

D =
E

1−ν2

1 ν 0
ν 1 0
0 0 (1−ν)/2

 , (5)

where E and ν, respectively, denote the Young’s modu-
lus and Poisson’s ratio of the material. The relationship
between the stress and the traction components are

ti = σijnj , (6)

where nj denotes the xj-component of the outer normal
vector on the boundary.

Discretizing the left-hand side of (1) into Ne finite
elements, we have∫
Ω

δεεεTσσσdΩ =

Ne∑
e=1

∫
Ωe

δεεεTe σσσedΩ . (7)

The displacement components at element e are approx-
imated by the interpolation functions N with the nodal
displacements Ue,

ue = NUe . (8)

The stress and the strain components may then be ex-
pressed as

εεεe = Aue = ANUe ≡BUe , (9)

and

σσσe = Dεεεe = DBUe . (10)

Substituting the above approximate expressions into (7)
gives∫
Ω

δεεεTσσσdΩ =

Ne∑
e=1

∫
Ωe

δεεεTe σσσedΩ =

Ne∑
e=1

∫
Ωe

(BδUe)
TDBUedΩ ≡

Ne∑
e=1

δUT
e heK

′
eUe , (11)

where he and K′e, respectively, denote the thickness and
the stiffness matrix at the element e.

Discretizing the right-hand side of (1) byN` boundary
elements gives

∫
Γt

δuT tdΓ =

N∑̀
`=1

∫
Γt`

(NδU)T tdΓ ≡

N∑̀
`=1

δUT
` f ′` , (12)

where f ′` denotes the equivalent nodal force vector at the
boundary element `.

Substituting (11) and (12) into (1) gives

Ne∑
e=1

δUT
e heK

′
eUe =

N∑̀
`=1

δUT
` f ′` , (13)

and

δUTKU = δUT f , KU = f , (14)

where K and f , respectively, denote the global stiffness
matrix and the global equivalent nodal force vector.

3
Derivation of the local rule

3.1
Optimization problem

The objectives of the design optimization problem are to
minimize both the total weight of structures and the devi-
ation between the yield stress of the material and the von
Mises equivalent stress at the cells. The cell thicknesses
are taken as the design variables. Further, in order to for-
mulate the optimization problem for each element indi-
vidually, we introduce a special constraint condition, the
so-called “CA-constraint condition”. This CA-constraint
condition is defined so as to minimize the variation of the
equivalent stress of the neighbouring cells with respect to
the variation of the thickness of the updated cell.

3.1.1
Objective function 1

The first objective is to minimize the weight of the up-
dated cell. If the area of the cell and the material are
invariant, the objective function can be defined as

W1 = h2 , (15)

where h denotes the thickness of the updated cell divided
by the initial thickness of the cell.
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3.1.2
Objective function 2

The second objective is to minimize the stress deviation,
which can be defined as

W2 =

(
σ̃0

σc
−1

)2

≡ (σ0−1)
2
, (16)

where σ̃0 and σc, respectively, denote the von Mises
equivalent stress at the updated cell and the yield stress
of the material.

3.1.3
CA-constraint condition

The CA-constraint conditions are defined as

gi =
σ̃i

σ̃0
i

−1≡ σi−1 = 0 (i= 1, . . . , 8) , (17)

where σ̃i and σ̃0
i , respectively, denote the equivalent

stresses at the neighbouring cell i at the present and the
preceding steps. Therefore, (17) ensures that the vari-
ation of the equivalent stress at the neighbouring cell is
small.

3.2
Multicriteria optimization problem

If both the above objectives are to be achieved in some
sense, a new objective function W3 is defined as the
weighted sum of the above objective functions given by

W3 = αW1 +βW2 , (18)

where α and β are weight parameters satisfying the con-
dition

α+β = 1 , (19)

where

β =

{
σ0 (σ0 < 1)
1 (σ0 ≥ 1)

. (20)

The weight parameters set the relative importance of
the objective functions according to the magnitude of σ0.
If σ0 ≥ 1, β = 1, α= 0 and therefore the objective function
to be minimized is

W3 =W2 = (σ0−1)
2
,

i.e. in this case, the shape optimization is performed so as
to minimize the stress deviation. On the other hand, if σ0

is relatively small, α ' 1, β ' 0 and therefore the objec-
tive function becomes

W3 'W1 = h2 ,

i.e. in this case, the shape optimization is performed so as
to minimize the weight.

By adding the constraint condition (17) multiplied by
the penalty parameter p to (18), we have the penalty
function W ,

W = αW1 +βW2 +p

8∑
i=1

g2
i =

αh2 +β(σ0−1)2 +p

8∑
i=1

(σi−1)2 . (21)

By expanding the equivalent stress σi around h+ δh,
we have

σi(h+ δh)' σi(h) + σ́iδh (i= 0, . . . , 8) , (22)

where (´) = ∂/∂h. By using the above equation, we can
derive the Taylor’s expansion representation of (21),

W (h+ δh)' α(h+ δh)2 +β(σ0 + σ́0δh−1)2+

p

8∑
i=1

(σi+ σ́iδh−1)2 . (23)

Setting the first derivative of (23) with δh equal to zero
gives

∂W

∂(δh)
= 2α(h+ δh) + 2β(σ0 + σ́0δh−1)σ́0+

2p
8∑
i=1

(σi+ σ́iδh−1)σ́i = 0 , (24)

and thus

δh=−

αh+β(σ0−1)σ́0 +p
8∑
i=1

(σi−1)σ́i

α+βσ́2
0 +p

∑8
i=1 σ́

2
i

. (25)

3.3
Introduction of approximate design sensitivity

We shall consider here to approximately estimate the
stress design sensitivity σ́i in (25). If the principle of the
virtual work is assumed to be valid at each cell, we have∫
Ωe

δεεεTσσσdΩ =

∫
Γet

δuT tdΓ , (26)

where Ωe and Γe, respectively, denote the domain occu-
pied by the updated cell e and its boundary. Approximat-
ing the physical quantities by the interpolation functions
with nodal values gives

δUT
e KeU = δUT

e f , hK′eU = f .
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Since the specified values on the boundary are inde-
pendent of h, direct differentiation of the above equation
with respect to h leads to

K′eUe+hK′eÚe = f́ = 000 ,

Úe =−
1

h
(K′e)

−1K′eUe ≡−
1

h
Ue . (27)

On the other hand, direct differentiation of both sides
of (10) with respect to h leads to the sensitivities of the
stress components with respect to h,

σ́σσe = DBÚe =−
1

h
DBUe =−

1

h
σσσe . (28)

Equation (28) indicates that the stress sensitivities are in
proportion to the magnitude of the stress σσσe and the re-
ciprocal number of the thickness of the cell h. Therefore,
the stress sensitivity σ́i in (25) can be approximated as

σ́i =−
σi

h
. (29)

Substituting (29) into (25), we have

δh=

−
αh+β(σ0−1)(−σ0/h) +p

∑8
i=1(σi−1)(−σi/h)

α+β(−σ0/h)2 +p
∑8
i=1(−σi/h)2

=

[−αh2 +β(σ0−1)σ0 +p
∑8
i=1(σi−1)σi]h

αh2 +βσ2
0 +p

∑8
i=1 σ

2
i

, (30)

where δh is estimated from the above equation and then,
the thickness of the cell is updated by

hk+1 = hk+ δh , (31)

where the superscripts k and k+ 1 mean the number of
the iteration.

3.4
Property of δh with respect to penalty parameter p

Equation (30) is dependent on the penalty parameter p.
The penalty parameter p should be taken to be suf-
ficiently large in order to approximately satisfy the
constraint conditions. The convergence of the iterative
scheme, however, is dependent on the magnitude of the
penalty parameter p and therefore, we should select an
appropriate value for p.

Consider (30) at the k-th step. If the stress values of
the neighbouring cells are assumed to be invariant with
σi = 1, it follows that

δh=
[−α(hk)2 +β(σ0−1)σ0]hk

α(hk)2 +βσ2
0 + 8p

,

and the rule for updating the thickness is given as

hk+1

hk
=
hk + δh

hk
=
βσ0(2σ0−1) + 8p

α(hk)2 +βσ2
0 + 8p

.

Figure 3 indicates the curves of the above equation for
p= 1, 10 and 100. We notice the following features.

1. In the case of σ0 > 1, hk+1 increases relative to hk.
2. In the case of σ0 ≤ 1, hk+1 decreases in proportion

to hk.
3. hk+1/hk increases with an decrease of p.

Especially, from the last discussion, we notice the impor-
tant suggestion for the choice p.

1. If p is relatively small, hk+1/hk becomes large. The
structure is greatly modified and in a result, may be
destroyed.

2. If p is relatively large, hk+1/hk becomes small. The
modification of the structure is so small that the con-
vergency rate may be very slow.

From above discussions, the choice p= 10 seems to be the
appropriate choice.

3.5
Present algorithm

The minimization algorithm is as follows.

Step 1. Input the initial data; the size of the design do-
main, the specified values on boundary, the number of
the cells and the design conditions.

Step 2. Perform the stress analysis by the finite element
method.

Step 3. Check the convergence criterion. If the criterion
is satisfied, the process is terminated. If not so, the
process goes to the next step.

Step 4. The thickness of each cell is updated by the stress
distribution and according to the updating rule.

Step 5. Go to Step. 2.

4
Numerical examples

4.1
Example 1

Figure 4 shows the design domain. The left side of the do-
main is fixed and the force P is specified at the middle
of the right side as shown. The parameters are shown in
Table 1. In this table, σ0 indicates the maximum stress at
the initial profile. The thicknesses of all cells are equal at
the initial step.
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Fig. 3 δh versus σ0 and p

Fig. 4 Structure under consideration in Example 1

Table 1 Design parameters

Number of cells 24×16
Penalty function p 10

Young’s modulus E = 1.0×105 (Pa)
Poisson’s ratio ν = 0.2
Thickness of cells h0 = 1.0 (m)
Force P = 20.0 (N)
Reference stress σc = 0.8×σ0

(σ0 denotes the maximum stress at the initial profile)

Fig. 5 Convergence histories of stresses and weight for Ex-
ample 1

Figure 5 shows the convergence histories of the mean
and the maximum stresses and the total weight of the
structures. The maximum stress σmax decreases rapidly
when 600 iterations and then converges asymptotically
to the reference stress σc = 0.8×σ0. The mean stress σm
increases gradually to the reference stress. These results
indicate that the stress distribution on the whole struc-
ture tends to become uniform. Finally, the total weight of
the structure decreases to 40% of its initial weight. Fig-
ure 6 shows the respective distributions of the cell thick-
ness after 100, 400, 800 and 1500 iterations. We notice
that the cells are gradually deleted from the boundary of
the structure to the centre.

4.2
Example 2

A second example has the same initial profile of the previ-
ous structure but with a different load condition as shown
in Fig. 8. The design parameters are the same as for Ex-
ample 1.

Figure 9 shows the convergence histories of the stress
and the total weight of the structure. The maximum
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Fig. 6 Thickness distributions after different numbers of iterations for Example 1

stress σmax decreases rapidly when 600 iterations and
then converges asymptotically to the reference stress. On
the other hand, the mean stress σm increases gradually
and then, converges to half of the reference stress. We
can say that here the stress distribution on the whole
structure varies more than in Example 1. The total weight
decreases gradually and the final structure is much lighter
than that found in Example 1, about 30% of the ini-
tial weight. This is because the load point is specified
in the centre of the structure and therefore the area of
the structure which can be deleted is wider than that of
Example 1. Figure 10 shows the distribution of the cell
thickness after 100, 400, 800 and 1500 iterations. We no-
tice that the area to the right of the load point falls away
rapidly.

4.3
Example 3

For Example 3 there are two load points on the initial pro-
file of the structure as shown in Fig. 7. The initial profile
and design parameters are the same as for the previous
examples.

Figure 11 shows the convergence histories of the stress
and the total weight with respect to the number of the
iterations. The maximum stress σmax decreases rapidly
when 600 iterations and then converges asymptotically to
the reference stress. On the other hand, the mean stress
σm increases gradually and then converges to the refer-
ence stress. Finally, the stress distribution becomes al-

Fig. 7 Structure under consideration in Example 3

most uniform. The total weight of the structure decreases
gradually to 35% of its initial weight. Figure 12 shows the
distribution of the cell thickness after 100, 400, 800 and
1500 iterations. We notice that the final profile is very
similar to that found by superposing the final profiles of
Example 1 and Example 2.

5
Conclusions

This paper presents a shape and topology optimization
scheme for two-dimensional structures that uses the con-
cept of “cellular automaton”. In the existing studies, the
local rule was derived from numerical experiments and
therefore, was considered to be very difficult to extend
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Fig. 8 Structure under consideration in Example 2

to other problems. For overcoming this difficulty, in this
paper, the optimization problem is formulated at each
cell by introducing the CA-constraint condition. Then,
a local rule is derived by setting the first variation of
the functional of the optimization problem equal to zero.
Since this is based on a typical formulation of optimiza-
tion problems, the physical relation between the rule and
the problem is obvious. Moreover, the present scheme
employs the design sensitivities. Since, however, the sen-
sitivities are also defined between the local neighbour-
hood cells alone, it is not necessary to actually estimate
the sensitivities. This may be an important advantage of
the present scheme when comparing with the ordinary
schemes which is not based on the concept of the cellular
automaton.

The present scheme was applied to the shape and top-
ology optimization of a two-dimensional elastic body. The
final profiles of the structures under different load condi-
tions are similar to the results reported in existing stud-
ies based on cellular automata concept (Inou et al. 1994,
1998; Kundu et al. 1997a,b) and using the gradient search
scheme concept (Bendsøe and Kikuchi 1988; Suzuki and
Kikuchi 1991). The validity of the basic idea of deriving
the local rule as presented here has therefore been con-
firmed. Next intentions are to extend the present scheme
to more complicated optimization problems and to im-
prove the convergence rate by appropriate modification of
the algorithm.

References

Bathe, K.-J. 1982: Finite element procedures in engineering
analysis. Prentice-Hall

Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topolo-
gies in structural design using a homogenization method.
Comp. Meth. Appl. Mech. & Engrg. 71, 197–224

Chaudouet-Miranda, A.; El Yafi, F. 1987: 3D optimum design
using BEM technique. In: Brebbia, C.A.; Wendland, W.L.;
Kuhn, G. (eds.) Proc. Boundary Elements IX , pp. 449–462.
Comp. Mech. Pub./Springer-Verlag

Chu, D.N.; Xie, Y.M.; Hira, A.; Steven, G.P. 1998: Evolution-
ary topology optimization of structures subject to displace-
ment. In: Steven, G.P.; Querin, Q.M.; Guan, H.; Xie, Y.M.
(eds.) Structural optimization (Proc. 1st Australian Conf. on
Structural Optimization, held in Sydney), pp. 419–426

Clayton, W. 1993: Adventures in artificial life. Que Co.

Doolen, G.D.; Frisch, U.; Hasslacher, B.; Orszag, S.; Wolfram,
S. 1987: Lattice gas methods for partial differential equations.
Reading, MA: Addison-Wesley

Eissler, W.; Drtina, P.; Frohn, A. 1992: Trans. ASME 61,
1109–1114

Garzon, M. 1995: Models of massive parallelism. Berlin, Hei-
delberg, New York: Springer

Gaylord, R.; Nishidate, K. 1996: Modeling nature: cellular
automata simulations with mathematica. Berlin, Heidelberg,
New York: Springer

Guan, H.; Steven, G.P.; Xie, Y.M. 1998: Evolutionary opti-
mization of bridge type structures. In: Steven, G.P.; Querin,
Q.M.; Guan, H.; Xie, Y.M. (eds.) Structural optimization
(Proc. 1st Australian Conf. on Structural Optimization, held
in Sydney), pp. 335–342

Inou, N.; Shimotai, N.; Uesugi, T. 1994: A cellular automa-
ton generating topological structures. In: McDonach, A.; Gar-
diner, P.T.; McEwan, R.S.; Culshaw, B. (eds.) Proc. 2-nd
European Conf. on Smart Structures and Materials 2361,
pp. 47–50

Inou, N.; Uesugi, T.; Iwasaki, A.; Ujihashi, S. 1998: Self-
organization of mechanical structure by cellula automata. In:
Tong, P.; Zhang, T.Y.; Kim, J. (eds.) Fracture and strength of
solids. Part 2: Behaviour of materials and structure (Proc. 3rd
Int. Conf., held in Hong Kong, 1997), pp. 1115–1120

Kim, H.; Steven, G.P.; Querin, Q.M.; Xie, Y.M. 1998: De-
velopment of an intelligent cavity creation (ICC) algorithm
for evolutionary structural optimisation. In: Steven, G.P.;
Querin, Q.M.; Guan, H.; Xie, Y.M. (eds.) Structural optimiza-
tion (Proc. 1st Australian Conf. on Structural Optimization,
held in Sydney), pp. 241–250

Kundu, S.; Oda, J.; Koishi, T. 1997a: A self-organizing ap-
proach to optimization of structural plates using cellular auto-
mata. In: Gutkowski, W.; Mroz, Z. (eds.) Proc. WCSMO-2,
Second World Congress on Structural and multidisciplinary
optimization (held in Zakopane, Poland), pp. 173–180. War-
saw: Polish Academy of Science

Kundu, S.; Oda, J.; Koishi, T. 1997b: Design computation of
discrete systems using evolutionary learning. In: Gutkowski,
W.; Mroz, Z. (eds.) Proc. WCSMO-2 , Second World Congress
on Structural and multidisciplinary optimization (held in Za-
kopane, Poland), pp. 173–180. Warsaw: Polish Academy of
Science

Levy, S. 1992: Artificial life, the quest for a new creation. Pen-
guin Books

Nha, C.D.; Xie, Y.M.; Steven, G.P. 1998: An evolutionary
structural optimization method for sizing problems with dis-
crete design variables. Comp. & Struct. 68, 419–431

Payten, W.M. 1998: A fractal interpretation for optimal
structures. In: Steven, G.P.; Querin, Q.M.; Guan, H.; Xie,
Y.M. (eds.) Structural optimization (Proc. 1st Australian



72

Fig. 9 Convergence histories of stresses and weight for Ex-
ample 2

Fig. 10 Thickness distributions after different numbers of it-
erations for Example 2

Conf. on Structural Optimization, held in Sydney), pp. 553–
540

Payten, W.M.; Law, M. 1998: Topology reinforcement opti-
misation of flat plate and curved thin shell structures using
adaptive self-organising density approach. In: Steven, G.P.;
Querin, Q.M.; Guan, H.; Xie, Y.M. (eds.) Structural optimiza-
tion (Proc. 1st Australian Conf. on Structural Optimization,
held in Sydney), pp. 165–172

Payten, W.M.; Ben-Nissan, B.; Mercer, D.J. 1998: Optimal
topology design using a global self-organisational approach.
Int. J. Solids Struct. 35, 219–237

Suzuki, K.; Kikuchi, N. 1991: Shape and topology optimiza-
tion using the homogenization method. Comp. Meth. Appl.
Mech. & Engrg. 93, 291–318

Tada, Y.; Tadamatsu, D. 1995: Formation of structural con-
figuration considering adaptive function of living system.
Proc. 8th Comp. Mech. Conf., pp. 177–178 (in Japanese)

Fig. 11 Convergence histories of stresses and weight for Ex-
ample 3

Fig. 12 Thickness distribution at final profile for Example 3

Umetani, Y.; Hirai, S. 1975: An adaptive shape optimiza-
tion method for structural material using growing-reforming
method. In: Proc. Joint JSME-ASME Applied Mechanics
Western Conf., pp. 359–365

Waldrop, M.M. 1992: Complexity, the emerging science at the
edge of order and chaos. Simon & Schuster

Wolfram, S. 1994: Cellular automata and complexity . Read-
ing, MA: Addison-Wesley

Xie, Y.M.; Steven, G.P. 1993: A simple evolutionary proced-
ure for structural optimization. Comp. & Struct. 49, 885–896

Xie; Y.M.; Steven, G.P. 1994a: Optimal design of multiple
load case structures using an evolutionary procedure. Eng.
Comput. 11 295–302

Xie, Y.M. Steven, G.P. 1994b: A simple approach to struc-
tural frequency optimization. Comp. & Struct. 53, 1487–1491

Xie, Y.M.; Steven, G.P. 1996: Evolutionary structural opti-
mization for dynamic problems. Comp. & Struct. 58, 1067–1073



73

Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, Q.M. 1998: Bi-
directional evolutionary method for frequency optimization.
In: Steven, G.P.; Querin, Q.M.; Guan, H.; Xie, Y.M. (eds.)
Structural optimization (Proc. 1st Australian Conf. on Struc-
tural Optimization, held in Sydney), pp. 231–237

Young, V.; Querin, Q.M.; Steven, G.P.; Xie, Y.M. 1998: 3D bi-
directional evolutionary structural optimisation (BESO). In:
Steven, G.P.; Querin, Q.M.; Guan, H.; Xie, Y.M. (eds.) Struc-
tural optimization (Proc. 1st Australian Conf. on Structural
Optimization, held in Sydney), pp. 275–282

Zhao, C.; Steven, G.P.; Xie, Y.M. 1997: Effect of initial non-
design domain on optimal topologies of structures during nat-
ural frequency optimization. Comp. & Struct. 62, 119–131

Zhao, C.; Steven, G.P.; Xie, Y.M. 1998: A generalized evolu-
tionary method for natural frequency optimization of mem-
brane vibration problems in finite element analysis. Comp. &
Struct. 66, 353–364

Zienkiewicz, O.C.; Taylor R.L. 1991: The finite element
method . New York: McGraw-Hill


