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Abstract
Compliant mechanisms with embedded piezoelectric actuators have widely been used in high vibration environments, 
which brings a requirement that the fundamental frequency should be greater than the external excitation frequency to avoid 
resonance. Existing topology optimization methods focus on enhancing the output stroke of compliant mechanisms while 
ignoring their dynamic properties. Hence, this work presents a concurrent optimization method of compliant structures 
embedded with movable piezoelectric actuators considering both the output stroke and dynamic properties. A density-based 
material interpolation scheme is developed to represent material properties in different sub-domains occupied by compliant 
mechanisms or actuators, and the topology of host compliant mechanisms and position of actuators are optimized simulta-
neously through designing the density field and geometric variables. To enhance dynamic properties of the mechanism, the 
fundamental frequency constraint is introduced into the standard compliant mechanism optimization formulation, in which 
the objective function is output displacement, and the constraint is volume fraction. The p-norm approximation function 
is adopted to alleviate the non-differentiability arising from the repeated eigenvalues and mode switching during the itera-
tive process. Furthermore, using the adjoint method, the sensitivities of the objective function and constraints with respect 
to design variables are derived for the gradient-based optimizer. Several numerical examples are investigated to verify the 
effectiveness of the proposed optimization method and demonstrate the influence of the fundamental frequency constraints 
on the optimized results. The topologic results illustrate that the proposed method can attain a reasonable design, in which 
the output stroke is maximized and the fundamental frequency constraint is satisfied.

Keywords Concurrent optimization design · Compliant mechanisms · Piezoelectric actuators · Fundamental frequency 
constraint

1 Introduction

Due to the advantage of compact size and high energy den-
sity, piezoelectric actuators have widely been used in aero-
space engineering (Mallick et al. 2014; Sun et al. 2016), 
high precision positioning (Moore et al. 2021; Shi et al. 

2022), optical scanning (Wang et al. 2019; Schmerbauch 
et al. 2020), and so on. However, the maximum output stroke 
of the PSA is only 0.1% of its length, which cannot meet 
the desirable motion requirement of most application sce-
narios. To solve this issue, the maximum output displace-
ment design of compliant mechanisms embedded with pie-
zoelectric actuators has attracted significant attention from 
researchers and engineers.

In recent decades, several approaches have been devel-
oped to systematically design compliant mechanisms, such 
as the kinematics-based approach (Lobontiu and Garcia 
2003; Ling 2019; Wang et al. 2023; Lai et al. 2023) and the 
topology optimization approach (Sigmund 1997; Nishiwaki 
et al. 1998; Wang et al. 2005; Li et al. 2021; Gao et al. 2023). 
Compared to conventional design methods, topology opti-
mization allows for the exploration of the optimal material 
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distribution without relying on intuition or design experi-
ence, which significantly enhances the design space. Since 
the pioneering work of Bendsøe and Kikuchi (1988), vari-
ous topology optimization methods have been developed, 
such as the Solid Isotropic Material Penalty (SIMP) method 
(Clark et al. 2018; da Silva et al. 2019; Hu et al. 2024a), 
Bi-directional Evolutionary Structural Optimization (BESO) 
(Huang and Xie 2007; Teimouri and Asgari 2019; Lopes 
et al. 2021), Level set method (Wang et al. 2003; Allaire 
et al. 2004; Zhu and Zhang 2012; Van Dijk et al. 2013), 
and explicit feature-driven optimization method (Guo et al. 
2014; Hoang and Jang 2017; Zhang et al. 2020; Zhu et al. 
2021).

Based on proposed topology optimization methods, Sig-
mund (1997) first studied the topology optimization problem 
of the compliant mechanisms using the SIMP method, the 
mechanical advantage (MA) was considered as the objective 
function in his research. Nishiwaki et al. (1998) proposed 
a multi-objective optimization problem using the homog-
enization method as an application of compliant mecha-
nism design, the objective function of which is a linear 
weighted combination formulation of the mutual potential 
energy (MPE) and strain energy (SE). Ansola et al. (2007) 
presented a topology optimization framework based on the 
BESO method for its application in designing compliant 
mechanisms, in which the ratio of the MPE and strain energy 
SE was used as the objective function to balance the output 
deformation and stiffness. It is noted that different optimiza-
tion objectives are used in these studies, which aim to simul-
taneously consider the flexibility and stiffness of the mecha-
nisms. Nowadays, the output displacement has become the 
most commonly used objective function for designing the 
compliant mechanisms, and the spring is arranged to the 
input and output port to simulate the interaction between 
the mechanisms and external objects (Pedersen et al. 2001; 
da Silva et al. 2019; Liu et al. 2020).

In the above works, compliant mechanisms are optimized 
under the assumption that the actuators are fixed in a prede-
fined location and modeled with a specific spring stiffness 
and excitation force. This assumption constrains the design 
space and ignores the mechanical–electric coupling effect of 
the piezo-embedded compliant mechanisms. To find a better 
design of the piezo-embedded compliant mechanisms, it is 
necessary to take the inherent multi-physics characteristics 
of piezo-embedded compliant mechanisms into considera-
tion and simultaneously optimize the layout of piezoelectric 
actuators and the topology of the host compliant structure. 
Based on the conventional SIMP method, Kögl and Silva 
(2005) proposed a piezoelectric material with penalization 
and polarization (PEMAP-P) model, which can simultane-
ously optimize the topology and polarization of the piezo-
electric plate and shell actuators. Luo et al. (2009, 2010) 
developed a multiphase level set optimization method for 

integrated design of the host elastic materials and piezoelec-
tric materials. Gao et al. (2022) introduced a robust isogeo-
metric topology optimization method (RITO) for the design 
of piezoelectric actuators, which can achieve the optimiza-
tion of the layout and polarization of piezoelectric actuators 
simultaneously.

Although the optimization of both piezoelectric actua-
tors and elastic host structures has been addressed in the 
above studies, the layout of the piezoelectric actuators may 
result in a highly intricate geometry, posing challenges for 
manufacturing processes. To this end, several studies have 
been developed to optimize compliant mechanisms embed-
ded with fixed-shape piezoelectric actuators. Wang et al. 
(2014) first proposed an integrated topology optimization 
framework to simultaneously design the topology of compli-
ant host structures and the location of embedded actuators, 
in which the level set model and the independent point-wise 
density interpolation method are employed to describe the 
movements of actuators and topology of the host struc-
ture, respectively. Wang et al. (2022) further developed a 
hybrid topology optimization method for the integrated 
design of compliant mechanisms and piezoelectric actua-
tors, which combines the projective transformation-based 
moving morphable components method and the parametric 
level set method (PMMC–PLS) to represent the layout of 
the embedded actuators and the host structure. Recently, Hu 
et al. (2024b) introduced a multi-material and multi-scale 
topology optimization method to further explore the design 
space of compliant structures with embedded movable pie-
zoelectric actuators, where a density-based interpolation 
model that describes the piezoelectric actuators, multiple 
lattice materials of the host structure and their coating layer 
is proposed.

Most of the existing research focuses on optimizing the 
functional requirements of compliant mechanisms. Nev-
ertheless, compliant structures embedded with piezoelec-
tric actuators often operate in high vibration environments 
(Maddisetty and Frecker 2004; Zhu et al. 2020), neglecting 
the dynamic properties may lead to structural resonance 

Fig. 1  Schematic diagram of the piezo-embedded compliant mecha-
nism
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and result in failure and damage. Therefore, it is necessary 
to develop a topology optimization method for compliant 
mechanisms that can simultaneously consider both their out-
put displacement and dynamic properties. The primary chal-
lenges encountered in the dynamic topology optimization 
problem are the presence of repeated eigenvalues and mode 
switching during the iteration process, which pose difficul-
ties for sensitivity analysis (Gravesen et al. 2011). Numerous 
authors presented alternatives to overcome the difficulties. 
Seyraniant et al. (1994) proposed a general multiparameter 
framework for sensitivity analysis of the single and repeated 
eigenvalues based on a mathematical perturbation technique. 
Ma et al. (1994) developed a mean-eigenvalue method, in 
which the weighted sum of the multiple eigenvalues is sug-
gested as the objective function to overcome the differenti-
ability issue. Du and Olhoff (2007) proposed an approach for 
the topology optimization method involving multiple eigen-
values based on a bound formulation, which can successfully 
alleviate the non-differentiable problem, but extra computa-
tions are required. Another validated approach to address the 
differentiability issue is to construct differentiable approxi-
mations of the eigenvalues (Torii and Faria 2017; Lopes 
et al. 2021; Li et al. 2023), such as the K–S function (Leader 
et al. 2019) and the p-norm function (Torii and Faria 2017; 
Quinteros et al. 2021). Despite the fact that dynamic topol-
ogy optimization methods have been extensively developed 
in the past decades, the topology optimization method for 
piezo-actuated compliant mechanisms considering dynamic 
properties has not yet been investigated.

In this paper, a concurrent optimization method of com-
pliant structures embedded with movable piezoelectric 
actuators considering fundamental frequency constraints is 
proposed, where the position of the embedded piezoelectric 
actuators and the topology of the host structure are simul-
taneously optimized. The objective of the optimization is 
to maximize the output displacement with considering the 
fundamental frequency constraint and the volume constraint. 
The SIMP-based computational framework is developed, in 
which the embedded actuators are described by a modified 
K–S function and projected into a density field to avoid 
remeshing the grid (Wang et al. 2020). To address the non-
differentiability issue, an efficient p-norm approximation 
function for the fundamental frequency constraint is applied. 
The gradient-based optimizer is used to update the design 
variables and the sensitivities are computed using the adjoint 
method. Several numerical examples are investigated to vali-
date the effectiveness of the proposed method.

The rest of this paper is organized as follows: Sect. 2 
introduces the electro-mechanical finite element model and 
the topology representation scheme of the piezo-embedded 
compliant mechanism. After that, the topology optimiza-
tion formulation and sensitivity analysis are presented in 
Sect. 3. In Sect. 4, three numerical examples are investigated 

to demonstrate the effectiveness of the proposed method. 
Finally, Sect. 5 gives the conclusions of this paper.

2  Finite element model and topology 
description of the piezo‑embedded 
compliant mechanism

2.1  Finite element model

In this work, the electro-mechanical compliant mechanism is 
considered linear and in the plane stress state. The polarization 
direction of the piezoelectric actuators is parallel to the z-axis, 
as shown in Fig. 1. The constitutive equations of the piezo-
embedded compliant mechanism can be written as

where � and � represent the stress and strain vectors, respec-
tively. �E and � are the electric displacement vector and 
electric field vector, respectively. � denotes the elastic stiff-
ness matrix, � is the piezoelectric constant matrix, and � 
represents the matrix of permittivity in constant mechanical 
strain. It should be noted that only a uniform electric field 
distributed in the poling direction is considered in the above 
equation, namely � =

{
0 0 �∕h

}T , where � is the applied 
voltage and h is the plate thickness.

The mechanical balance equation in the absence of body 
load and the source-free Maxwell’s equation of the piezo-
embedded structure under the plane stress assumption can be 
written as

where � is the differential matrix defined as

� is the displacement vector and ∇ is the nabla operator. 
Neglecting the damping effect, the finite element formulation 
of Eq. (1) and Eq. (2) can be obtained using the Hamilton’s 
variational principle

where � is the mass matrix, �uu is the mechanical stiffness 
matrix, �u� = ��u is the piezoelectric coupling matrix, and 

(1)
� = �� − ��

�E = �T� + ��
,

(2)
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�2�

�t2

∇�E = 0

,
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[
�

�x
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�

�y

0
�

�y

�

�x

]
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=
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��� denotes the dielectric matrix. � and � are the nodal 
displacement vector and nodal electric potential vector, 
respectively. � is the force vector and � is the nodal electric 
charge vector. Since piezoelectric components in this work 
only play the role of actuators, the finite element equation 
of the structure can be reduced to

The stiffness matrix and the piezoelectric coupling matrix 
of element e can be calculated by

where �u and �� are the displacement–strain and electric 
field–potential matrix, respectively. The mass matrix of ele-
ment e can be expressed as

where � is the matrix of the interpolation function and �e 
denotes the material density of element e.

Since the magnitude of the element stiffness matrix �e
uu

 is 
large compared to the piezoelectric coupling matrix 
�e

u�
= �e

�u
 and the dielectric matrix �e

��
 , solving the Eq. (5) 

may face numerical instability (Homayouni-Amlashi et al. 
2021). To this end, a normalization is performed as follows:

(5)𝐌�̈� +𝐊uu𝐔 +𝐊u�𝚽 = 𝟎.

(6)

�e
uu

= ∫Ωe

�T
u
�e�udΩe

�e
u�

= ∫Ωe

�T
u
�e��dΩe

,

(7)�e = �e ∫Ωe

�T�dΩe,

(8)

⎧⎪⎪⎨⎪⎪⎩

�
e

uu
= �e

uu
∕k0

�
e

u�
= �e

u�
∕�0

�
e

= �e∕m0

,

where k0 , �0 , and m0 are the largest absolute value of the 
three matrices. The normalized finite element equation can 
be written as

in which the normalized displacement vector � and electric 
potential vector � can be obtained as follows:

2.2  Topology description of the embedded 
piezoelectric actuators

The i-th embedded piezoelectric actuator can be fully deter-
mined by its location parameters �� =

(
x0
i
, y0

i
, �0

i

)
 and topol-

ogy description function �i , where x0
i
 and y0

i
 are horizontal 

and vertical coordinates of the center of the i-th embedded 
piezoelectric actuator. �0

i
 is the rotation angle relative to 

the horizontal. The topology description function �i can be 
described as follows:

where � is the centroid coordinate vector of elements. Ωi and 
�Ωi denote the sub-domain of the i-th embedded actuators 
and its boundary, respectively.

For embedded actuators with fixed shapes, the topology 
description function �i can be reformulated as the function 
of location parameters

(9)𝐌
̈
𝐔 +𝐊uu𝐔 +𝐊u�𝚽 = 𝐅,

(10)

{
� = k0�

� = �0�
.

(11)

⎧⎪⎨⎪⎩

𝜑i(�) > 0, if � ∉ Ωi

𝜑i(�) = 0, if � ∈ 𝜕Ωi

𝜑i(�) < 0, if � ∈ Ωi

,

(12)�i = �i

(
xi, yi

)
,

Fig. 2  Illustration of the 
non-overlap constraint for the 
embedded actuators

(a) (b)
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where 
(
xi, yi

)
 are local coordinates aligned with the x–y axes 

of the i-th embedded actuator

In this work, a density-based topology optimization 
framework is established. To this end, the geometry of 
embedded actuators is projected onto a [0 1] density field 
using the following Heaviside function:

where � denotes the sharpness of the smoothed Heaviside 
function. Na is the number of the embedded actuators. The 
elements of embedded piezoelectric actuators are defined 
by � = 1.

The presence of the host structure is described by the 
density vector � =

(
�1, ..., �N

)
 , where N is the total number 

of the discrete elements.

2.3  Material interpolation scheme

Since the shape and location of the embedded actuators are 
described by a [0 1] density field � , the multi-component opti-
mization problem can be regarded as a multi-material optimi-
zation problem. Thus, a multi-material interpolation scheme 
is presented to represent the elastic properties and the material 
density of the host structures and embedded actuators, which 
can be expressed as follows:

where �h and �a denote the elastic stiffness matrix of the 
host structure and the embedded actuators, while �h and 
�a are the corresponding material density. p1 and q are the 
penalization coefficients for the stiffness matrices and mate-
rial density, respectively.

The stiffness matrix of the element e are determined by both 
density field � and � . For �e = 1 , that is, the element is located 
in one of the embedded actuators, we have �e = �a ; for �e = 1 
and �e = 0 , that is, the element is inside the host structure, 
then �e = �h ; and for �e = 0 and �e = 0 , that is, the element 
is void, then �e = 0.

The piezoelectric constant matrix of the element e can be 
obtained as follows:

(13)

{
xi

yi

}
=

[
cos �0

i
sin �0

i

− sin �0
i
cos �0

i

]{
x − x0

i

y − y0
i

}
.

(14)� = 1 −

Na∏
i=1

1

1 + e−��i(�)
,

(15)�e = �p1
e

(
1 − �p1

e

)
�h + �p1

e
�a,

(16)�e = �q
e

(
1 − �q

e

)
�h + �q

e
�a,

(17)�e = �p2
e
�a,

where p2 is the penalization coefficient for the piezoelectric 
constant matrix of the embedded actuators. �a is the piezo-
electric matrix of the selected piezoelectric material under 
plane stress assumption:

Substituting Eqs. (14)–(16) into Eqs. (5)–(6), the element 
stiffness matrix, the piezoelectric coupling matrix, and the 
mass matrix can be rewritten as

where the constant matrices corresponding to the solid mate-
rial �e

uuh
 , �e

uua
 , �e

u�a
 , �e

h
 , and �e

a
 can be obtained as

3  Topology optimization considering 
fundamental frequency constraints

3.1  Problem statement

In this paper, the topology optimization problem for maxi-
mizing the output displacement uout with volume constraint 
and fundamental frequency constraints is considered. The 
mathematical formulation of the optimization problem can 
be expressed as

(18)�a =
[
e31 e32 0

]T
.

(19)

�e
uu

= �p1
e

(
1 − �p1

e

)
�e

uuh
+ �p1

e
�e

uua

�e
u�

= �p2
e
�e

u�a

�e = �q
e

(
1 − �q

e

)
�e

h
+ �q

e
�e

a

,

(20)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�e
uuh

= ∫Ωe

�T
u
���udΩe

�e
uua

= ∫Ωe

�T
u
���udΩe

�e
u�a

= ∫Ωe

�T
u
���udΩe

�e
h
= �h ∫Ωe

�T�dΩe

�e
a
= �a ∫Ωe

�T�dΩe

.

Table 1  Material properties of the piezoelectric actuators

Parameter Value

Young’s modulus E(GPa) 74
Poisson’s ratio � 0.3
Density �[kg/m3] 7800
Piezoelectric constant e31 − 9.3
Piezoelectric constant e32 − 9.3
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where � denote the design variables of the host structure. � is 
the set of the location parameters associated with embedded 
actuators. � is a vector with the value of 1 at the degree of 
output end, and the rest entries of which are all zero. g1 is 

(21)

Find:

{
� =

(
𝜁1, 𝜁2,… , 𝜁N

)
� =

(
��, ��,… ���

)

Max: uout = �T�

S . t. ∶ �uu� +�u𝜙� = �

g1 =

N∑
i=1

𝜁iVi − f1VD ≤ 0 , (i = 1, 2, ...,N)

g2 =

N∑
i=1

(
1 − 𝛾i

)
Vi ≤ VD −

Na∑
j=1

Vcj , (i = 1, 2, ...,N)

g3 = min
(
𝜔j

) ≥ 𝜔 ,
(
j = 1, ..., J0

)

0 < 𝜁min ≤ 𝜁e ≤ 1

,

Fig. 3  Analysis domain and boundary conditions of the displacement 
inverting mechanism. The reduced design domain is highlighted in 
gray

(a) (b) (c)

(d) (e) (f)

Fig. 4  Optimized topology of the displacement inverting mechanism: a without frequency constraint; b � = 200 Hz ; and c � = 300 Hz . Defor-
mation of the optimized designs: d without frequency constraint; e � = 200 Hz ; and f � = 300 Hz
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the volume constraint of the host structure, where Vi denotes 
the volume of the element i , VD is the volume of the entire 
design domain, and f1 represents the allowable volume frac-
tion of the host structure. The non-overlap constraint of the 
embedded actuators is determined by g2 , where Vcj is the 
volume of j-th embedded actuator. To better understand, the 
basic idea of non-overlap constraint is illustrated in Fig. 2. g3 
denotes the fundamental frequency constraint. �j is the j-th 
natural frequency of the structure. J0 > 1 is the number of 
natural frequencies used for evaluating the fundamental fre-
quency. � is the lower bound of the fundamental frequency. 
A lower threshold �min = 0.001 of design variables �e is set 
to avoid numerical difficulties when optimization.

The natural frequencies of the structure can be obtained 
by solving the generalized eigenvalue problem

where � and � are the global stiffness and mass matrix, 
respectively. For the embedded structure in this work, 
� = �uu . �i is the i-th eigenvalue and �i represents the cor-
responding eigenvector. It should be noted that to better 
calculate the sensitivity information of the eigenvalues, the 
eigenvectors are normalized with respect to the mass matrix 
�

(22)��i = �i��i,

The p-norm approximation method has been adopted in this 
work to avoid difficulties related to sensitivity analysis.

where p = 8 is used in this work for a smooth approximation 
of the minimum eigenvalue. � =

(
2��

)2 denote the lower 
bound of the minimum eigenvalue.

3.2  Sensitivity analysis

To update design variables using the gradient-based optimizer, 
the sensitivities of the objective function and constraints are 
obtained in this section. The sensitivity of the output displace-
ment with respect to design variable s ( �i , �i ) is calculated 
using the adjoint method:

(23)�T
i
��j = �ij.

(24)g3 =

[
J0∑
i=1

1

�
p

i

]−
1

p

≥ �,

(25)

�u
out

�s
=

�

�s

[
�T� + �T

(
�

uu
� +�

u��
)]

=

(
�T + �T�

uu

)
��

�s
+ �T

��
uu

�s
� + �T

��
u�

�s
�

,

Table 2  Comparing the 
optimized results for different 
cases in example 1

Optimal layout u
out

(�m) �
1
(Hz) �

2
(Hz) �

3
(Hz)

No constraint (0.1591 m, 0.1175 m, –1.1195 rad) –10.452 33.48 478.42 589.12
� = 200 Hz (0.1651 m, 0.1168 m, –1.1120 rad) –9.846 200.04 527.06 840.01
� = 300 Hz (0.1595 m, 0.1148 m, –1.0588 rad) –9.452 300.30 649.15 826.63
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where the adjoint vector � is assigned as the solution of the 
equation �uu� = −� such that the derivative term ��∕�s 
can be eliminated.

The derivative of the element stiffness matrix with respect 
to �i can be calculated as

The derivative of the stiffness matrix and piezoelectric 
coupling matrix with respect to the location parameters 
cik ∈

(
x0
i
, y0

i
, �0

i

)
 of i-th embedded actuator can be calcu-

lated using the chain rule as follows:

(26)
��

e

uu

��i
=

p1�
p1−1
e

(
1 − �

p1
e

)
�e

uuh

k0
.

(27)
��uu

�cik
=

N∑
e=1

��
e

uu

��e

��e

��i

��i

�cik
,

where the derivative term ��
e

uu
∕��e and ��

e

u�
∕��e can be 

obtained by differentiating Eq. (15) with respect to �e

The derivative term ��e∕��i can be derived from 
Eq. (14) as

(28)
��u�

�cik
=

N∑
e=1

��
e

u�

��e

��e

��i

��i

�cik
,

(29)��
e

uu

��e
=

−p1�
p1
e �

(p1−1)
e �e

uuh
+ p1�

(p1−1)
e �e

uua

k0
,

(30)
��

e

u�

��e
=

p2�
(p2−1)
e �e

u�a

�0
.

(31)
��e

��i

= −
(
1 − �e

) �e−��i

1 + e−��i

.

(a) (b) (c)

(d) (e) (f)

Fig. 6  The first three eigenmodes of the optimized design: a–c the first, second, and third eigenmode of the optimized design without frequency 
constraint; and d–f the first, second, and third eigenmode of the optimized design with frequency constraint � = 300 Hz
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In this paper, the rectangular embedded actuators 
are adopted. The topology description functions for the 
embedded actuators can be expressed as

where ai and bi are the semi-major and semi-minor lengths 
of the i-th embedded actuator, respectively.

The sensitivities of the topology description functions 
with respect to the location parameters cik ∈

(
x0
i
, y0

i
, �0

i

)
 can 

be derived from Eqs. (13) and (32) as

(32)�i =

(
xi

ai

)6

+

(
yi

bi

)6

− 1,

Fundamental frequency constraintSpring 

stiffness = 0 = 200Hz = 300Hz

0.01

0.05

0.1

Fig. 7  Optimal results under different spring stiffnesses

Table 3  Optimized results under different spring stiffnesses

k
s

�(Hz) Optimal layout u
out

(�m) �
1
(Hz)

0.01 0 (0.1598 m, 0.1140 m, –1.1331 rad) –7.171 63.61
200 (0.1605 m, 0.1103 m, –0.9137 rad) –6.805 200.04
300 (0.1623 m, 0.1146 m, –0.9080 rad) –6.621 300.12

0.05 0 (0.1593 m, 0.1145 m, –1.0342 rad) –3.194 118.92
200 (0.1639 m, 0.1154 m, –0.9047 rad) –3.065 200.01
300 (0.1616 m, 0.1107 m, –0.8863 rad) –2.963 300.03

0.1 0 (0.1589 m, 0.1172 m, –1.0262 rad) –2.006 141.33
200 (0.1591 m, 0.1160 m, –0.9523 rad) –1.964 200.10
300 (0.1582 m, 0.1149 m, –0.9977 rad) –1.932 300.02
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The sensitivity of the fundamental frequency constraint 
with respect to the design variable s ( �i , �i ) can be obtained 
as

where the derivative term ��j∕�s can be obtained as follows:

(33)

⎧
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⎪
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⎪

⎪

⎩

��i

�x0i
= 6

(

xi
a

)5(− cos �0i
a

)

+ 6
(

yi
b

)5( sin �0i
b

)

��i

�y0i
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(
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a

)5(− sin �0i
a

)

+ 6
(

yi
b

)5(− cos �0i
b

)

��i

��0i
= 6

(
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a

)5(− sin �0i
(

x − x0i
)

+ cos �0i
(

y − y0i
)

a

)

+6
(

yi
b

)5(− cos �0i
(

x − x0i
)

− sin �0i
(

y − y0i
)

b

)

.

(34)
�g3

�s
=

�
J0�
j=1

1

�
p

j

�−1−
1

p

⋅

⎡
⎢⎢⎣

J0�
j=1

1

�
p+1

j

��j

�s

⎤
⎥⎥⎦
,Fig. 8  Analysis domain of the micro-rotation mechanism. The 

reduced design domain is highlighted in gray

(a) (b) (c)

(d) (e) (f)

Fig. 9  Optimized topology of the micro-rotation mechanism: a without frequency constraint; b � = 400 Hz ; and c � = 500 Hz . Deformation of 
the optimized designs: d without frequency constraint; e � = 400 Hz ; and f � = 500 Hz .
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4  Numerical examples

To verify the effectiveness of the proposed method, three 
numerical examples are presented in this section. The penal-
ization coefficients of the stiffness matrix and piezoelectric 
constant matrix are given as p1 = 3 and p2 = 4 , respectively, 
as suggested by Homayouni-Amlashi et al. (2021). The 
penalization factor of the material density is set to be the 
same as the stiffness matrix, namely q = 3 , to prevent local-
ized modes during optimization (Torii and Faria 2017). The 
approximate fundamental frequency constraint is evaluated 
by taking three smallest eigenvalues, that is, J0 = 3 . The 
material properties of the piezoelectric actuators used in all 
examples are given in Table 1. The thickness of the structure 
is h = 1.5 × 10−4m . In all examples, the initial values of the 
design variables � are set equal to the volume fraction f1 . The 
normalized excitation voltage of the piezoelectric actuators 
is set as 1, and the corresponding actual voltage is 108 V . 
A specific normalized spring stiffness ks is predefined at the 
output end of the structure, and the actual value of which can 
be calculated as follows: ks = ks ⋅ k0 , where in all numerical 

(35)
��j

�s
= �T

j

(
��uu

�s
− �j

��

�s

)
�j.

examples k0 = 5.489 × 106 N/m . To avoid checkerboard pat-
terns and obtain black-and-white solutions, a PDE filter and 
a Heaviside projection filter are applied (Andreassen et al. 
2011). The filter radius Rmin of the PDE filter is three times 
the element size. The initial parameter of the Heaviside pro-
jection filter �h is set as 1 for the first 100 iterations and then 
updates �h = min

(
2 ∗ �h, 32

)
 for every 100 iteration steps 

or when the change in the objective function is no more than 
0.01. The parameter � in Eq. (14) is initially set as 16, and 
when �h is greater than � , � is set equal to �h.

The optimization terminates when the change in the 
objective function is less than 0.01 or the number of loop 
steps exceed 300. The method of moving asymptotes 
(MMA) (Svanberg 2007) is adopted to update design vari-
ables for all numerical examples.

4.1  Displacement inverting mechanism

In the first example, a displacement inverting mechanism is 
studied. The size of the analysis domain is 0.4 m × 0.4 m . 
To enforce symmetry of design about the horizontal axis, 
the design domain is selected to be the upper half of the 
analysis domain, as illustrated in gray in Fig. 3. The size of 
the rectangular actuators is 0.08m × 0.032m . The analysis 
domain is discretized using 200 × 200 bilinear quadrilateral 
plane stress elements. The initial position and orientation 

Table 4  Comparing the 
optimized results for different 
cases in example 2

Optimal layout f (�m) �
1
(Hz) �

2
(Hz) �

3
(Hz)

No constraint (0.1720 m, 0.1110 m, –0.4702 rad) –3.183 255.99 579.06 716.74
� = 400Hz (0.1683 m, 0.1084 m, –0.5047 rad) –3.133 400.06 605.99 787.94
� = 500Hz (0.1528 m, 0.1121 m, –0.5766 rad) –3.075 500.07 1042.35 1075.62

(a) (b)

Fig. 10  Iteration history for � = 400 Hz case: a the objective function and volume fraction and b the first three eigenfrequencies



 M. Wang et al.145 Page 12 of 18

of the actuator is (0.16 m, 0.12 m, 0 rad). The material of 
the host structures is aluminum alloy with Young’s mod-
ulus Eh = 70 GPa , Poisson’s ratio �h = 0.3 , and density 
�h = 2800 kg/m3 . The volume fraction is set to be f1 = 0.2.

Firstly, the topology optimization model of maximizing 
the output displacement without fundamental frequency 
constraint is solved. The optimal result and the deformation 
under the normalized spring stiffness ks = 0.005 are shown 
in Fig. 4) and d, respectively. The optimal solutions, the 
objective function, and the first three eigenfrequencies are 
listed in the first row of Table 2. The rectangle green part in 
Fig. 4a–c represents the piezoelectric actuator, and the blue 
part represents the host structure. The first three eigenmodes 
of the optimized structure are illustrated in Fig. 6a–c.

Next, the influence of the fundamental frequency 
constraint is investigated by setting � = 200 Hz and 
� = 300 Hz . The optimal topologies and corresponding 
solutions are given in Fig. 4b–c and Table 2. The results 
indicate that adding the fundamental frequency constraint 
leads to an increase in the host structure connected to the 
fixed boundary, while the position of the embedded actuators 
undergoes only minor changes. In addition, with the increase 
of the upper bound of the fundamental frequency constraint, 
the output displacement decreases. The iteration history of 

(a) (b) (c)

(d) (e) (f)

Fig. 11  Optimization process of the micro-rotation mechanism under � = 400 Hz : a step 1; b step 10; c step 25; d step 50; e step 100; and f 
final design

Fig. 12  Design domain of the cantilever compliant mechanism



A concurrent optimization method of compliant structures embedded with movable piezoelectric… Page 13 of 18 145

the displacement inverting mechanism under � = 300 Hz is 
plotted in Fig. 5. It is seen that the fundamental frequency 
achieved convergence within 30 iteration steps, which 
verifies the efficiency of the proposed method. Figure 6d–f 
depicts the first three eigenmodes of the optimized struc-
ture with fundamental frequency constraint � = 300 Hz . It 
is seen that all of these eigenmodes are global deformations, 
and no local modes exist.

Furthermore, the optimization process is proposed under 
different output spring stiffness. The optimal designs for 
ks = 0.01 , ks = 0.05 , and ks = 0.1 are illustrated in Fig. 7, 

and optimal solutions, objective function, and the funda-
mental frequencies are listed in Table 3. The results indicate 
that a larger spring stiffness leads to a stiffer design with 
thicker connection beams and results in a larger fundamental 
frequency and smaller output displacement.

4.2  Micro‑rotation mechanism

In the second example, a micro-rotation mechanism is 
optimized using the proposed method. As shown in Fig. 8, 
the optimization objective is to generate two equal-sized, 

(a) (d)

(b) (e)

(c) (f)

Fig. 13  Optimized topology of the cantilever compliant mechanism with single-embedded actuator: a without frequency constraint; b 
� = 800 Hz ; and c � = 1000 Hz . Deformation of the optimized designs: d without frequency constraint; e � = 800 Hz ; and f � = 1000 Hz.

Table 5  Comparing the 
optimized results for different 
cases in example 3

Optimal layout u
out

(�m) �
1
(Hz) �

2
(Hz) �

3
(Hz)

No constraint (0.1532 m, 0.0945 m, 0.2697 rad) –2.686 627.04 1152.58 1357.62
� = 800 Hz (0.1596 m, 0.1005 m, 0.2082 rad) –2.551 800.10 1259.26 2117.43
� = 1000 Hz (0.1397 m, 0.1048 m, 0.2632 rad) –2.465 1000.03 1713.45 2214.92
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oppositely directed angles or torques at the upper-right and 
lower-right corners. Thus, the objective function of this 
example can be expressed as follows: max

(
f = uout1 − uout2

)
 . 

The size of the analysis domain is 0.4m × 0.4m . The analysis 
domain is discretized using 200 × 200 bilinear quadrilateral 
plane stress elements. To enforce symmetry of design about 
the horizontal axis, the design domain is selected to be the 
upper half of the analysis domain.

The material of the host structures is aluminum alloy with 
Young’s modulus Eh = 70GPa , Poisson’s ratio �h = 0.3 , and 
density �h = 2800kg/m3 . The volume fraction is set to be 
f1 = 0.25 . The normalized spring stiffness at the output port 
is set to be ks = 0.1 in this example. The initial layout of the 
embedded actuators and remaining geometric parameters are 
the same as those in the previous example.

Firstly, the topology optimization model without fun-
damental frequency constraint is solved. The optimized 

design and its deformed shape are shown in Fig. 9a and d, 
respectively. The optimal layout of the embedded actuator, 
objective function, and the first three eigenfrequencies of 
the optimized design are listed in the first row of Table 4. 
Next, the topology optimization is implemented consid-
ering fundamental frequency constraints � = 400 Hz and 
� = 500 Hz . The optimal topologies and their deformed 
shape and the corresponding solutions are given in 
Fig. 9b–c, e–f and Table 4. It can be observed that the 
optimized topologies of the three cases exhibit significant 
differences, while the deformation mode of which remain 
unchanged. The iteration curves of the objective function 
and first three frequencies for � = 400 Hz are shown in 
Fig. 10. The small oscillations of the iteration curves are 
mainly caused by the updates of the sharpness parameters 
�h . Several intermediate designs are illustrated in Fig. 11, 
which indicate that the actuator location is updated at the 
beginning of the optimization process, after that, the topol-
ogy of the host structure is generated. The above results 
proved that the smoothed fundamental frequency con-
straint function proposed in this study could effectively 
control the fundamental frequency of the piezo-embedded 
structure, which verified the effectiveness of the presented 
optimization framework.

4.3  Cantilever compliant mechanism

In this section, a cantilever compliant mechanism with a 
single-embedded actuator is considered. The design domain 
of this cantilever compliant mechanism is shown in Fig. 12. 
The optimization objective of this example is to maximize 
the vertical output displacement against the y-direction at 
the right bottom corner. The size of the analysis domain is 

(a) (b)
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Fig. 14  Iteration history of for � = 800 Hz case: a The objective function and volume fraction and b the first three eigenfrequencies

Fig. 15  Design domain of the cantilever compliant mechanism with 
two embedded actuators
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0.4 m × 0.2 m . The size and the initial layout of the embed-
ded actuators are 0.08 m × 0.032 m and (0.16m, 0.11m, 
0rad), respectively. The analysis domain is discretized 
using 200 × 100 bilinear quadrilateral plane stress elements. 
The material of the host structures is structural steel with 
Young’s modulus Eh = 200 GPa , Poisson’s ratio �h = 0.3 , 
and density �h = 7850 kg/m3 . The volume fraction is set to 
be f1 = 0.2 . The normalized spring stiffness at the output 
port is set to be ks = 0.1 in this example.

The cases without a fundamental frequency constraint 
and with � = 800 Hz and � = 1000 Hz fundamental fre-
quency constraint are optimized, respectively. The optimized 
designs and their deformed shapes are shown in Fig. 13, and 
the optimal layout of the embedded actuator, objective func-
tion, and the first three eigenfrequencies are listed in Table 5. 
The iteration curves of the cantilever compliant mechanism 
under � = 800 Hz are shown in Fig. 14.

To further validate the proposed optimization method, 
the optimization is also presented with different sizes and 
number of embedded actuators. In this case, a cantilever 
compliant mechanism with two embedded actuators is 

(a) (d)

(b) (e)

(c) (f)

Fig. 16  Optimized topology of the cantilever compliant mechanism with two embedded actuators: a without frequency constraint; b 
� = 750 Hz ; and c � = 850 Hz . Deformation of the optimized designs: a without frequency constraint; b � = 750 Hz ; and c � = 850 Hz

Table 6  Comparing the 
optimized results for different 
cases in example 4

Optimal layout Optimal layout u
out

(�m) �
1
(Hz)

No constraint (0.1144 m, 0.0876 m, 0.2346 rad) (0.3077 m, 0.1066 m, 0.2561 rad) –3.760 667.31
� = 750 Hz (0.0721 m, 0.0931 m, 0.2472 rad) (0.2999 m, 0.1120 m, 0.2920 rad) –3.583 750.12
� = 850 Hz (0.0838 m, 0.0979 m, 0.3146 rad) (0.2957 m, 0.1188 m, 0.3276 rad) –3.409 850.03
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considered, as illustrated in Fig. 15. The actuators with 
sizes 0.08m × 0.032 m and 0.06m × 0.02 m are located at 
(0.11 m, 0.11 m, 0 rad) and (0.31 m, 0.11 m, 0 rad), respec-
tively. Other parameters are the same as those in the previous 
example.

The cases with no fundamental frequency constraint and 
� = 750 Hz , � = 850 Hz fundamental frequency constraint 
are optimized, respectively. The optimized designs and their 
deformed shapes are shown in Fig. 16, and the optimal lay-
out of the embedded actuator, objective function, and the 
first three eigenfrequencies are listed in Table 6. The itera-
tion curves under � = 750 Hz are shown in Fig. 17.

5  Conclusion

This paper presents a concurrent optimization method of 
compliant structures embedded with movable piezoelectric 
actuators considering fundamental frequency constraints. In 
this approach, the layout of compliant mechanisms and pie-
zoelectric actuators is simultaneously optimized by employ-
ing a SIMP-based computational framework. More specifi-
cally, the geometry and location of the embedded actuators 
described by a K–S function are mapped into a density field, 
which ensures computational efficiency by avoiding the need 
for remeshing the grid. To overcome the non-differentiabil-
ity issue, a p-norm approximation function is employed for 
the fundamental frequency constraint. Sensitivities of objec-
tive and constraints are derived using the adjoint method and 
the optimization problem is solved using the gradient-based 
optimizer. Numerical examples are investigated to verify the 
effectiveness of the proposed method. The iteration curves of 
the objective and constraints demonstrate that the proposed 

method is differentiable and stable, and clear topologies of 
embedded actuators and the host structure can be obtained 
for all examples, which preliminarily validate the effective-
ness of the proposed method. It is also seen that the funda-
mental frequency constraints are well satisfied, and no local 
modes exist. The optimized designs of the piezo-actuated 
compliant mechanism considering fundamental frequency 
constraints are significantly different from the designs with-
out frequency constraints, which demonstrates the necessity 
of considering dynamics properties when designing compli-
ant mechanisms.
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