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Abstract
Fiber orientation parametrization is a fundamental issue in topology optimization of continuous fiber-reinforced composites. 
The conventional Euler angles-based parametrization often encounters singular points, which can be problematic. To address 
this challenge, the Cartesian representation-based parametrization is revisited. By leveraging the transversal isotropy property 
of fiber-reinforced composites, a direct mapping between the Cartesian representation of the 3D fiber orientation and the 
rotated stiffness matrix is established. Thus, the transformations between Euler angles and Cartesian representation have 
become unnecessary, simplifying implementation and avoiding associated numerical issues. Building upon the proposed 
Cartesian parametrization, the classical minimum compliance design problem for 3D continuous fiber-reinforced composites 
is formulated. Then, efficient sensitivity analysis and decoupled design variable updating strategies are developed. The effec-
tiveness of the proposed parametrization is demonstrated through three large-scale topology optimization examples. These 
case studies showcase the capability of the approach to solve practical problems and achieve improved optimization outcomes.

Keywords  Topology optimization · Composite structures · Fiber orientation · Design parametrization · Cartesian 
representation

1  Introduction

The rapid advancement of advanced manufacturing technol-
ogies has made it feasible to fabricate composite parts with 
complex shapes and tailored fiber orientations (Tian et al. 
2022; Cheng et al. 2022). This development creates signifi-
cant opportunities for designing structures with enhanced 
performance (Liu et al. 2021; Fernandes et al. 2021). How-
ever, fully leveraging the design freedom offered by these 
technologies remains a challenge.

In recent years, there has been progress in the field of 
topology optimization of continuous fiber-reinforced com-
posites (Jiang et al. 2019; Safonov 2019; Chen and Ye 2021; 
Zhou et al. 2022; Qiu et al. 2022). Unlike that with isotropic 

materials, topology optimization with fiber-reinforced com-
posite structures requires determining not only the presence 
of material at a given point in the design domain but also 
the fiber orientation at that point. Thus, parametrization of 
the spatially varying fiber orientations plays a critical role 
in the effectiveness of topology optimization of continuous 
fiber-reinforced composites.

The rotation-based approach is widely used to parameter-
ize fiber orientation. At least three mathematical constructs 
have been applied for this purpose: Euler angles, Cartesian 
representation, and quaternions. In the Euler angles-based 
method, two angles are employed to describe the fiber orien-
tation in 3D space (Schmidt et al. 2020; Fedulov et al. 2021). 
When the planar slicing strategy in conventional 3d printing 
is considered, a single angle per element can be sufficient, 
as the fiber orientation is restricted to the printing plane 
(Jiang et al. 2019). While the Euler angles-based parametri-
zation is intuitive, it can encounter singularity issues during 
the optimization process (Nomura et al. 2015). This can be 
problematic, as the presence of singularities can adversely 
affect the optimization convergence and stability.

To mitigate the singularity issues associated with 
the Euler angles-based parametrization, the Cartesian 
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representation has been used to represent fiber orientation 
in the simultaneous design of density and orientation of ani-
sotropic materials for 2D problems (Nomura et al. 2015). In 
this approach, an isoparametric projection method is pro-
posed to ensure that the direction vector represented by the 
two Cartesian components is of unit length. The Cartesian 
representation has been further employed in topology opti-
mization for the continuous orientation design of function-
ally graded fiber-reinforced composite structures (Lee et al. 
2018). In this case, the requirement of unit length for the 
fiber direction vector is satisfied simply by normalization, 
and the mapping between the fiber direction vector and the 
rotated stiffness matrix can be readily obtained. However, 
the use of Cartesian representation for 3D problems is not 
as straightforward (Smith and Norato 2021). Recently, the 
Cartesian representation has been employed to parameter-
ize fiber orientation for 3D problems (Luo et al. 2023), but 
the design variables are still transformed into Euler angles, 
which inevitably introduces singularity issues. Nevertheless, 
it has been demonstrated that the Cartesian parametrization 
can be readily used to account for manufacturing constraints 
(Luo et al. 2023, 2024). This suggests that the Cartesian 
representation-based approach holds promise for addressing 
the singularity issues while providing a flexible framework 
for incorporating practical considerations in the topology 
optimization of continuous fiber-reinforced composites.

Quaternions are more suitable for representing the orien-
tation of general orthotropic materials in 3D space (Kubalak 
et al. 2021). However, to represent a pure rotation, the qua-
ternion must be of unit length. This requirement increases 
the solving difficulty of the topology optimization prob-
lems because element-wise quadratic constraints need to 
be involved. To address this issue, the concept of “natural 
quaternions” has been introduced in the work by Kubalak 
et al. (2021). In this approach, the unit length constraints 
are implicitly enforced, and only simple side constraints 
are required. While quaternions of less than unit length are 
allowed, elements in this state would be artificially weaker. 
For minimum compliance design problems, the optimization 
algorithm naturally drives the quaternions to unit length. 
However, for other types of problems, this approach may 
lead to the generation of non-physical designs, as the opti-
mization is not explicitly constrained to maintain the unit 
length requirement.

An alternative approach to addressing the challenges 
associated with the rotation-based parametrization is to 
directly parameterize the terms of the stiffness tensor (Zowe 
et al. 1997). This removes the concept of rotation and the 
associated complexity. However, this approach requires 
the involvement of quadratic constraints to ensure that the 
resulting material property tensor is positive semi-definite, 
making that the topology optimization problem involve a 
large number of nonlinear equality constraints. To address 

this issue, a second-order unidirectional tensor-based repre-
sentation has been proposed for the fiber orientation in the 
work by Nomura et al. (2015, 2019). Since the unidirectional 
tensor is symmetric, the six upper triangle elements are 
taken as the design variables. To ensure that these six values 
constitute a valid tensor, a multi-variable function projec-
tion (Nomura et al. 2015) is employed to satisfy the tensor 
invariant constraints. The corresponding stiffness matrix is 
then obtained according to the fourth-order unidirectional 
tensor defined by the directional vector. This unidirectional 
tensor-based representation has been applied to large-scale 
topology optimization of continuous fiber-reinforced light-
weight composites (Zhou et al. 2022). Furthermore, this 
representation has been extended to the inverse design of 
fiber-reinforced composites with spatially varying fiber 
size and orientation (Nomura et al. 2019). In this case, a 
simple projection is employed for the diagonal terms of the 
orientation design variables, while the isoparametric shape 
functions are used for the off-diagonal terms. However, the 
authors have noted that the optimization results may contain 
some areas that violate the conditions for tensor invariants 
(Nomura et al. 2019). A novel material orientation filter is 
proposed in Jantos et al. (2020) to control the smoothness 
of the fiber pathways, where the filter is directly applied to 
the stiffness matrix, rather than the actual parametrization 
for the fiber orientations. In each optimization step, the pro-
posed material orientation filter requires the recovery of the 
Euler angles from the rotation matrix.

In addition to the aforementioned parametrization 
approaches, it is also worth noting that a novel non-para-
metric shape and topology optimization for fiber placement 
design of CFRP plate and shell structures is developed in 
Shimoda et al. (2023). In this approach, the problem is for-
mulated as a distributed-parameter optimization problem, 
where the optimal fiber placement and orientation can be 
obtained without the need for any explicit parametrization. 
This non-parametric formulation allows for a more flexible 
and unconstrained representation of the fiber paths, poten-
tially leading to more optimal designs compared to the 
parameterized approaches.

This study focuses on the topology optimization of 3D con-
tinuous fiber-reinforced composites and revisits the Cartesian 
representation-based parameterization for spatially varying 
fiber orientations. However, unlike the work by Luo et al. 
(2023), the rotated stiffness matrix is directly obtained accord-
ing to the Cartesian representation without the need for Euler 
angles. A key distinction of this work is that fiber-reinforced 
composite materials often exhibit transversal isotropy, which 
provides an opportunity to develop a very simple way to estab-
lish a direct mapping between the Cartesian representation and 
the rotated stiffness matrix. Building upon the proposed para-
metrization, the formulation for topology optimization of con-
tinuous fiber-reinforced composites is presented. Additionally, 
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a solution method is outlined to efficiently address the optimi-
zation problem. To validate the effectiveness of the proposed 
method, numerical examples are conducted, showcasing its 
capabilities and advantages in achieving optimized designs.

The remainder of this paper is structured as follows. In 
Sect. 2, the Cartesian parametrization for 3D fiber orientations 
is presented. Section 3 outlines the problem formulation for 
topology optimization of continuous fiber-reinforced compos-
ites, covering aspects such as design parametrization and regu-
larization, material interpolation schemes, and the formulation 
of the minimum compliance design problem. The solution 
method, including sensitivity analysis and decoupled design 
variable updating, is described in Sect. 4. Three numerical 
examples are provided in Sect. 5 to illustrate the performance 
of the proposed Cartesian parametrization and its effective-
ness in solving topology optimization problems for continuous 
fiber-reinforced composites. Finally, Sect. 6 summarizes the 
conclusions drawn from this work.

2 � Cartesian parametrization for 3D fiber 
orientations

In this section, we provide a comprehensive explanation of 
the Cartesian parametrization designed for 3D fiber orienta-
tions. The crucial aspect of this parametrization lies in how to 
establish a mapping between the orientation parameters and 
the rotated material stiffness matrix.

Continuous fiber-reinforced composite materials generally 
exhibit transversally isotropic behavior. In the fiber direction 
(longitudinal direction), the mechanical properties (such as 
modulus, strength, etc) are significantly higher than those in 
the transverse direction, while within the transverse plane (the 
plane perpendicular to the fiber direction), the mechanical 
properties are isotropic; i.e., they are the same in all directions.

The stress–strain relationship of fiber-reinforced composite 
material in the principal material coordinates is described as 
follows:

where the stress and strain tensors are expressed in the 
Voigt notation as � = [�11, �22, �33, �23, �31, �12]

T and 
� = [�11, �22, �33, �23, �31, �12]

T . The stiffness matrix is found 
from the inverse of the compliance matrix as follows:

(1)� = ��,

(2)

�=

⎡⎢⎢⎢⎢⎢⎢⎣

1∕E1 −v12∕E1 −v12∕E1 0 0 0

−v12∕E1 1∕E2 −v23∕E2 0 0 0

−v12∕E1 −v23∕E2 1∕E2 0 0 0

0 0 0 1∕G23 0 0

0 0 0 0 1∕G12 0

0 0 0 0 0 1∕G12

⎤⎥⎥⎥⎥⎥⎥⎦

−1

,

where E1 and E2 are the Young moduli of the composite 
material along and perpendicular to the fiber directions, 
respectively, v12 and v23 are the Poisson ratios, G12 and G23 
are shear moduli. For transversely isotropic materials, the 
relationship G23 = E2∕2(1 + v23) holds. Thus, only five inde-
pendent coefficients, E1,E2, v12, v23 and G12 , are sufficient to 
describe the mechanical properties of the composite materi-
als in the principal material coordinates.

As shown in Fig. 1, suppose that in the global coordinates 
the three principal material axes 1, 2, and 3 are aligned with 
�1 , �2 , and �3 , respectively, where

Then, the stress–strain relationship in the global coordinates 
XYZ can be described by the rotated stiffness matrix, which 
is given by (Kubalak et al. 2021)

where the transformation matrix �R is provided in Eq. (7).

It can be seen that when �1 , �2 , and �3 are all known, the 
rotated stiffness matrix can be readily obtained. However, 
in the topology optimization of continuous fiber-reinforced 
composite structures, usually only the fiber direction �1 is 

(3)�1 = [l1,m1, n1]
T,

(4)�2 = [l2,m2, n2]
T,

(5)�3 = [l3,m3, n3]
T.

(6)�R = �R��
T
R
,

(7)

TR =

⎡⎢⎢⎢⎢⎢⎢⎣

l2
1

l2
2

l2
3

2l2l3 2l3l1 2l1l2
m2

1
m2

2
m2

3
2m2m3 2m3m1 2m1m2

n2
1

n2
2

n2
3

2n2n3 2n3n1 2n1n2
m1n1 m2n2 m3n3 m2n3 + m3n2 m1n3 + m3n1 m1n2 + m2n1
n1l1 n2l2 n3l3 n3l2 + n2l3 n3l1 + n1l3 n2l1 + n1l2
l1m1 l2m2 l3m3 l2m3 + l3m2 l1m3 + l3m1 l1m2 + l2m1

⎤⎥⎥⎥⎥⎥⎥⎦

.

Fig. 1   Fiber orientation description in global coordinate system



	 J. Zhao et al.153  Page 4 of 17

given. In such cases, there is no obvious choice for the selec-
tion of �2 and �3 (Smith and Norato 2021). This section pro-
poses a simple and explicit way to construct �2 and �3 . For 
transversely isotropic fiber-reinforced composite materials, 
the material properties are the same in any direction perpen-
dicular to the fiber direction. Therefore, any direction in the 
transverse plane can be selected as �2.

Let us introduce the following vector:

It can be readily verified that

Thus, the unit vector �2 can be constructed by normalizing 
the vector � as follows:

After �2 is obtained, the unit vector �3 can then be computed 
as the cross product of �1 and �2:

This approach ensures that the vectors �1 , �2, and �3 form an 
orthonormal basis, which is a necessary requirement for the 
subsequent transformation of the material properties from 
the principal material coordinates to the global coordinate 
system.

It can be seen that by this approach, the values of 
li,mi, ni(i = 2, 3) can be constructed once the fiber direc-
tion vector [l1,m1, n1]

T is given. Consequently, the map-
ping between the rotated stiffness matrix �R and the fiber 
orientation �1 can be established. Thus, for any given fiber 
direction, the corresponding rotated stiffness matrix can 
be obtained. The direct mapping between the Cartesian 
representation of the fiber orientation and the correspond-
ing stiffness matrix, without the need for Euler angles, is 
a central aspect of the proposed parametrization approach 
and a key contribution of this work.

3 � Problem formulation

In this section, we provide a brief overview of the problem 
formulation for topology optimization of 3D continuous 
fiber-reinforced composites. To perform topology optimi-
zation, the density-based approach (Bendsøe 1989; Zhou 
and Rozvany 1991) is utilized in this study. For a more 
comprehensive understanding of the methodology, we rec-
ommend referring to the relevant literature where further 
details can be found in Schmidt et al. (2020).

(8)� = [m1 − n1, n1 − l1, l1 − m1]
T .

(9)�T�1 = l1(m1 − n1) + m1(n1 − l1) + n1(l1 − m1) = 0.

(10)�2 = �∕‖�‖.

(11)�3 = �1 × �2.

3.1 � Design parametrization and regularization

Assume that the design domain is discretized into N ele-
ments and the volume of each element is v1, v2,⋯ , vN  , 
respectively. In the topology optimization problem, each 
element is assigned four design variables: �e, pe1, pe2, pe3 . 
Here, �e indicates whether the element is filled with mate-
rial or void, while pe1, pe2, pe3 represent the fiber direc-
tion of the composite material within that element. Con-
sequently, there are a total of 4N design variables in the 
optimization problem.

To mitigate numerical issues such as the checkerboard 
phenomenon and mesh-dependency commonly arise in 
continuum topology optimization, a filtering technique, 
as proposed in Bourdin (2001) and Schmidt et al. (2020), 
is employed to regularize both the density and fiber ori-
entation variable fields. Specifically, the density filter is 
applied to transform the original density design variable 
�e , resulting in a modified density value as follows:

where ℵe is the set of elements j for which the center-to-
center distance d(e, j) to element e is smaller than the filter 
radius rmin and Hej is a weight factor defined as follows:

Similarly, the filtered orientation variables are obtained as 
follows:

where

It should be noted that in practical engineering applications, 
the density and orientation design variables can potentially 
be filtered using different filter radii. This is because the 
filter radius for the density filter is primarily used to control 
the length scale of the structural features, while the filter 
radius for the orientation variables is used to regulate the 
smoothness of the fiber orientation transitions. Therefore, it 
is common to employ different filter radii for these two types 
of design variables.

The filtered orientation vector p̃e may not be of unit 
length after the filtering operation. To ensure that the 

(12)𝜂̃e =

∑
j∈ℵe

Hejvj𝜂j

∑
j∈ℵe

Hejvj
,

(13)Hej = max(0, rmin − d(e, j)).

(14)p̃e =

∑
j∈ℵe

Hejvjp̂j

∑
j∈ℵe

Hejvj
,

(15)p̂j=

{
pj, ifpe ⋅ pj ≥ 0

−pj, otherwise
.
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rotated stiffness matrix is properly parameterized, p̃e is 
further normalized, resulting in a unit direction vector:

The normalization of the filtered orientation vector guaran-
tees that the physical orientation vector p̄e represents a valid 
fiber direction within the topology optimization problem. 
Once the unit orientation vector p̄e is obtained, the rotated 
stiffness matrix can be computed according to the mapping 
method developed in Sect. 2.

3.2 � Material interpolation scheme

In the topology optimization of composite structures, the 
modified SIMP (Solid Isotropic Material with Penalization) 
model is employed to achieve clear designs (Andreassen 
et al. 2011). The stiffness matrix of the composite material 
in the eth element can be defined as follows:

where �0
e
(p̄e1, p̄e2, p̄e3) is the rotated stiffness matrix of the 

composite material corresponding to the fiber direction 
vector [l1,m1, n1]

T = [p̄e1, p̄e2, p̄e3]
T and it can be obtained 

by Eqs. (6, 7, 8, 10, 11). To penalize intermediate densi-
ties and promote clear designs, a penalization function 
g(𝜂̃e) = 𝜖 + (1 − 𝜖)𝜂̃

p
e is used, with p = 3 and � = 10−6.

3.3 � Formulation of minimum compliance design

The equilibrium equation of a structure under an external 
load can generally be written as follows:

where K is the global stiffness matrix, � is the global force 
vector corresponding to the load applied to the structure.

The global stiffness matrix K can be obtained by assem-
bling the corresponding element stiffness matrices. The ele-
ment stiffness matrix �e can be computed as follows:

where

with B being the matrix of shape function derivatives.
Finally, minimum compliance design of composite struc-

tures under an external force can be formulated as follows:

(16)p̄e =
p̃e

‖‖p̃e‖‖
.

(17)�e = g(𝜂̃e)�
0

e
(p̄e1, p̄e2, p̄e3),

(18)�� = � ,

(19)�e = g(𝜂̃e)�
0

e
,

(20)�
0

e
=
∫Ωe

�
T
�

0

e
�dΩ

Here for simplicity, � and p denote the density and orienta-
tion design variables vectors, respectively. f and u are the 
load vector and the corresponding displacement vector, 
respectively. ve is the volume of element e, V is the vol-
ume of the design domain, and vf  is the prescribed volume 
fraction.

In this approach, it is not necessary to enforce unit length 
constraint on the orientation variables. Rather, only bound 
constraints on the design variables are introduced, making it 
particularly suitable for solving large-scale problems.

4 � Solution method

One computational challenge in solving the topology opti-
mization problem (19) is the nested finite element analysis, 
especially when the number of elements used to discretize the 
design domain is large. However, when the Cartesian grids 
are employed, the template stiffness matrices (TSMs)-based 
method can be used to efficiently perform the finite element 
analysis (Chandrasekhar et al. 2023; Zhao et al. 2024). Thus, 
this section will focus on the sensitivity analysis method and 
design variables update strategy.

4.1 � Sensitivity analysis method

To solve topology optimization problems, sensitivity analy-
sis is an indispensable step to quantify the influence of each 
design variable on the structural performance. According to 
the adjoint method (Bendsøe and Sigmund 2003), when the 
load is design independent, the sensitivity of the structural 
compliance with respect to any design variable xe can be given 
as follows:

Substituting Eq. (17) into Eq. (20) yields

(21)

min
�,p

∶c = �
T
�

s.t. ∶�� = �

(

N∑
e=1

ve𝜂̃e)∕V − vf ≤ 0

0 ≤ 𝜂e ≤ 1, 1 ≤ e ≤ N

− 1 ≤ pe1 ≤ 1, 1 ≤ e ≤ N

− 1 ≤ pe2 ≤ 1, 1 ≤ e ≤ N

− 1 ≤ pe3 ≤ 1, 1 ≤ e ≤ N

.

(22)
�c

�xe
= −�T

e

��e

�xe
�e.

(23)
𝜕c

𝜕𝜂̃e
= −g�(𝜂̃e)�

T
e
�
0

e
�e,
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When the TSMs-based method is employed to compute 
the element stiffness matrices (Zhao et al. 2024), �0

e
 can be 

expressed as a linear combination of 21 TSMs,

where n = i(i − 1)∕2 + j and

Here �0

e,ij
 is the element of �0

e
 at the position of row i and 

column j, �0
e,ij

= ∫
Ωe

�T
e
�ij�edΩ(i, j,= 1,⋯ , 6) with �ij being 

a 6 × 6 matrix with 1 at the position of row i and column j 
and 0 at other positions.

Then, the sensitivity of the elemental stiffness matrix 
with respect to the physical orientation variables can be 
computed as follows:

In this work, the sensitivity term 𝜕�0
e
∕𝜕p̄ei in Eq. (27) is 

computed using the forward finite difference method to avoid 
complicated analytical derivation.

The sensitivity of the volume constraint function 
with respect to the physical design variables can also be 
obtained explicitly, but will be omitted here for the sake 
of brevity.

Once the sensitivity of the objective and constraint 
functions with respect to the physical design variables 
is available, their sensitivity with respect to the original 
design variables can be obtained based on the chain rule 
of differentiation. The derivation for the density variables 
is trivial and will not be presented here.

For the orientation variables, according to the chain 
rule of differentiation, the sensitivity of the compliance 
with respect to the filtered orientation variables is given 
as follows:

where it can be readily found that

(24)𝜕c

𝜕p̄ei
= −g(𝜂̃e)�

T
e

𝜕�0
e

𝜕p̄ei
�e, i = 1, 2, 3.

(25)�
0

e
=

21∑
n=1

�
0

e,n
�
0

t,n
,

(26)�
0

e,n
= �

0

e,ij
,

(27)�
0

t,n
=

{
�
0

e,ii
, i = j

�
0

e,ij
+ �

0

e,ji
, i > j

.

(28)
𝜕�0

e

𝜕p̄ei
=

21∑
n=1

𝜕�0
e,n

𝜕p̄ei
�
0

t,n
.

(29)

⎡⎢⎢⎢⎣

𝜕c

𝜕p̃e1
𝜕c

𝜕p̃e2
𝜕c

𝜕p̃e3

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

𝜕p̄e1

𝜕p̃e1

𝜕p̄e2

𝜕p̃e1

𝜕p̄e3

𝜕p̃e1
𝜕p̄e1

𝜕p̃e2

𝜕p̄e2

𝜕p̃e2

𝜕p̄e3

𝜕p̃e2
𝜕p̄e1

𝜕p̃e3

𝜕p̄e2

𝜕p̃e3

𝜕p̄e3

𝜕p̃e3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

𝜕c

𝜕p̄e1
𝜕c

𝜕p̄e2
𝜕c

𝜕p̄e3

⎤
⎥⎥⎥⎦
,

Finally, the sensitivity of the compliance with respect to the 
original orientation design variables can be given as follows:

(30)

⎡⎢⎢⎢⎣

𝜕p̄e1

𝜕p̃e1

𝜕p̄e2

𝜕p̃e1

𝜕p̄e3

𝜕p̃e1
𝜕p̄e1

𝜕p̃e2

𝜕p̄e2

𝜕p̃e2

𝜕p̄e3

𝜕p̃e2
𝜕p̄e1

𝜕p̃e3

𝜕p̄e2

𝜕p̃e3

𝜕p̄e3

𝜕p̃e3

⎤
⎥⎥⎥⎦
=

1

��p̃e��
�
I − p̄ep̄

T
e

�
.

(31)
𝜕c

𝜕pei
=

∑
j∈Ne

𝜕c

𝜕p̃ji

𝜕p̃ji

𝜕pei
.

Fig. 2   Flowchart for topology optimization of 3D continuous fiber-
reinforced composites
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When the sensitivity of the objective and constraint func-
tions with respect to all design variables is ready, the design 
variables can be updated.

4.2 � Decoupled design variables update strategy

In minimum compliance design problems, there is typically 
only one constraint related to the available amount of mate-
rial, and the orientation variables do not affect the volume 
fraction constraint. This characteristic provides an opportu-
nity for efficient design variable updating in each optimiza-
tion step. Instead of updating all design variables simulta-
neously using the method of moving asymptotes (MMA) 
proposed by Svanberg (1987), we update the density vari-
ables and orientation variables separately. This approach has 
been proven to be robust and more efficient, as demonstrated 
in the work of Zhang et al. (2021).

To update the density variables, we employ the optimal-
ity criteria method described in Andreassen et al. (2011). 
Since the orientation variables are subject to lower and 
upper bounds rather than general constraints, we adopt an 
explicit convex approximation for the objective function in 
each topology optimization step, as proposed by Zhang et al. 
(2021). This approximation allows us to construct an explicit 
convex sub-problem:

where

and r0 is a constant only dependent on the current values of 
the design variables. The specific expressions of Pei , Qei , 

(32)

min
p

∶f (p) = f1(p1) + f2(p2) + f3(p3) + r0

s.t. ∶pe1,l ≤ pe1 ≤ pe1,u, 1 ≤ e ≤ N

pe2,l ≤ pe2 ≤ pe2,u, 1 ≤ e ≤ N

pe3,l ≤ pe3 ≤ pe3,u, 1 ≤ e ≤ N

,

(33)fi(pi) =

N∑
e=1

(
Pei

Uei − pei
+

Qei

pei − Lei
)

Uei, and Lei can be found in Aage and Lazarov (2013). The 
purpose of setting lower and upper bounds pei,l and pei,u on 
the orientation variables is to prevent excessively large step 
sizes during the optimization process.

The sub-problem formulation allows for the separation of 
the objective function, enabling the creation of independent 
sub-problems with only bound constraints. By exploiting 
this separability, the optimum solution for each sub-problem 
can be analytically determined as follows:

where

4.3 � Optimization procedure

The procedure for the topology optimization of 3D con-
tinuous fiber-reinforced composites is illustrated in Fig. 2. 
In each optimization iteration, four steps: calculation of 
physical design variables, finite element analysis, sensitiv-
ity analysis, and design variables updating, are sequentially 
performed. This iterative process is repeated until the opti-
mization process converges. Once the optimization process 
has converged, the optimized physical density and orien-
tation variables are output for further post-processing and 
visualization.

5 � Numerical examples

This section presents three numerical examples to illustrate 
the effectiveness of the Cartesian parametrization for topol-
ogy optimization of 3D continuous fiber-reinforced compos-
ites. The material properties of the composite material TFP 
used in all examples are the same as those specified in Zhou 
et al. (2022). In all examples, the TSMs-based MGPCG 
solver developed in the authors’ recent work (Zhao et al. 
2024) is utilized for finite element analysis. The move limit 
for the density variables is set to 0.2, while the move limit 
mp for the fiber orientation variables is initially set as 1/4 and 
decay exponentially at a rate of 0.95 in each optimization 
iteration. The maximum number of optimization iterations 
is set to 150.

The computations are performed on a compute node 
within a high-performance computing cluster, equipped with 
an Intel(R) Xeon(R) Gold 6240 Processor and an NVIDIA 

(34)ps
ei
=

⎧
⎪⎨⎪⎩

pei,l, if p∗
ei
< pei,l

p∗
ei
, if p∗

ei
∈ [pei,l, pei,u]

pei,u, if p∗
ei
> pei,u

,

(35)p∗
ei
=

√
PeiLei +

√
QeiUei√

Pei +
√
Qei

.

Fig. 3   Problem definition for Case study 1



	 J. Zhao et al.153  Page 8 of 17

Tesla V100 GPU. The implementation is carried out using 
the Taichi 1.7 programming language (Hu et al. 2019). For 
visualizing the density distributions and fiber orientations, 
ParaView 5.8.1 (Ayachit 2015) is employed. A threshold 
value of 0.3 is set for the density distribution during the 
visualization process.

5.1 � Case study 1: a 3D cantilever beam design 
problem

In this example, we consider a 3D cantilever beam design 
problem to showcase the effectiveness of the proposed 
method. The design domain and boundary conditions are 
depicted in Fig. 3. The dimensions of the design domain are 
1 m ×2 m ×1 m. Part of the left end of the design domain is 
fixed in all three directions. A force of magnitude 20000 N 
is uniformly applied on the half-circle of diameter 0.25 m. 
The prescribed volume of the material is set to be 10% of the 
volume of the design domain.

To conduct topology optimization, the design domain is 
discretized into 128 × 256 × 128 tri-linear cubic elements. 
Three different design initializations are considered, where 
the fiber orientations in all elements are aligned with the X, 
Y, and Z directions, respectively. The filtering radii for the 
density and fiber orientation fields are set to be 1.5 times 
the element size.

The optimization designs for these three cases using 
the Cartesian parametrization and the Euler angles-based 
parametrization (Schmidt et al. 2020; Zhao et al. 2024) 
are displayed in Figs. 4 and 5, respectively. The compli-
ance values of the optimized designs using Cartesian para-
metrization are 1.062 J, 1.099 J, and 1.123 J, respectively, 
while those for the optimized designs obtained using Euler 
angles-based parametrization are 1.160 J, 1.115 J, and 
1.124J, respectively. This indicates that both parametriza-
tion methods yield designs with comparable compliance 
values, but the optimized design obtained by Cartesian 
parametrization is smaller than that obtained by Euler 

Fig. 4   Optimized designs for Case study 1 obtained using Cartesian parametrization
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Fig. 5   Optimized designs for Case study 1 obtained using Euler angles-based parametrization

Fig. 6   Iteration histories of objective function for Case study 1
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angles-based parametrization. The differences between the 
results obtained by the two methods can be partly attributed 
to the differences in the parametrization methods and the 
non-convex nature of the objective function when dealing 
with composite materials.

To validate the optimality of the obtained designs, the 
principal stress directions that minimize elemental strain 
energy density are computed for all elements. The corre-
lation between the principal stress directions and the opti-
mized fiber orientations is plotted for all elements. As shown 
in Figs. 4c, f, i, 5c, f, i, the correlation is equal to 1.0 for 
almost all elements, validating the optimality of the obtained 
designs (Safonov 2019; Fedulov et al. 2021).

The iteration histories of objective function are plotted 
in Fig. 6. The most significant reduction in the value of the 
objective function occurs within the initial 10 iterations, 
and after around 40 iterations, the improvement becomes 

marginal. Furthermore, although the optimized designs are 
quite different from each other, the difference in their cor-
responding compliances is within 10% . This implies that 
different initializations lead to variations in the optimized 
design, but they still achieve comparable levels of compli-
ance performance.

To demonstrate the mesh-independence of the filter, this 
problem is solved again using Cartesian parametrization and 
three different resolutions: 32 × 64 × 32 , 64 × 128 × 64 , and 
128 × 256 × 128 . Correspondingly, the size of both the den-
sity and orientation filters is set to be 1.5, 3, and 6 times the 
element size for three resolutions, respectively. The fibers 
are initially aligned with the X direction for all elements. 
The optimized designs are displayed in Fig. 7. The three 
designs obtained from the different resolutions are quite 
similar, except that the thin bars are not present in the design 
obtained with the lowest resolution. After careful inspection, 

Fig. 7   Mesh independence of Cartesian parametrization for Case study 1
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it is found that the thin bars in Fig. 7c have density values 
between 0.3 and 0.5, which is much lower than 1.0, causing 
them to disappear in Fig. 7a and b. This can be attributed 
to the low resolution, which often leads to designs without 

clear load transfer paths, especially when thin features are 
present. Additionally, the correlation coefficient is equal to 
1.0 for almost all elements in Figs. 7c, f, i, validating the 
optimality of the obtained designs. However, for the case 
using a resolution of 128 × 256 × 128 , the fiber orientation 

Fig. 8   Optimized compliance obtained using Cartesian parametrization and different resolutions for Case study 1
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may not be aligned with the principal stress direction in 
some regions, which can be partly attributed to the multi-
axial stress state at these locations and partly to the relatively 
large filter size. 

To demonstrate that the Cartesian parametrization 
works well for large-scale topology optimization prob-
lems, four resolutions are considered: 32 × 64 × 32 , 
64 × 128 × 64 , 128 × 256 × 128 , and 256 × 512 × 256 . In 
the case of 256 × 512 × 256 , the number of elements is 
approximately 33.6 million, and the number of design 
variables is around 134.2 million. For all cases, the filter 
radius is set to 1.5 times the element size, resulting in 
potentially different topologies obtained for each mesh 
size. The design results are presented in Fig. 8, show-
ing that as the resolution increases, thin bars and plates 
start to appear in the optimized structure. The optimized 
compliances are plotted in Fig. 9. It is evident that the 
compliance corresponding to both the original computing 
grids and re-analyzed using the finest grid (resolution of 
256 × 512 × 256 ) becomes smaller with increasing reso-
lution. This is different from the authors’ previous work 
(Zhao et al. 2024), where the compliance correspond-
ing to the original computing grids became larger with 
increasing resolution. The key is that the point load vio-
lates fundamental finite element rules as well as physi-
cal reality, and mesh-independent boundary condition 
implementations should be employed (Sigmund 2022). 
The fact that the designs obtained with higher resolu-
tions exhibit lower compliances again demonstrates the 
need for large-scale topology optimization. This example 
also demonstrates the effectiveness of the Cartesian para-
metrization even for large-scale topology optimization 
problems.

Fig. 9   Optimized compliance obtained using Cartesian parametriza-
tion and different resolutions for Case study 1

Fig. 10   Problem definition for Case study 2
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Fig. 11   Optimized designs for Case study 2 obtained using Cartesian parametrization

Fig. 12   Optimized designs for Case study 2 obtained using Euler angles-based parametrization
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5.2 � Case study 2: a 3D cube design problem

This problem is taken from the study Zhou et al. (2022). As 
shown in Fig. 10, the design domain is a 1 m ×1 m ×1 m cube. 
On the top face of the structure, two directional distributed 
loads are simultaneously applied: one is a shear load FS and 
the other is a vertical load Fn . Both loads have a magnitude 
of 10,000 N. The bottom face of the structure is fixed in all 
directions at one location and fixed only in the Z direction 
at the other three locations. The objective of this problem is 
to showcase the potential of the new method for lightweight 
design. To achieve this, a prescribed volume fraction of the 
material is set to 2% . 

To perform topology optimization, the design domain is 
discretized into 160 × 160 × 160 tri-linear cubic elements. 
Three different design initializations are considered, where 
the fiber orientations in all elements are aligned with the X, 
Y, and Z directions, respectively. The filtering radii for the 

density and fiber orientation fields are set to be 1.5 times 
the element size. The optimized designs for the three cases 
using the Cartesian parametrization and the Euler angles-
based parametrization (Schmidt et al. 2020; Zhao et al. 
2024) are displayed in Figs. 11 and 12, respectively. The 
compliance values of the optimized designs using Carte-
sian parametrization are 1.0618 J, 0.9705 J, and 0.8605 J, 
respectively, while those for the optimized designs using 
Euler angles-based parametrization are 0.9425 J, 1.039 J, 
and 1.032 J. Interestingly, the optimized design obtained by 
Cartesian parametrization is smaller than that obtained by 
Euler angles-based parametrization for the latter two cases, 
but it is larger than the first case. This is likely due to the 
non-convexity of the optimization problem. The iteration 
histories of the objective function for all cases are plotted 
in Fig. 13. The most considerable reduction in the objective 
function value occurs within the initial 10 iterations. After 
approximately 40 iterations, the improvement in the objec-
tive function value becomes negligible.

These two examples show that Cartesian parametrization 
usually leads to better designs than the Euler angles-based 
parametrization. Additionally, the transformation between 
the Cartesian representation and Euler angles-based repre-
sentation (Schmidt et al. 2020; Luo et al. 2023; Zhao et al. 
2024) is avoided in the proposed Cartesian parametrization 
method, which is another notable advantage.

5.3 � Case study 3: jet engine bracket design problem

The jet engine bracket design problem from the GrabCAD 
challenge is tested here to demonstrate the potential of 
the proposed method for the design of engineering struc-
tures. The design domain, non-design domain, as well as 
displacement and load boundary conditions are shown in 

Fig. 13   Iteration histories of objective function for Case study 2

Fig. 14   Problem definition for Case study 3
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Fig. 14. Different from the requirement of the GrabCAD 
challenge, where 6 load cases should be considered, only 
one load case is considered in this example. The load 
has a magnitude of 36288 N and it is applied upwards 
along the Z direction. The six cylinders in orange indicate 

non-design domains for density, but the fiber orientations 
in them can be varied. The inner surfaces of the four bot-
tom cylinders are fixed in all directions. To achieve this, a 
prescribed volume fraction of the material for the design 
domain is set to 10%.

To perform topology optimization, a grid of resolution 
448 × 320 × 192 is employed for finite element analysis, and 
the displacement and load boundary conditions are applied 
according to the method presented in Eom et al. (2022). 
Three different design initializations are considered, where 
the fiber orientations in all elements are aligned with the X, 
Y, and Z directions, respectively. The filtering radii for the 
density and fiber orientation fields are set to be 1.5 times 
the element size.

The optimized designs for the three cases using the 
Cartesian parametrization are displayed in Fig. 15. The 
compliance values of the optimized designs are 13.969 J, 
15.869 J, and 13.033 J, respectively. The iteration histo-
ries of the objective function for all cases are plotted in 
Fig. 16. It can be observed again that the most considera-
ble reduction in the objective function value occurs within 
the initial 10 iterations. After approximately 40 iterations, 
the improvement in the objective function value becomes 
little. 

Fig. 15   Optimized designs for Case study 3 obtained using Cartesian parametrization

Fig. 16   Iteration histories of objective function for Case study 3
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6 � Conclusion

This study revisits the Cartesian representation-based 
parametrization for 3D fiber orientation and establishes 
the the direct mapping between the Cartesian representa-
tion of the 3D fiber orientation and corresponding stiffness 
matrix explicitly. The proposed method employs filters to 
regularize fiber orientations and normalization to ensure 
unit length of the fiber direction vector. The proposed par-
ametrization avoids the use of Euler angles, and thus, it is 
singularity free and simpler to be implemented.

The proposed Cartesian parametrization is then inte-
grated into the problem formulation of topology optimi-
zation for 3D continuous fiber-reinforced composites. 
The proposed parametrization method is straightforward 
and does not introduce any general nonlinear constraints, 
which facilitates the design variable updating strategy. 
Three numerical examples are presented to demonstrate 
the effectiveness of the proposed method. It is observed 
that the proposed Cartesian parametrization achieves com-
parable or better objective function values compared to the 
conventional Euler angles-based parametrization. Overall, 
the proposed parametrization method proves to be effec-
tive in topology optimization of composite structures with 
spatially varying fiber paths, offering simplicity and com-
parable or better results to existing methods.

The Cartesian parametrization is designed based on the 
important fact that fiber-reinforced composite materials 
are transversally isotropic. Thus, it is not applicable for 
general 3D orthogonal materials because, for these materi-
als, the orientation in the transverse plane is also impor-
tant. For such problems, the quaternions representation or 
vector-axis representation may be suitable choices.
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