
Structural and Multidisciplinary Optimization (2024) 67:146
https://doi.org/10.1007/s00158-024-03847-2

RESEARCH PAPER

Automating adjoint sensitivity analysis for multidisciplinary models
involving partial differential equations

Ru Xiang1 · Sebastiaan P. C. van Schie1 · Luca Scotzniovsky1 · Jiayao Yan1 ·David Kamensky2 · John T. Hwang1

Received: 13 July 2023 / Revised: 21 May 2024 / Accepted: 5 July 2024 / Published online: 14 August 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We present a general framework for incorporating partial differential equation (PDE)-based models into gradient-based
optimization of multidisciplinary systems by integrating FEniCSx with the recently developed Computational System Design
Language (CSDL). CSDL is a domain-specific language designed to facilitate adjoint sensitivity analysis multidisciplinary
design optimization (MDO). We use CSDL’s abstractions to link together sub-models representing different disciplines, not
all of which are necessarily modeled by PDEs. For the subsystems which are modeled by PDEs, we use FEniCSx to compute
partial derivatives of problem residuals, which CSDL can combine with derivatives from other disciplines using the chain
rule and the adjoint method. The development of this framework is motivated by the problem of optimizing designs of electric
vertical takeoff and landing (eVTOL) aircraft where, due to the relative novelty of this class of vehicle, there is currently a
large, unexplored design space. Predicting the performance of eVTOL aircraft requires PDE-based modeling of various sub-
problems, including electric motors, composite shell structures, and thermoelasticity and electrochemistry of battery packs.
For system-level analysis and optimization, these must be coupled to non-PDE components, such as low-fidelity aerodynamic
models, geometric design tools, and lumped-parameter battery and circuit models. In this work, we demonstrate the modeling
flexibility and efficiency of this framework through classic optimal control and topology optimization problems with known
solutions, and also challenging eVTOL-related applications including shape optimization of an electric motor, and aeroelastic
coupling for gust response of an eVTOL wing. Given the generality of this framework, we expect it to facilitate research on
a wide range of PDE-constrained MDO problems beyond eVTOL applications.

Keywords Finite element method · Gradient-based optimization · Multidisciplinary design optimization · Aeroelasticity ·
Electric motor design

1 Introduction

The design and optimization of electrical vertical takeoff and
landing (eVTOL) aircraft poses significant challenges due
to the complexity in modeling and analyzing multiphysics
systems. This includes predicting the stability and perfor-
mance of eVTOL aircraft under different flight conditions,
which requires evaluating a system-level model that inte-
grates sub-models from various disciplines, such as weights,

Responsible editor: Seonho Cho

B Ru Xiang
rxiang@ucsd.edu

1 Department of Mechanical and Aerospace Engineering,
University of California San Diego, La Jolla, CA 92093, USA

2 Coreform LLC, Orem, UT 84097, USA

battery design, flight dynamics, and aeroelasticity. In order to
achieve a reasonable turnaround time while maintaining suf-
ficient accuracy for global evaluation, the system-levelmodel
may contain both high-fidelity PDE-based sub-models and
low-fidelity non-PDE sub-models, highlighting the need for
a multifidelity computational tool.

Multidisciplinary design optimization (MDO) is a widely
used approach in this kind of problems, as it can incor-
porate all of the disciplines simultaneously, in conjunction
with the numerical optimization algorithms (de Weck et al.
2007; Martins and Lambe 2013). MDO stands as a promis-
ing modeling technique used to solve complex engineering
challenges such as coupled subsystems involving multiple
disciplines, especially in the early stage of the design process.
Its applications span a broad spectrum, including aircraft
wing design (Benaouali and Kachel 2019), wind turbines
(Ashuri et al. 2014), and spacecraft design (Taylor 2000; Jilla

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-024-03847-2&domain=pdf
http://orcid.org/0000-0002-0771-6410
https://github.com/LSDOlab/csdl

146 Page 2 of 31 R. Xiang et al.

and Miller 2002). In the context of eVTOL aircraft design,
gradient-based MDO is preferable over gradient-free meth-
ods, as evaluating high-fidelity sub-models can be extremely
expensive in terms of computational cost.

To numerically solve the PDE components in gradient-
based MDO problems, we can utilize the finite element
method (FEM) to approximate the desired PDE solution
in a finite-dimensional function space over a discretized
domain. While the finite element method is widely used in
structural analysis, it is also applicable to problems in any dis-
cipline that can be described by PDEs, such as heat transfer
simulations of battery packs (Nelson et al. 2011), fluid–
structure interaction of blood vessels (Kamensky 2021), or
even weather predictions (Cotter and Shipton 2012).

However, existing tools for finite element analysis and
MDO are not naturally compatible with each other and do
not fulfill all the requirements mentioned above. Commer-
cial finite element tools, such as Nastran, may come with
fully integrated optimization modules, like Nastran SOL200
(Siemens 2014). However, it is challenging to export essen-
tial gradient information from a closed-source commercial
solver for coupling with other sub-models, such as a low-
fidelity particle-based aerodynamic solver built on purely
algebraic equations.

Open-source finite element tools are easier to extract
derivative information from, but not general enough to suit
all disciplines involving PDE models. For example, while
TACS (Kennedy and Martins 2014) specializes in structural
optimization with beams and shells, it is challenging to be
extended to multidisciplinary problems like aeroelasticity,
as it can only provide finite element solutions for existing
disciplines implemented in its C++ library, which currently
supports structures and heat transfer.

FEniCS (Logg et al. 2011) is an open-source tool for solv-
ing PDEs that automates the efficient implementation of the
finite element method through its abstraction of mathemat-
ical modeling and its automatic code generation capability.
It uses the Python interface of the Unified Form Language,
UFL (Alnæs et al. 2014a) to provide a user-friendly front end,
where users only need to provide the mathematical model as
a variational form of the PDE residual, and FEniCS will call
the FEniCS Form Compiler, FFC (Ølgaard and Wells 2010)
to generate finite element code in C++ and solve the problem
in the backend of DOLFIN (Logg and Wells 2010).

The library dolfin-adjoint (Mitusch et al. 2019) is an
adjoint-based optimization extension of FEniCS that min-
imizes the effort required to build an adjoint model based on
a forward solver. However, due to its dependency on FEn-
iCS, it requires that all sub-models be implemented in the
Python interface of FEniCS or Firedrake (Rathgeber et al.
2016), limiting the use of non-PDE components like mod-
els represented by algebraic equations for preprocessing and
postprocessing steps.

CSDL (Gandarillas et al. 2024) is a recently developed
algebraicmodeling language that automates the exact deriva-
tive computation for its native operations including array
operations such as reshaping, reordering, and matrix–vector
products, and fundamental operations such as logarithmic,
exponential, and trigonometric functions. CSDL is designed
to be compatible with external solvers using customized
operations, requiring users to define the operations and the
associated partial derivatives in the format that CSDL spec-
ifies. This allows CSDL to connect the external solvers with
the rest of the model automatically and compute the total
derivatives needed for the optimization using the chain rule
and the adjoint method.

The aforementioned FEniCS is a prototypical external
solver that would extend the capability of CSDL for PDE-
based high-fidelity modeling. In this paper, we use FEniCSx
(Scroggs et al. 2022; Baratta et al. 2023), the new version of
the FEniCS library with significant improvements, including
support for a broader range of element types and complex
number computation, among others. We will refer to them
as FEniCSx and the legacy FEniCS, respectively, in the
remainder of this paper. In this work, we present a general
framework that integrates FEniCSx with CSDL for efficient
modeling, simulation and optimization of multidisciplinary
andmultifidelity systems involving some, but not exclusively,
PDE-based subsystems.

We present FEMO,1 a generalized tool that enables PDE
solutions for multiphysics problems and provides automated
derivative computation for optimization process. FEMO
offers the following key features that enhance research in
PDE-constrained MDO:

(1) Highly modularized design that can be extended to inter-
face external solvers, meeting the needs of large-scale
multidisciplinary modeling and optimization

(2) User-friendly API that minimizes the barrier of FEniCSx
programming for optimization users, allowing them to
focus on the modeling itself

(3) Demonstrations of eVTOL-related applications, show-
casing efficient modeling for coupling aerodynamic and
structural solvers of different levels of fidelity, as well as
innovative approach to incorporate shapeparametrization
into PDE solutions in the motor design application

The remainder of this paper is organized as follows.
Section 2 introduces a model problem—namely, the opti-
mal control of a nonlinear elliptic PDE—to illustrate the
proposed methodology. It is followed with the implemen-
tation of FEMO in Sect. 3. In Sect. 4, we demonstrate the

1 FEMO stands for Finite Elements for Multidisciplinary
Optimization. The source code of FEMO is available at https://
github.com/RuruX/femo.

123

https://github.com/RuruX/femo
https://github.com/RuruX/femo

Automating adjoint sensitivity analysis... Page 3 of 31 146

capabilities of this approach through a wide range of appli-
cations relevant to eVTOL subsystems, including topology
optimization of a cantilever beam, shape optimization of an
electric motor, and gust response simulation of an eVTOL
wing and the associated sensitivity analysis. Section 5 draws
conclusions and discusses possible future extensions of this
work and anticipated challenges of applying it to system-
level eVTOL aircraft design and optimization.

2 Methodology

Westart with the definition of a PDE-constrainedMDOprob-
lem inSect. 2.1, and introduce a specificmodel problem—the
optimal control of a nonlinear elliptic PDE. This model
problem is used to illustrate the workflow of solving this
optimization problem, which includes formulating the finite
element equation with Nitsche’s method, and obtaining
derivatives for gradient-based optimization through the auto-
matic code generation capabilities in FEniCSx.

2.1 A glimpse at a PDE-constrainedMDO problem

The diagram in Fig. 1 illustrates a representative PDE-
constrained MDO process, which involves one or two high-
fidelity PDE sub-models, and multiple mid- to low-fidelity
algebraic sub-models. The sub-model that computes objec-
tive function could be a weighted combination of several
sub-functions such as efficiency, cost, weight, or maximum
loads.

In this process, coupling can occur in various ways among
the sub-models, including one-way coupling and two-way
coupling between disciplines. For instance, the two-way
coupling between Discipline 1 and Discipline 2 could be
used for load and displacement updates between an aerody-
namic solver and a structural solver in aeroelastic analysis;
the one-way coupling between Discipline n and Discipline
n−1 could represent postprocessing for electric power losses
based on solutions of theMaxwell’s equations in electromag-
netic modeling.

2.2 Amodel problem: optimal control of a nonlinear
elliptic PDE

Themethodology for solving a PDE-constrainedMDOprob-
lem is presented as a generalized approach. To illustrate the
workflow, we walk through the modeling process using the
optimal control of a nonlinear elliptic PDE as the model
problem (Pörner and Wachsmuth 2017). This problem is
commonly referred to as an inverse problem in the math-
ematical community, as the goal involves determining the
source term given the analytical solution of the PDE. The
mathematical model of this problem is formulated as

minimize J (u, f) = 1

2
||u − g||2L2 + α

2
|| f ||2L2

with respect to f (1a)

such that − Δu + u3 = f in Ω

u = g on Γ, (1b)

whereΩ is the domain of interest, Γ is the outer boundary of
Ω . The state variable u : Ω → R and the control variable (or
design variable) f : Ω → R are constrained by a boundary
value problem (BVP) represented by (1b). The BVP con-
sists of a nonlinear elliptic equation, specifically a nonlinear
Helmholtz equation in this case, and subject to a Dirichlet
boundary condition. The objective function, defined in (1a),
is formulated as the sum of the L2 norm of the difference
between the state variable u and the analytical solution g,
and an L2 regularization term that depends on the control
variable f .

The goal of this optimal control problem is to determine
the optimal values of f that lead to a state variable u with
the desired profile matching the analytical solution g, while
satisfying the nonlinear elliptic PDE associated with f . This
model problem is relatively simple and easily abstracted in
the optimization problem setting, but due to the nonlinearity
in the PDE it still presents a challenge.

2.3 Finite element solution of themodel problem

Recall the strong form of the nonlinear Helmholtz equation
in (1b). Find u, such that

−Δu + u3 = f in Ω,

u = g on Γ .

The weak form is formulated as below. Find u ∈ Vg, such
that ∀ v ∈ V0,

∫
Ω

∇u · ∇v dΩ +
∫

Ω

u3v dΩ =
∫

Ω

f v dΩ , (2)

where Vg and V0 are the trial and the test spaces defined as

Vg :=
{
u ∈ H1(Ω) : u|∂Ω = g

}
,

V0 :=
{
v ∈ H1(Ω) : v|∂Ω = 0

}
.

(3)

Let uh , vh be the Galerkin approximation of u, v. The
discrete problem then becomes find uh ∈Vh , such that ∀ vh ∈
Vh ,

∫
Ω

∇uh · ∇vh dΩ +
∫

Ω

uh
3vh dΩ =

∫
Ω

f vh dΩ , (4)

where Vh is a finite-dimensional subspace of H1(Ω).

123

146 Page 4 of 31 R. Xiang et al.

Fig. 1 A representative MDO
process that encapsulates the
most challenging aspects
typically encountered in such
problems: (a) coupling multiple
high-fidelity PDE sub-models;
(b) combining sub-models for
disciplines with and without
PDEs. The orange boxes
represent the high-fidelity PDE
sub-models, while the green
boxes represent the mid- to
low-fidelity non-PDE
sub-models. The pink box
represents the sub-model that
computes the objective function.
(Color figure online)

x∗ Optimizer x0, x1 x0, x2 x0, xi x0, xn x0, xn

Discipline 1 y1

y2 Discipline 2 yi−1

Discipline i

i ∈ {3, 4, ..., n − 1}
yn−1

yn Discipline n yn

f ∗ f Objective

In order to handle the Dirichlet boundary condition
in a more systematic manner throughout the optimization
process, Nitsche’s method (1971) is employed for weak
enforcement. This approach involves introducing additional
boundary terms to both sides of (4). By doing so, the bound-
ary condition is automatically incorporated into the weak
form and its associated partial derivatives with respect to the
state variable u. With the boundary terms added to (4), we
have∫

Ω

∇uh · ∇vh dΩ +
∫

Ω

uh
3vh dΩ −

∫
Γ

(∇uh · n)vh dΓ

∓
∫

Γ

(∇vh · n)uh dΓ +
∫

Γ

Cpen

h
uhvh dΓ

=
∫

Ω

f vh dΩ ∓
∫

Γ

(∇vh · n)g dΓ +
∫

Γ

Cpen

h
gvh dΓ ,

(5)

where n is the unit normal vector pointing outwards of the
outer boundary Γ , h is a parameter indicating the refine-
ment of the mesh (i.e., the cell diameter of the discretized
domain), and Cpen is a positive constant independent of the
mesh refinement. Rearranging terms we obtain the residual
form of the nonlinear Helmholtz equation:

R(uh, f) =
∫

Ω

∇uh · ∇vh dΩ +
∫

Ω

uh
3vh dΩ

−
∫

Ω

f vh dΩ −
∫

Γ

(∇uh · n)vh dΓ

∓
∫

Γ

(∇vh · n)(uh − g) dΓ

+
∫

Γ

Cpen

h
(uh − g)vh dΓ .

(6)

The∓ sign in (6) corresponds to the symmetric (−) and non-
symmetric (+) variants of Nitsche’s method. In this paper’s
applications, the symmetric variant is utilized. It is widely
accepted by the finite element community and offers optimal
accuracy in both L2 and H1 norms (Annavarapu et al. 2012;

Jiang et al. 2015). The nonsymmetric Nitsche’s method has
also gained increasing attention for its independence of the
choice of penalty parameter Cpen (Schillinger et al. 2016).
However, we do not delve into the detailed comparison of
these two variants as it is beyond the scope of this paper.

2.4 Automated derivative computation for
gradient-based optimization

Gradient-based optimization is a preferred approach inMDO
problems that involves evaluating high-fidelity sub-models,
such as finite element solvers. It uses derivative information
from the model to determine the direction of design vari-
able updates, offering efficiency and accuracy. However, a
major challenge in gradient-based optimization is ensuring
that each component of the model has the required partial
derivatives of its outputs with respect to its inputs. These
derivatives are essential for computing the total derivative of
the objective function with respect to the design variables.

To address this challenge, FEMO automates derivative
computation as much as possible. It leverages the automatic
differentiation capabilities of FEniCSx to compute partial
derivatives of PDE residuals with respect to function inputs
(i.e., ∂R/∂u and ∂R/∂ f), and utilizes CSDL for partial
derivatives of algebraic operations, such as matrix–vector
multiplications, occupying in preprocessing andpostprocess-
ing code.

For the model problem in (1b), the total derivative of the
objective function J with respect to the inputs f can be com-
puted using the chain rule

dJ

d f
= ∂ J

∂ f
+ ∂ J

∂u

du

d f
. (7)

With ∂R/∂u and ∂R/∂ f provided by FEniCSx, we can
obtain du/d f by solving the linear system in (8), and insert
it to (7) to compute the total derivative dJ/d f .

123

Automating adjoint sensitivity analysis... Page 5 of 31 146

R(u, f) = 0 ⇒ dR

d f
= 0 ⇒ ∂R

∂u

du

d f
= −∂R

∂ f
. (8)

The assembly of partial derivatives to obtain total deriva-
tives is handled automatically by CSDL, where it employs
the direct or adjoint method based on the computational cost.

3 Implementation
In this section, we present a detailed explanation of how
FEMO is used to solve PDE-constrainedMDOproblems.We
beginwith examples of FEniCSx andCSDL implementation,
and thenwalk through the steps involved in solving themodel
problem using FEMO.

In Sect. 3.1, we introduce the native operations in
CSDL such as matrix–vector products, and the Custom
Operation class object, which serves as a wrapper for
FEniCSx related operations. In Sect. 3.2, we provide a
detailed explanation of FEniCSx programming workflow,
accompanied by code examples for essential functionalities,
such as computing partial derivatives and solving linear or
nonlinear systems. In Sect. 3.3, we demonstrate how all the
components are assembled together using the Python API of
FEMO.

3.1 System-level modeling construction using CSDL

CSDL is a domain-specific language for constructing com-
putational models inMDO. It provides access to a diverse set
of operations such as summation, averaging, trigonometric
functions, and array operations. Listing 1 demonstrates a sim-
ple model that utilizes built-in CSDL operations. In CSDL,
the computation of partial derivative associated with built-in
operations is automated. The execution of CSDL models is
performed by the Simulator object in the Python backend
of CSDL, which is implemented using Numpy.

Listing 1 A CSDL model computing y = x31 + sin(x2) ∗ cos(x2) with build-in operations

class ExampleModel(csdl.Model):
def define(self):

Declare inputs with default values
x1 = self.declare_variable('x1', val =1.)
x2 = self.declare_variable('x2', val =1.)

Compute the output with built -in operations
y = x1**3 + sin(x2)*cos(x2)
self.register_output('y', y)

Run the simulation with the Python backend
sim = Simulator(ExampleModel ())
sim.run()

In addition to the built-in operations, CSDL also sup-
ports user-defined custom operations, including implicit and
explicit custom operations. Implicit custom operations typi-
cally involve solving a linear or nonlinear system to compute
the output, making them suitable for wrapping PDE solvers.
We will demonstrate how we utilize custom operations as
wrappers for FEniCSx operations in Sect. 3.3. A CSDL
model can contain multiple sub-models, where each of them
has its own operation defined, whether built-in or custom.
The total derivatives of models with coupled sub-models are
computed using either direct or adjoint methods, depending
on the number of design variables and the number of objec-
tives. If there are more design variables than objectives, the
adjoint method is executed, which is often the case for MDO
problems.

3.2 Automated finite element solutions and
derivatives with FEniCSx

FEniCSx is a collectionof scientific libraries (UFL,DOLFINx,
FFCx, Basix) written in Python and C++, where each
library has a specific functionality in solving finite element
problems. Figure 2 illustrates the workflow between these
libraries and their respective functionalities.

In theworkflow forwriting a FEniCSx program in Python,
the user begins by importing the mesh using the XDMF file
reader in DOLFINx. Next, they specify the variational form
of the PDE residual using the Uniform Form Language, UFL
(Alnæs et al. 2014b), which is a domain-specific language for
variational expressions. DOLFINx then automatically inter-
faces with FFCx to generate high-performance finite element
code in C++ on the backend.

For example, when solving the model problem, we first
create a unit square mesh with triangular elements as the

123

146 Page 6 of 31 R. Xiang et al.

Fig. 2 FEniCSx workflow

analysis domain. We then define a Lagrange finite element
space for the solution u of the nonlinear elliptic PDE of C1

continuity, as shown in Listing 2.

Listing 2 Runscript for solving the model problem

N = 16
Create a 2D mesh with N elements on each edge
mesh = dolfinx.mesh.create_unit_square(N, N)
Create a Lagrange function space for state variables
with C^1 continuity
V = dolfinx.fem.FunctionSpace(mesh , ('CG', 1))
u = dolfinx.fem.Function(V)

Next,we express the interior terms and the boundary terms
with symmetric Nitsche’s method of the PDE residual using
UFL operations. The code snippet in Listing 3 corresponds
to the mathematical formulation described in (6).

Listing 3 (Continued) runscript for solving the model problem

Define the weak form of the nonlinear Helmholtz equation
interior_residual = inner(grad(u), grad(v))*dx \

+ inner(u**3,v)*dx \
- inner(f, v)*dx

boundary_residual = - inner(dot(grad(u), n), v)*ds \
- inner(u-g, dot(grad(v), n))*ds \
+ C_pen*h_E**(-1)*inner(u-g, v)*ds

R = interior_residual + boundary_residual

The UFL also provides analytical computation of partial
derivatives, such as ∂R/∂u and ∂R/∂ f for the PDE residual
R defined in Listing 3, i.e.,

dRdu = ufl.derivative(R, u) #
is a variational form

The analytical derivatives computed by UFL can be
assembled into discrete form using DOLFINx, resulting in

PETSc arrays. These arrays can be further converted to
Numpy or Scipy arrays to interface with CSDL. This pro-
cess is generalized by FEMO as described in Sect. 3.3.

FEniCSx offers convenient build-in linear and nonlinear
solvers for users and allows for the flexibility of cus-
tom solvers tailored to specific problem requirements. In

FEMO, we utilize customized nonlinear solvers such as
NewtonSolver and SNESSolver with MUMPS as the
linear solver from PETSc. The code in FEMO is designed
to be case-independent, enabling the solution of PDE prob-
lems in any discipline. The implementation details of the
solvers, as well as other modularized components such as

123

Automating adjoint sensitivity analysis... Page 7 of 31 146

Fig. 3 FEMO framework

derivative form assembly and function value extraction, will
be discussed in Sect. 3.3.

3.3 Coupling of FEniCSx and CSDL through FEMO

Integrating FEniCSx and CSDL for PDE-constrained MDO
can be challenging due to their different domain-specific lan-
guages and data storage methods. FEniCSx uses UFL to
express variational terms, such as integration and differenti-
ation and stores data as PETSc sparse arrays. On the other
hand, CSDL utilizes Numpy arrays for algebraic operations.
Translating between these two software can be a tedious task,
but it can be streamlined through the use of generic class
objects. FEMO addresses this challenge by providing a gen-
eralized modeling framework for FEA-related computations
and automating the data communication between the two
libraries, as illustrated in Fig. 3.

The code example below showcases two convenient utility
functions provided by FEMO:assembleMatrix converts
analytical expression todiscrete form, andsolveNonlinear
solves the finite element problem. These functions can be
easily utilized within the CSDL modeling environment.

dRdu_array = assembleMatrix(
dRdu)

solveNonlinear(R, u, solver='
Newton ')

By integrating all the utility functionswithinFEMO’sFEA
class object, we can provide essential functionalities required
by CSDL’s CustomOperation. This integration enables
the construction of a generic StateModel for computing
PDE solutions, and an OutputModel for assembling vari-
ational forms. Listing 4 is a code snippet illustrating the
implementation of the generic StateModel in FEMO’s
source code. It takes a user-defined FEA object, along with
input and output names, as parameters.

123

146 Page 8 of 31 R. Xiang et al.

Listing 4 FEMO source code for the StateModel class

class StateModel(Model):
def initialize(self):

self.parameters.declare('fea', types=femo.FEA)
self.parameters.declare('output_name ', types=str)
self.parameters.declare('input_name_list ', types=list)

def define(self):
e = StateOperation(fea=self.fea ,

input_name_list=input_name_list ,
output_name=output_name)

state = csdl.custom (* input_name_list , op=e)
self.register_output(output_name , state)

Define an implicit operation
class StateOperation(csdl.CustomImplicitOperation):

...

For the model problem, we utilize these generic models
to create problem-specific CSDL custom operation mod-
els. These models can take FEniCSx Function or Form
objects (i.e., u is a Function object defined in List-
ing 2) as the inputs and use generalized FEniCSx operations
in FEMO to compute the outputs, as shown in Listing 5.
The type="scalar" argument specifies that this model
returns a scalar output, i.e., an integral over a certain domain.
There is also a "field" type output, which computes
distributed field outputs on the finite element mesh, i.e.,
element-wise and point-wise properties. The FEAModel
class is employed to group finite element-related opera-
tions together. It provides the flexibility to connect multiple
PDE systems by including multiple FEA objects in its list
argument, i.e., FEAModel(fea=[fea1,fea2]). This is
used in the motor example in Sect. 4.3.

The coupling of sub-models in FEMO is automatically
handled based on the names of the variables. Each input or
output variable in the sub-models has a unique name associ-
ated with the object that stores its values. These names are
automatically propagated throughout the system by CSDL
and are used to connect to sub-models of other disciplines.
Therefore, it is crucial to maintain consistency in variable
names throughout the modeling process.

Finally, we utilize the SNOPT library—a powerful soft-
ware for solving nonlinear optimization problems (Gill et al.
2005)—as the optimizer for our numerical tests.We leverage
the Python binding of SNOPT in modOpt,2 which can inter-
face with CSDL by creating a CSDLProblem object with
the simulator, as demonstrated in Listing 6.

2 https://github.com/LSDOlab/modopt.

123

https://github.com/LSDOlab/modopt

Automating adjoint sensitivity analysis... Page 9 of 31 146

Listing 5 (Continued) runscript for solving the model problem

from femo.fea.fea_dolfinx import FEA # FEniCSx operations
from femo.csdl_opt.fea_model import FEAModel # CSDL interface
fea = FEA(mesh)
fea.add_input(name='f', function=f)
fea.add_state(name='u', function=u, residual_form=R,

arguments =['f'])
fea.add_output(name='objective ',

Can be either scalar or field variable
type='scalar ',
Defined as a UFL form object
form=output_form ,
arguments =['u','f'])

Can contain multiple fea objects for coupled PDE system
Consists of one state model and several output models
fea_model = FEAModel(fea=[fea])

Listing 6 (Continued) runscript for solving the model problem

from modopt.csdl_library import CSDLProblem
from modopt.snopt_library import SNOPT

Create a CSDL problem object in modOpt
prob = CSDLProblem(problem_name='nonlinear_Helmholtz_opt ',

simulator=sim)
Create an optimizer object in modOpt and solve
optimizer = SNOPT(prob , Major_iterations = 1000,

Major_optimality = 1e-9)
optimizer.solve()

4 Numerical examples

In this section, we demonstrate the versatility and effective-
ness of FEMO through four numerical examples that span
various disciplines and complexity levels in modeling. The
problem set includes threewell-posed optimization problems
and one sensitivity analysis example. In Sect. 4.1, we con-
tinue using themodel problem discussed in previous sections
as an example of a pure PDE-constrained problem, as there
is no other algebraic sub-models coupled with it. In Sect. 4.2,
we solve a classic density-based topology optimization prob-
lem for a 2D cantilever beam. This example demonstrates the
coupling of a PDE with non-PDE components, specifically

the use of a density filter as a preprocessor. We compare its
runscript with pure FEniCS implementation in “AppendixA”
to show the differences between them. In Sect. 4.3, we tackle
a more complex real-world problem for shape optimiza-
tion of an electric motor. This problem involves solving two
coupled PDEs: one for mesh deformation and the other for
Maxwell’s equations. Additionally, the PDE components are
coupled with external preprocessors implemented in CSDL
for shape parametrization. In Sect. 4.4, we construct a mul-
tifidelity aeroelastic solver that combines the Vortex Lattice
Method, VLM (Anderson 2010) implemented in CSDL with
the Reissner–Mindlin shell solver implemented in FEniCSx.
We utilize this aeroelastic solver in a dynamic test case
simulating the gust response of an eVTOL wing. We also

123

146 Page 10 of 31 R. Xiang et al.

f ∗ Optimizer f f

R(u, f) Nonlinear PDE residual R(u, f) = 0 u

J∗ J(u, f) Objective function J(u, f)

Fig. 4 The MDO process for the optimal control of a nonlinear
Helmholtz equation.Theorangebox represents thefinite element solver,
and corresponds to the StateModel in FEMO; the pink box repre-
sents the objective function written as a variational form, corresponding
to the OutputModel in FEMO. (Color figure online)

showcase the automatic computation of derivatives for this
coupled system in a static test case.

All three optimization examples utilize the Python bind-
ing of SNOPT, accessible through modOpt, as the optimizer.
We tune the optimizer using two settings: the (major)
optimization tolerance, closely linked to theobjec-
tive gradient, and the (major) feasibility
tolerance, determining the tightness of the constraint
enforcement. The values of these two tolerances along with
the number of iterations are discussed in the numerical results
of each example.

4.1 Optimal control of a nonlinear elliptic PDE

4.1.1 Mathematical formulation

The MDO process for the model problem described in (1b)
is illustrated in Fig. 4. The optimal solution of the problem is
denoted as f ∗, and the associated state variable is represented
by u∗. The objective function value at the end of the optimiza-
tion iterations is denoted as J ∗, i.e., J ∗ = J (u∗, f ∗).

4.1.2 Numerical results

For numerical analysis, we consider a unit square domain
Ω = [0, 1] × [0, 1] and choose g(x) = sin(2πx1) cos(πx2)
as the analytical solution of u on Ω . We use symmetric
Nitsche’s method to weakly enforce the Dirichlet boundary
condition u = g on Γ . α is a dimensionless constant used
in the regularization term of the objective function in (1a).
For our specific case, we have selected α = 6 × 10−7. With
the known analytical solution g, the optimal solution of f
can be calculated analytically using the strong form of the
nonlinear Helmholtz equation in (1b). Specifically, we have
fd = −Δg + g3, which can be easily implemented using
UFL as

f_d=-ufl.div(ufl.grad(g))+g**3

where g is a UFL form object defined beforehand.
The optimization is terminated when the optimality drops

below a predefined tolerance. At the end of the optimization,

we expect that the results foru and f will closely approximate
their respective analytical solutions, i.e., u∗ → g and f ∗ →
fd. To evaluate the success of the optimization problem, we
calculate the L2 norms for both pairs. Figure 5 illustrates
the evolution of the control variable f and the state variable
u during the optimization test with a 128 × 128 mesh. The
initial guess for all degrees of freedom in f is set to 0.1.
This optimization run requires 570 iterations to converge to
a tolerance of 10−11. In this problem, the control variable f is
represented as a discontinuous Lagrange function of degree
0. Initially, the distribution of f exhibits a scattering profile
for N = 200. As the optimization progresses, it gradually
becomes smoother. This smoothing effect can be attributed
to the presence of f in the regularization term of the objective
function J .

We perform a convergence study on mesh sensitivity by
running optimization tests with different meshes. The results
are summarized in Table 1. As observed, all the values in
the last three columns decrease as the mesh becomes finer.
Specifically, the error of the control variable f ∗ exhibits
the expected first-order convergence, as reported in Arada
et al. (2002). Another observation is that as the mesh
size decreases, tightening the optimality tolerance becomes
necessary, along with an increased number of SNOPT opti-
mization iterations, to ensure this first-order convergence of
the error in control. We showcase the convergence history
for the test case with a 16 × 16 mesh in Fig. 6 by plotting
the objective function J and optimality over the optimization
iterations. This plot demonstrates a monotonic convergence
for the objective function, which serves as verification for
both accuracy and efficiency of the adjoint computation.

4.2 Topology optimization of a cantilever plate

We demonstrate the versatility of this software by applying
it to a classical 2D cantilever beam topology optimization
problem using a density-based approach. This problem is a
well-known benchmark in the field of topology optimization,
and has been extensively studied using various optimiza-
tion approaches. Notably, Chung et al. (2019) implemented
the problem using OpenMDAO (Gray et al. 2019), a NASA
developed MDO framework, while Yan et al. (2022) auto-
mated gradient-based topology optimization by coupling the
legacy FEniCS and OpenMDAO in their previous work.

4.2.1 Mathematical formulation

We aim to optimize the density distribution of the material,
denoted as ρ, subjected to a constant volume constraint. The
structural behavior of the beam is governed by the PDE of
linear elasticity. The objective of this optimization problem
is to minimize the compliance of the beam, which is defined

123

Automating adjoint sensitivity analysis... Page 11 of 31 146

Fig. 5 Snapshots of the optimization process for the model problem with a 128 × 128 mesh. The control variable f has a uniform value of 0.1
across the entire domain at the first optimization iteration (N = 1) and the optimization converges at N = 570

Table 1 A mesh sensitivity
study for the optimal control of
the nonlinear Helmholtz
problem

Mesh Optimality tolerance SNOPT iterations || f ∗ − fd||L2 ||u∗ − g||L2 J ∗

4 × 4 10−9 74 24.017097 0.075343 0.003312

8 × 8 10−9 115 6.999477 0.016861 0.000374

16 × 16 10−9 93 2.824094 0.004063 0.000205

32 × 32 10−9 299 1.376501 0.001253 0.000190

64 × 64 10−10 517 0.673929 0.000806 0.000187

128 × 128 10−11 570 0.331941 0.000767 0.000187

Each row corresponds to a successfully converged optimization problem with the associated mesh. The
L2 norms, || f ∗ − fd||L2 , and ||u∗ − g||L2 , represent the differences between the optimized control and
state variables and their respective analytical solutions. J ∗ is the objective function value by the end of the
optimization

as the inverse of the stiffness, as indicated in the first equation
of (9).

minimize J (u) =
∫

Γ

u · f dΓ

with respect to ρ

such that ρ̃ = ρ̃(ρ)∫
Ω

ρ̃ dΩ = constant

− ∇ · σ(u, ρ̃) = f

ρmin < ρ ≤ 1.

(9)

To smooth the density distribution and prevent checker-
board patterns, which can cause instability, a distance-based
method is employed to map the original density ρ to the
filtered density ρ̃. For each element i, its filtered density is

Fig. 6 Convergence history for the model problem with a 16×16 mesh.
The optimization converges after 93 iterations with a total runtime of
28 s

123

146 Page 12 of 31 R. Xiang et al.

ρ Optimizer ρ

Density filter

ρ̃ = ρ̃(ρ)
ρ̃ ρ̃

C (ρ̃)
Volume constraint

C (ρ̃) = Ω ρ̃dΩ − V =0

R(u, ρ̃)
Elasticity

R(u, ρ̃) =0
u

J J(u)
Complicance

J(u) = Γ u f dΓ

∗

∗
∗

Fig. 7 The MDO process for topology optimization of a cantilever
beam

computed by summing the weighted contributions of nearby
elements, given by the equation:

ρ̃i =
∑
j

wi jρ j , (10)

where ρ̃i is thefiltereddensity of element i,ρ j is the unfiltered
density of a nearby element j, and wi j is the weight function
that connects element i and j, which satisfies

∑
j wi j = 1.

In this example, we use a simple conic weight function to
compute wi j based on the distance between element i and j,
whose formula can be found in Svanberg and Svärd (2013).

The solid isotropic material with penalization (SIMP)
method is employed to incorporate the density distribution
into the PDE constraint, which was initially developed by
Bendsøe and Kikuchi (1988). In this specific application, the
local material property is proportional to the power product
of the local density, i.e., Ei (ρ̃i) = ρ̃3

i E0. Additionally, amin-
imum value of density, denoted as ρmin, is imposed to avoid
material singularity and maintain numerical stability during
the finite element analysis. Figure 7 shows the MDO process
of this problem. The distance-based density filter sub-model
is implemented with CSDL linear algebra operations, and
marked in green as it is considered as an external compo-
nent, while the finite element sub-models are marked in pink
(OutputModel) and orange (StateModel).

4.2.2 Numerical results

The physical setting of the boundary value problem is shown
in Fig. 8a. The compliance of a cantilever beam is mini-
mized with a volume fraction constraint of 0.4. The beam
has a clamped boundary condition on the left edge, and a
downward traction force applied in the middle of the right
edge. The beam has a length of 160 and a height of 80. It
is discretized into a structured quadrilateral mesh, with user-
defined number of elements on each side. Linear elasticity
is assumed in this example, but it can be extended to non-
linear cases as discussed in Yan et al. (2022). The Young’s

modulus is set to 1.0 and the Poisson’s ratio is set to 0.3.
The traction force, denoted as F , has a magnitude of 0.25
and is directed downwards. ρmin is set to 10−4 as the lower
bound of the design variable. Note that all of the parameters
are dimensionless.

We showcase the optimization results and convergence
history for the test case with a 80 × 40 mesh in Fig. 8b and
c, which demonstrates a generally monotonic convergence
for the compliance. The optimization terminates within 338
major iterations with a total runtime of 177 s. The optimal-
ity tolerance is set to be 10−8 and the feasibility tolerance
for enforcing the volume constraint is set to be 10−6 in
SNOPT. Given that the feasibility is always zero for most
of the iterations (indicating that the linear constraints are
always satisfied), the focus of Fig. 8c is on the convergence
history of the objective function and the optimality. The opti-
mized solution in Fig. 8b for the penalized density ρ̃ exhibits
a tapered shape as anticipated in prior studies (Chung et al.
2019; Yan et al. 2022). Furthermore, due to the symmetric
boundary condition and load, the density distribution dis-
plays a symmetric profile with linear elastic material model.

4.3 Electric motor design

In this section, we tackle a practical problem including the
shape optimization of an electric motor. This problem is an
essential part for the system-level modeling and optimiza-
tion of eVTOL aircraft. Using the presented tool, we are
able to build a high-fidelity model that can accurately cap-
ture the precise mesh movement near the motor components
and their impact on the electromagnetic performance of the
motor. This is achieved by formulating the relevant processes
as coupled PDEs and connecting themwith an external solver
for shape parametrization. Specifically, we focus on studying
a permanent magnet synchronous motor (PMSM), and ana-
lyze the behavior of a single static phase within its periodic
operation.

4.3.1 Optimization problem definition

Theoptimization problem is formulated shown in (11),where
x represents a vector of design variables that define the shape
of the motor. Ωbc is a vector of boundary movements on the
finite element mesh.Ω denotes the original mesh and Ω̃ rep-
resents themovedmesh. The objective function J (·) depends
on the deformedmesh Ω̃ and the solution ofMaxwell’s equa-
tions Az—the z-component of magnetic potential vector A.

minimize J (Az, Ω̃)

with respect to x − design variables

such that S(x) = Ωbc − shape parametrization

M(Ω̃,Ω,Ωbc) = 0 − mesh movement

123

Automating adjoint sensitivity analysis... Page 13 of 31 146

Fig. 8 Topology optimization of
a cantilever beam under linear
elasticity with a 80× 40 mesh. a
The problem setting, b the
optimized density distribution ρ̃,
and c convergence history of the
objective function and the
optimality

(a) (b)

(c)

R(Az, Ω̃) = 0 − Maxwell’s equations

xmin ≤ x ≤ xmax. (11)

The problem is governed by two nonlinear PDEs: one for
mesh movement (hyperelasticity) and another for electro-
magnetic modeling (Maxwell’s equations). These PDEs are
coupled in a way that the solution of the former—the nodal
deformation—is incorporated in the PDE residual of the lat-
ter. Hence the nodal deformation can have an impact on the
final solution of themagnetic flux density. The corresponding
MDO process is abstracted in Fig. 9.

4.3.2 Shape parametrization with free-form deformation

We start with an initial configuration of the motor geometry
as shown in Fig. 10a. We use the vector of design variables
x to describe the changes in the geometric parameters of the
motor, such as the inner radius of the rotor and the positions
of the magnets.

To incorporate these changes into the physical domain, we
employ free-form deformation (FFD), which is a technique
commonly used formodeling the deformation of rigid objects
and is analogous to parametrization with B-splines (Kenway
et al. 2010; Sederberg and Parry 1986). FFD allows us to
map the geometric changes x to the movements of a specific

group of boundary-defining points in the physical domain.
These points are denoted as Ωbc.

It is important to note that this problem involves numer-
ous modeling specifications and steps in the preprocessing
and postprocessing stages. A comprehensive discussion on
the FFD method can be found in Scotzniovsky et al. (2024),
which uses FEMO for geometric design of electric motor.
However, for the purpose of this paper, these details are omit-
ted, and the focus is primarily on the PDE-related aspects of
the formulation.

4.3.3 Automated meshmovement

For the sake of notation convenience, we introduce ubc to
represent the boundary movement Ωbc on the finite element
domain. Additionally, we denote u as the displacements for
all the mesh vertices in the entire domain:

u(X) = φ(X) − X , (12)

where φ: X → X̃ represents the mapping from the original
domain Ω to the deformed domain Ω̃ . This approach for
updating mesh based on the mesh movement is analogous to
the approach used in fluid–structure interaction applications
(Neighbor et al. 2023).

123

146 Page 14 of 31 R. Xiang et al.

Fig. 9 The MDO process for
shape optimization of an electric
motor

x∗ Optimizer x

Free-form deformation

Ωbc
Ωbc

M(Ω̃, Ω, Ωbc)
Mesh movements

M(Ω̃, Ω,Ωbc) = 0
Ω̃ Ω̃

R(Az , Ω̃)
Maxwell’s equations

R(Az , Ω̃) = 0
Az

J∗ J(Az)
Power losses

J(Az , Ω̃)

Fig. 10 a The baseline
geometry of the permanent
magnet synchronous motor
model. The red box highlights 1
of the 12 magnets. b The
zoomed view of the red-boxed
region with the undeformed
mesh. The magnet is highlighted
in fuchsia color. c The zoomed
view of the red-boxed region
with the deformed mesh. The
magnet highlighted in fuchsia
has been moved inwards along
the radial direction

(a)

(b)

(c)

To simulate the mesh movement, we formulate a BVP
where the displacements of the boundary vertices ubc are
imposed as Dirichlet boundary conditions. The BVP is gov-
erned by a hyperelastic equation. By solving this BVP,
we obtain the smooth movements u throughout the entire
domain, including both the on-boundary and off-boundary
vertices. The strong form of the hyperelasticity problem is as
follows

−∇ · P(u) = f in Ω ,

u = ubc on Γbc,
(13)

where f represents the body force, which is assumed to be
zero in our case. The first Piola–Kirchhoff stress P is given
by

P := Jσ F−T, (14)

where σ represents the Cauchy stress, F is the deformation
gradient, and J is its determinant. F can be computed by

F = ∂φ

∂X
= ∇u + I, (15)

which can be conveniently implemented in UFL as follows:

def F(u):
return ufl.grad(u)+ufl.

Identity (2) # 2D problem

For the material model, we adopt the modified St.
Venant–Kirchhoff constitutive model, where the second
Piola–Kirchhoff stress is defined as

S(F) = 2μ

[
E − tr(E)

3
I
]

+ K tr(E)I . (16)

Here, E = 1
2 (F

TF − I) is the Green–Lagrange strain. μ

and K are the material parameters that can be chosen based
on the deformation to introduce artificial stiffness in regions
of the mesh that experience crushing. In our numerical tests,
we set μ = K = J−p, where p is a positive integer (set to
3).

Then the first Piola–Kirchhoff stress can be computed by

P(F) = F · S(F). (17)

In the finite element formulation, the boundary condi-
tion is weakly enforced to the weak form of (13) using the
symmetric Nitsche’s method applied on the subdomains. To

123

Automating adjoint sensitivity analysis... Page 15 of 31 146

specify the relevant facets for the boundary condition, we
define an integral operator using UFL, such as

dss = ufl.Measure('ds', domain=
mesh , subdomain_data=
boundary_data)

Here, ds represents the integral operator on facets in the
finite element domain that are not on the outer boundary,
and dss is a user-specified integral operator on the selected
facets based on the provided boundary data, which contains
the indices of the desired facet entities. The group of those
facets corresponds to Γbc in (13), which is a subset of the
total boundary Γ .

Figure 10 illustrates how the mesh deforms when moving
a magnet inwards along the radial direction. Figure 10b rep-
resents the undeformed mesh. Nonzero displacements are
assigned to the vertices located on the outer edges of the
magnet, while the vertices on the unmoved boundaries, such
as the air gap (the finely discretized area above the mag-
net), are restrained to remain unmoved. Figure 10c shows
the deformed mesh obtained by warping the domain using
the solution of the hyperelastic problem. The deformedmesh
captures the movements of the vertices both inside and sur-
rounding the magnet, resulting in a smooth mesh of the new
configuration.

We note that the mesh is not actually moved during the
optimization process. Instead, the mesh movement is incor-
porated into Maxwell’s equations, allowing us to compute
the electromagnetic solution as if it were on the deformed
mesh. This coupling method will be further explained in the
next subsection.

An important advantage of this approach is that the num-
ber of vertices and their connectivity relationship remain
constant throughout the optimization process. By comput-
ing the displacements of the vertices and incorporating them
into the subsequent steps, we eliminate the need to regenerate
or move the mesh, resulting in reduced computational cost.

To enhance the robustness of this algorithm for han-
dling large deformation during the optimization process, we
employ a customized nonlinear solver with load-stepping to
incrementally apply the subdomain movements. The num-
ber of steps is dynamically determined based on the mesh
size and the maximum expected deformation. This adaptive
approach helps prevent inverted elements, which can cause
the subsequent electromagnetic solver to fail.

4.3.4 Magnetostatic problem on the deformedmesh

Maxwell’s equations are

∇ × H = Jw + Jm,

∇ · B = 0,
(18)

where Jw and Jm are source terms representing the effective
current densities within the stator windings and the magnets,
respectively. B represents the magnetic flux density, and H
represents the magnetizing field.

The relationships between B, H , and A (the magnetic
vector potential) are given by

B = μH ,

B = ∇ × A,
(19)

where μ is the magnetic permeability, which is a nonlinear
function of B and depends on the local material properties.

Rewriting Maxwell’s equations in (18) by using A as the
solution gives us

∇ × (μ−1∇ × A) = Jw + Jm. (20)

This can be reduced by considering only the z-component of
A as the other two components are both zero

−∇ · (μ−1∇Az) = J z in Ω ,

Az = g on Γ .
(21)

We choose g = 0 for a homogeneous boundary condition
of Az . Then, B can be obtained from Az in the postprocessing
steps by

B(x, y) =
(

∂Az

∂ y
,−∂Az

∂x

)
. (22)

The weak form of (21) can be formulated as

∫
Ω

μ−1∇Az · ∇v dΩ =
∫

Ω

Jzv dΩ , (23)

where v is a test function of Az . By moving the right-hand
side term to the left and applying the Dirichlet boundary
condition with Nitsche’s method, we obtain the PDE residual
in variational form on the undeformed mesh:

R(Az,Ω) =
∫

Ω

μ−1∇Az · ∇v dΩ −
∫

Ω

Jzv dΩ

−
∫

Γ

μ−1(∇Az · n · v ∓ ∇v · n · (Az − g)) dΓ

+
∫

Γ

Cpen

h
μ−1v(Az − g) dΓ . (24)

To obtain the variational form on the deformed mesh, we
adopt a seamless coupling method for hyperelasticity and
electromagnetism by incorporating u into the weak form
in (24). This is inspired by the body-fitted method for Fluid–
Structure Interaction (FSI) problems (Bazilevs et al. 2008),

123

146 Page 16 of 31 R. Xiang et al.

where the integral and differential operators are modified by
Nanson’s formula into the weak forms. For example,

dΩ → JdΩ,

ndΓ → J F−TndΓ ,

dΓ → |J F−Tn|dΓ ,

∇v → ∇v · F−1

. . .

(25)

Here, J represents the determinant of F, which is com-
puted by J = det(F). These modifications can be easily
handled by UFL, i.e., ∇v · F−1 can be conveniently imple-
mented as

def gradx(f,u):
return ufl.dot(ufl.grad(f),

ufl.inv(F(u)))

where F(u) is the predefined function as described in
Sect. 4.3.3.

4.3.5 Numerical results

For the numerical tests, we set up a simplified optimization
problemwith a single design variable—the change ofmagnet
position in the radial direction. The objective is to minimize
the natural core losses due to the magnets during no-load
operation. In the simplified setting, the total core loss PL is
given by the sum of the eddy current loss Pec and the hys-
teresis loss Ph, i.e., PL = Pec + Ph. The losses are computed
by

Pec = 2π2 f 2lKec

∫
Ωec

|B|2dΩ and

Ph = 2π f lKh

∫
Ωh

|B|βdΩ , (26)

where f is the frequency of the input signal in Hertz, l is the
motor length, and they are both set to unit values. Kec is the
eddy current coefficient, and Kh is the Steinmetz hysteresis
coefficient. Ωec and Ωh represent the subdomains where the
power loss effects are observed (typically the rotor and the
stator). β is the Steinmetz exponent that depends onmaterial,
ranging from 1.5 to 2.5. β is set to 1.76835 for the chosen
Hiperco 50 the alloy material, which is the material used for
the rotor and the stator. Again, we need to convert the integral
operators in (26) to the deformedmesh using the substitutions
given in (25).

As shown in Fig. 11, this single-variable single-objective
optimization converges successfully. The optimality drops
below 10−8 within 9 iterations. The problem is always
feasible throughout the optimization process as the linear
constraints, i.e., the bounds on the design variable, are always

Fig. 11 Convergence history for the shape optimization of the electric
motor

satisfied. The total runtime for this problem is 571 s, involv-
ing the evaluation of the coupled PDE system on amesh with
28,410 elements as well as the adjoint computation.

Themagnitude of themagnetic flux density B is plotted on
both sides of the motor in Fig. 12. The left side represents the
magnetic flux solution field on the undeformed mesh, while
the right half shows the results obtained on the deformed
mesh. Although it is not obvious to notice the difference of
the two sides as they use the same color scale, it is worth
mentioning that the maximum magnitude of B on the right
is 2.1, which is 8.7% smaller than the maximum value of
2.3 on the left as in the color legend. Also, in the optimized
configuration, a lighter color of Bmagnitude can be observed
in the stator area between the stator teeth. This indicates a
reduction in the power loss in this region, leading to improved
performance. The decrease in peak magnetic flux density
can be explained by the enlarged area of the rotor between
the magnets and the air gap. The movement of the magnets
increases the area for flux to permeate through this tight zone,
which decreases the effective flux density. The movement of
the magnets also decreases the flux that permeates from the
rotor to the stator, reducing the flux density magnitudes in
the stator teeth.

4.4 Aeroelastic analysis on an eVTOL wing

This application employs aeroelastic coupling of a high-
fidelity structural solver based on Reissner–Mindlin shell
theory and a low-fidelity aerodynamics solver: the vor-
tex lattice method (VLM). A solver-independent method
(Van Schie et al. 2023) is used for coupling these two solvers.
Numerical tests include a static aeroelastic analysis with ana-
lytical derivative computation and a dynamic case for gust
response on an eVTOL wing. We use the Uber eCRM-001

123

Automating adjoint sensitivity analysis... Page 17 of 31 146

Fig. 12 The magnetic flux
density on the initial
configuration (pink) and the
optimized configuration
(orange). (Color figure online)

model in the following test cases, which is an electric com-
mon reference model (eCRM) for electric air taxi.

4.4.1 Aerodynamic solver with vortex lattice method

VLM is a widely used approach for analyzing aerodynamic
performance, such as force or pressure distribution on lift-
ing surfaces (Anderson 2010). VLM makes a potential flow
assumption, which means the flow can be characterized by
an irrotational velocity field given by

∇2Φ = 0, (27)

where Φ is the fluid potential.
Other assumptions of VLM include that (1) the fluid is

incompressible; and (2) the lifting surfaces are thin and have
a small angle of attack and sideslip.

The VLM model is built in CSDL to enable automated
derivative computation. It is implemented in an inertial frame
with a constant freestream velocity and assumes steady-state
conditions during each mission segment. Figure 13 demon-
strates the inputs, model, and outputs of theVLMmodel. The
inputs of the VLMmodel are the meshes and the states of the
lifting surfaces. Then, themodel creates structured quadrilat-
eral panels and uses vortex rings located at the quarter-chord
of each panel for computation. The system of equations to
be solved in (28) corresponds to the flow-tangency condition
meaning zero normal velocity on the lifting surface panels.

AΓb + BΓw + v · n = 0, (28)

where v is the freestream velocity, and n is the normal vector
of the lifting surface panels. Γb and Γw represent the bound
and thewake vortex circulation strengths, respectively. A and
B are the aerodynamic influence coefficient matrices.

The outputs of the VLM model are the traction forces on
each panel given by the panel forces divided by the areas.
The panel forces are calculated using the Kutta–Joukowski
theorem (Katz and Plotkin 2001) as below

F = ρΓbvind × s, (29)

where ρ is the density of air, vind is the induced velocity eval-
uated at the bound vortex collocation points, and s represents
the bound vector.

4.4.2 Thin-shell structural solver with Reissner–Mindlin
plate theory

We implement the Reissner–Mindlin shell formulation in
FEniCSx,3 based on the geometrically linear, quadrilateral-
element variant of the fully nonlinear unconventional shell
formulation developed by Campello et al. (2003). This for-
mulation considers six-parameter solution fields (three for
displacements and three for rotations).

There are other openly available implementations of this
shell formulation in the FEniCS community, such as the ped-
agogical example by Bleyer (2018), with slight difference in
the formulation of the drilling stabilization term. Moreover,
the existing implementation is implemented in legacy FEn-
iCS with limited support for quadrilateral elements, while
our shell solver is implemented in FEniCSx, which provides
robust support for quadrilateral elements.

While our shell solver can deal with both triangular and
quadrilateral elements, it currently cannot handle meshes
containing multiple types of elements, i.e., meshes con-

3 The source code of this FEniCSx-based shell solver is available
on Github at https://github.com/RuruX/shell_analysis_fenicsx with
numerous examples and the associated mesh files.

123

https://github.com/RuruX/shell_analysis_fenicsx

146 Page 18 of 31 R. Xiang et al.

Fig. 13 VLM workflow for
aerodynamic analysis

taining both triangular and quadrilateral elements, due to a
limitation in the FEniCSx mesh importing module.

4.4.3 Work-conservative aeroelastic coupling

The VLM aerodynamic solver is loosely coupled with the
FEniCSx structural solver by linearly mapping the aero-
dynamic loads and structural displacements between both
solvers. We use the approach presented in Van Schie et al.
(2023) to construct these linear load and displacement maps.
In this approach, we start by expressing the aeroelastic work
with each solver. This is achieved by defining a matrix M for
each solver, such that the aeroelastic work can be computed
as the product uTMF. Here, u and F are the vectors con-
taining the degrees of freedom of the displacements and the
loads, respectively. The product uTMF encodes all solver-
specific information used in computing aeroelastic work.

Next, we define a linear map to transfer the displace-
ments from the structural solver to the VLM solver. Then,
we construct the linear map that transfers aerodynamic loads
from the VLM solver to the structural solver following the
expressions of aeroelastic work and the displacement map.
The resulting load map ensures that the load-displacement
mapping pair conserves aeroelastic work and can also be
designed to conserve the total aerodynamic load in each prin-
cipal direction. In this application, both the displacementmap
and the load map are linear, which allows them to be used in
gradient-based optimization algorithms.

4.4.4 Static aeroelastic simulation with constant wind
velocity

We start with a simple static case of aeroelasticity, where a
constant wind velocity V∞ = 50m/s is applied. We con-
sider an angle of attack AoA = 6◦, and the air density is set
to the International Standard Atmosphere air density at sea
level, ρ = 1.225kg/m3. The aerodynamic solver initiates
with an original VLM mesh and outputs the aerodynamic
loads, which are then projected onto the structural domain.
The structural solver computes the displacements, which in
turn lead to updates in the VLMmesh. This iterative process
continues until the updates in the VLM mesh coordinates
between the previous and the current iterations fall below
10−6. We use an embedded nonlinear block CG solver for

this iterative coupling relationship. The results of the von
Mises stress and the aerodynamic load are shown in Fig. 14.

4.4.5 Dynamic aeroelastic simulation of wind gust response

For the dynamic scenario, we study the response of the
eVTOL wing subjected to gust excitation. The eVTOL air-
craft is initially cruising at a constant speed of v0 = 50 m/s
under steady wind in the x direction, V∞ = 50m/s. Then, we
apply a gust wind in the z-direction with a sinusoidal profile
given by Vgust = v0 × (1 − cos(2π(t − T0)/T1)), where T0
is the time when the gust is activated and T1 is the duration
of the gust application.

We simulate the aeroelastic response of thewingunder this
gust excitation, considering three phases: the steady state, the
gust application period, and the oscillation after gust removal.
We choose the implicit midpoint rule in FEniCSx as the time
integration method for the dynamic structural solver, and the
steady VLM solver. In Fig. 15, the gust velocity and the tip
displacement of the eVTOL wing are shown over time. The
peak tip displacement occurs slightly after themaximumgust
velocity. This aligns with our expectation since the velocity
of wing tip is not zero yet at the maximum gust velocity,
leading to a continued upwardmovement of thewing until the
velocity of thewing itself decreases to zero. The amplitude of
the tip displacement is constant during the oscillation phase
because there is no damping in the elastic model. In the plot
of tip displacements, a convergence study of time step size
is performed and the solution converges when Δt = 0.001
(Nsteps=50).

4.4.6 Sensitivity analysis and validation of compliance with
respect to thickness

As the aeroelastic solver is fully integrated with FEMO, it
allows us to compute the total derivatives of any specified
outputs with respect to design variables automatically. The
MDO process is shown in Fig. 16. These automated deriva-
tives are the key to solve anyoptimization problems involving
aeroelasticity efficiently. In Fig. 17,we demonstrate the capa-
bility of automatic adjoint computation for aeroelasticity by
performing sensitivity analysis of structural compliance with
respect to thickness distribution in a static scenario.We repre-
sent the thickness t using a first-order continuous polynomial

123

Automating adjoint sensitivity analysis... Page 19 of 31 146

Fig. 14 Static aeroelastic
analysis of the eCRM-001 wing
model with constant wind
velocity and clamped boundary
condition at the wing root. The
deformation of the wing
structure is scaled by a factor of
40 for visualization

Fig. 15 Numerical results for wind gust response of the eCRM-001
wing model under a sinusoidal gust excitement. The plot on top shows
the velocity of the gust over time. The plot on the bottom shows the
corresponding aeroelastic response of the wing measured by the tip
displacement with different time step sizes

function, which is equivalent to nodal thickness. A constant
thickness of 0.03 m is assigned as the initial value. The com-
pliance C in this problem is defined as the dot product of the
force vector f and the displacement vector u (Christensen

and Klarbring 2008),

C = f Tu, (30)

which estimates the inverse of the stiffness in the structure
model. The runscript for sensitivity analysis is shown in List-
ing 7, “Appendix B,” where we also provide a comprehensive
comparison of estimated implementation efforts involved
in utilizing FEMO versus employing Nastran. It is worth
mentioning that while compliance and thickness are struc-
tural parameters, the aerodynamic solver is also involved in
this derivative computation. This is because the aerodynamic
mesh will be affected by structural deformation, leading to
changes in the aerodynamic loads, which in turn impact the
compliance, computed from the displacements.

We validate the gradients computed through FEMO’s
automatic adjoint method by comparing them with finite dif-
ference results at selected nodes. Specifically, we use the
first-order forward difference approximation for validation.
Thirteen nodes along the span-wise direction of thewing skin
are chosen for this comparison, with their locations shown
in Fig. 17. Given the gradients’ varying magnitudes rang-
ing from 10−4 to 10−1, the choice of perturbation step size

Fig. 16 The MDO process for
thickness sensitivity analysis of
the eCRM-001 wing structure
under aerodynamic loads

t Optimizer v∞ t Ωa

A
VLM aero solver

A(fa,Ωa, v∞) =0
fa

Load mapping fs

S
FEniCSxstructural solver

S(us , fs , t) =0
us us

Displacemen t mapping ua

Ωa =Ω a(ua) Aero mesh update

J J(us)
Compliance

J(us)

∗

∗

123

146 Page 20 of 31 R. Xiang et al.

Table 2 Adjoint validation at
selected nodes by comparing the
gradients computed,
respectively, by FEMO and
finite difference method for the
two-way coupled aeroelastic
model

Node FEMO dC/dt Finite difference dC/dt |Absolute error| |Relative error| (%)

1 −7.547996 −7.482387 0.065609 0.87

2 −16.785037 −16.606966 0.178071 1.06

3 −5.036602 −4.988461 0.048140 0.96

4 −3.405216 −3.367557 0.037659 1.11

5 −2.525660 −2.500194 0.025466 1.01

6 −1.823823 −1.805237 0.018586 1.02

7 −0.883301 −0.873788 0.009513 1.08

8 −0.291701 −0.288946 0.002755 0.94

9 −0.599661 −0.593118 0.006543 1.09

10 −0.136978 −0.135707 0.001271 0.93

11 −0.022173 −0.022037 0.000136 0.61

12 −0.005538 −0.005501 0.000038 0.68

13 −0.000846 −0.000835 0.000011 1.31

We consider the gradients of compliance with respect to thickness in this case, denoted as dC/dt . A pertur-
bation step size of 10−4 is used for the finite difference method

Fig. 17 The gradients of compliance with respect to the thickness dis-
tribution are represented as a first-order continuous function in the top
contour plot. The locations of the nodes used for adjoint validation are
shown in the bottom plot

h can significantly affect the finite difference results. After
conducting several numerical experimentswith different step
sizes, we opt for a step size of 10−4 to achieve a good bal-
ance of accuracy and stability. Detailed results are provided
in Fig. 18, “Appendix C.” The gradients at the selected nodes

are summarized in Table 2, demonstrating good agreement
between the two approaches, with a maximum relative error
of 1.31%.

5 Conclusion

In this work, we have presented a generalized approach for
modeling PDE-constrained MDO problems, and developed
the computational tool FEMO, with the goal to minimize the
time, effort, and expertise required for development. FEMO
leverages the powerful finite element solver FEniCSx to
effectively and accurately solve PDEs, and integrates with
CSDL, a domain-specific language for MDO modeling, to
enable coupling with non-PDE components and automatic
adjoint sensitivity analysis.

The effectiveness of this approach has been demonstrated
through verification using benchmark problems, including
the optimal control of a nonlinear elliptic PDE and topol-
ogy optimization of a cantilever beam, both of which have
known analytical solutions. Additionally, its capability to
tackle real-world problems, such as the design and optimiza-
tion of electric vertical takeoff and landing (eVTOL) aircraft,
which motivated this research, has been established.

123

Automating adjoint sensitivity analysis... Page 21 of 31 146

The shape optimization of an electricmotor has converged
successfully, which couples two nonlinear PDEs—the hyper-
elastic equation and Maxwell’s equations—to simulate the
magnetic flux density field under geometry deformation, and
then coupled with non-PDE postprocessing model to com-
pute the power loss as the objective function.

We applied this method to large-scale aeroelastic analysis
of an eVTOLwing, where there are thousands of design vari-
ables corresponding to node-wise structural thickness. Here,
the FEniCSx-based structural solver is loosely coupled with
the CSDL-basedVLM solver through FEMO, and both static
and dynamic cases have been discussed. For the static case,
we also performed sensitivity analysis for structural compli-
ance of the wingwith respect to thickness distribution, which
provided qualitatively reasonable results for the gradients. In
the dynamic case, the structural response of the wing under
gust excitation was studied, and the wing tip displacement
profile achieved convergence through the reduction of the
time step size.

While the presented methodology and implementation
have shown promising results, there are still some chal-
lenges to overcome. Expertise is required for applying
case-dependent Dirichlet boundary conditions weakly with
Nitsche’s method, including formulation, tuning, and test-
ing. Additionally, the efficiency needs to be improved for
large-scale problemswith a large number of design variables.
Potential solutions could be reduced-ordermodeling, parallel
computing, or tuning for nonlinear/linear solvers. For future
work, we plan to address the above-mentioned challenges,
and extend FEMO to include additional features and appli-
cations, such as sensitivity analysis for dynamic aeroelastic
models. Another goal could be to incorporate other finite
element modules based on the legacy FEniCS to fulfill spe-

cific analysis requirements, such as using PENGoLINS for
isogeometric analysis with non-matching shells (Zhao et al.
2022).

Appendix A: Code comparison of FEMO and
FEniCS for topology optimization problem

We utilize the topology optimization problem described
in Sect. 4.2 to compare FEMO code4 with pure FEniCS
code.5 To elucidate the structures of the two platforms, we
have streamlined both scripts by removing secondary lines,
including import statements, unnecessary comments, and
postprocessing. In addition, the GeneralFilterModel
class in FEMOcode is also omitted, as it primarily consists of
simpleCSDL-based algebraic operations. Even in this simple
example, several benefits of using FEMO become apparent:

(1) FEMO naturally separates the finite element analysis and
optimization code through a modular design, facilitating
easy debugging and modification. For instance, in this
case, only Lines 115–117 in the FEMO code need to be
changed if a different density filter is desired.

(2) The FEMO code incorporates fewer FEniCS imple-
mentations (Lines 12–50) compared to pure FEniCS
(throughout the entire script). This is attributed to the
automation of FEniCS utility functions, such as variable
updates in the backend of FEMO.

(3) The remaining sections of the FEMO code are straight-
forward to implement, mainly involving filling in the
blank spaces of parameters in the dictionary object, such
as in fea.add_input(), fea.add_state() and
fea.add_output() (Lines 81–93).

4 Full FEMO code: https://github.com/RuruX/femo/blob/main/
examples/beam_topo_opt/run_topo_opt_cantilever_beam.py.
5 Full FEniCS code: https://comet-fenics.readthedocs.io/en/latest/
demo/topology_optimization/simp_topology_optimization.html.

123

https://github.com/RuruX/femo/blob/main/examples/beam_topo_opt/run_topo_opt_cantilever_beam.py
https://github.com/RuruX/femo/blob/main/examples/beam_topo_opt/run_topo_opt_cantilever_beam.py
https://comet-fenics.readthedocs.io/en/latest/demo/topology_optimization/simp_topology_optimization.html
https://comet-fenics.readthedocs.io/en/latest/demo/topology_optimization/simp_topology_optimization.html

146 Page 22 of 31 R. Xiang et al.

FEMO code

1 num_el_x = 80
2 num_el_y = 40
3 LENGTH_X = 160.
4 LENGTH_Y = 80.
5 mesh = createRectangleMesh (np.array ([0.0 ,0.0]) ,
6 np.array ([LENGTH_X , LENGTH_Y]),
7 num_el_x ,
8 num_el_y)
9 ###
10 ####################### FEA code ############################
11 ###
12 DOLFIN_EPS = 3E-16
13 def TractionBoundary(x):
14 return np.logical_and(
15 abs(x[1] - LENGTH_Y /2) < LENGTH_Y/num_el_y \
16 + DOLFIN_EPS *1e10 ,
17 abs(x[0] - LENGTH_X) < DOLFIN_EPS *1e10)
18 fdim = mesh.topology.dim - 1
19 traction_facets = locate_entities_boundary(mesh ,fdim ,
20 TractionBoundary)
21 facet_tag = meshtags(mesh , fdim , traction_facets ,
22 np.full(len(traction_facets),
23 100, dtype=np.int32))
24 metadata = {"quadrature_degree":4}
25 ds_ = ufl.Measure('ds',
26 domain=mesh ,
27 subdomain_data=facet_tag ,
28 metadata=metadata)
29 def pdeRes(u, v, rho_e , f, E = 1, dss = ds , method='SIMP'):
30 if method =='SIMP':
31 C = rho_e **3
32 else:
33 C = rho_e /(1 + 8. * (1. - rho_e))
34 E = 1. * C # C is the design variable from 0 to 1
35 nu = 0.3 # Poisson 's ratio
36 lambda_ = E * nu/(1. + nu)/(1 - 2 * nu)
37 mu = E / 2 / (1 + nu) #lame's parameters
38 w_ij = 0.5 * (grad(u) + grad(u).T)
39 v_ij = 0.5 * (grad(v) + grad(v).T)
40 d = len(u)
41 sigm = lambda_*div(u)* Identity(d) + 2*mu*w_ij
42 res = inner(sigm , v_ij) * dx - dot(f, v) * dss
43 return res
44 def averageFunc(func):
45 volume = assemble(Constant(mesh ,1.0)* dx)
46 func1 = Function(func.function_space)
47 func1.vector.set(1/ volume)
48 return inner(func ,func1)*dx
49 def compliance(u, f, dss=ds):
50 return dot(u,f)*dss

FEniCS code

niternp = 20 # number of non -penalized iterations
niter = 80 # total number of iterations
pmax = 4 # maximum SIMP exponent
minimum number of steps between exponent update
exponent_update_frequency = 4
tolerance on mass when finding Lagrange multiplier
tol_mass = 1e-4
thetamin = 0.001 # minimum density modeling void
Problem parameters
thetamoy = 0.4 # target average material density
E = Constant (1)
nu = Constant (0.3)
lamda = E*nu/(1+nu)/(1 -2*nu)
mu = E/(2*(1+ nu))
f = Constant ((0, -1)) # vertical downwards force
Mesh
mesh = RectangleMesh(Point(-2, 0), Point(2, 1),

50, 30, "crossed")
Boundaries
def left(x, on_boundary):

return near(x[0], -2) and on_boundary
def load(x, on_boundary):

return near(x[0], 2) and near(x[1], 0.5, 0.05)
facets = MeshFunction("size_t", mesh , 1)
AutoSubDomain(load).mark(facets , 1)
ds = Measure("ds", subdomain_data=facets)
Function space for density field
V0 = FunctionSpace(mesh , "DG", 0)
Function space for displacement
V2 = VectorFunctionSpace (mesh , "CG", 2)
Fixed boundary condtions
bc = DirichletBC(V2 , Constant ((0, 0)), left)
p = Constant (1) # SIMP penalty exponent
exponent_counter = 0 # exponent update counter
Lagrange multiplier for volume constraint
lagrange = Constant (1)
thetaold = Function(V0 , name="Density")
thetaold.interpolate(Constant(thetamoy))
coeff = thetaold **p
theta = Function(V0)
volume = assemble(Constant (1.)* dx(domain=mesh))
initial average density
avg_density_0 = assemble(thetaold*dx)/ volume
avg_density = 0.
We now define some useful functions for formulating
the linear elastic variational problem.
def eps(v):

return sym(grad(v))
def sigma(v):

return coeff *(lamda*div(v)* Identity (2)+2* mu*eps(v))

123

Automating adjoint sensitivity analysis... Page 23 of 31 146

FEMO code

51 ##
52 ####################### FEMO code ##########################
53 ##
54 fea = FEA(mesh)
55 # Add input to the PDE problem:
56 input_name = 'density '
57 input_function_space = FunctionSpace(mesh , ('DG', 0))
58 input_function = Function(input_function_space)
59 gradient_function = Function(input_function_space)
60 # Add state to the PDE problem:
61 state_name = 'displacements '
62 state_function_space = VectorFunctionSpace (mesh , ('CG', 1))
63 state_function = Function(state_function_space)
64 v = TestFunction(state_function_space)
65 method = 'SIMP'
66 f = Constant(mesh , (0, -1/4))
67 residual_form = pdeRes(state_function ,
68 v,
69 input_function ,
70 f,
71 dss=ds_ (100),
72 method=method)
73 # Add output to the PDE problem:
74 output_name_1 = 'avg_density '
75 output_form_1 = averageFunc(input_function)
76 output_name_2 = 'compliance '
77 output_form_2 = compliance(state_function ,
78 f,
79 dss=ds_ (100))
80 fea.record = True
81 fea.add_input(input_name , input_function)
82 fea.add_state(name=state_name ,
83 function=state_function ,
84 residual_form=residual_form ,
85 arguments =[input_name])
86 fea.add_output(name=output_name_1 ,
87 type='scalar ',
88 form=output_form_1 ,
89 arguments =[input_name])
90 fea.add_output(name=output_name_2 ,
91 type='scalar ',
92 form=output_form_2 ,
93 arguments =[state_name])
94 ubc = Function(state_function_space)
95 ubc.vector.set (0.0)
96 locate_BC1 = locate_dofs_geometrical(
97 (state_function_space ,
98 state_function_space),
99 lambda x: np.isclose(

100 x[0], 0. ,atol=1e-6))
101 locate_BC_list = [locate_BC1]
102 fea.add_strong_bc(ubc , locate_BC_list , state_function_space)
103 ##
104 ################## Optimization code #######################
105 ##
106 fea_model = FEAModel(fea=[fea])
107 pre_processor_name = 'general_filter_model '
108 coords = input_function_space .tabulate_dof_coordinates ()
109 tdim = mesh.topology.dim
110 num_cells = mesh.topology.index_map(tdim). size_local
111 h = dolfinx.cpp.mesh.h(mesh , tdim , range(num_cells))
112 h_avg = (h.max() + h.min ())/2
113 nel = mesh.topology.index_map(mesh.topology.dim). size_local
114 # Case -to -case preprocessor model
115 pre_processor_model = GeneralFilterModel(nel=nel ,
116 coordinates=coords ,
117 h_avg=h_avg)
118 # Coupling is done as simple as model.add()
119 fea_model.add(pre_processor_model , name=pre_processor_name)
120 np.random.seed (0)
121 fea_model.create_input("{}".format('density_unfiltered '),
122 shape=nel ,
123 val=np.random.random(nel) * 0.86)
124 fea_model.add_design_variable ('density_unfiltered ',
125 upper =1.0,
126 lower =1e-4)
127 fea_model.add_objective('compliance ')
128 fea_model.add_constraint('avg_density ', upper =0.40)
129 sim = Simulator(fea_model ,analytics=True)
130 # Set up optimizer and run
131 sim.run()
132 prob = CSDLProblem(
133 problem_name='beam_topo_opt ',
134 simulator=sim ,
135)
136 optimizer = SNOPT(prob ,
137 Major_iterations = 100000 ,
138 Major_optimality = 1e-8,
139 Major_feasibility =1e-6,
140 append2file=True)
141 optimizer.solve ()
142 ###
143 # #
144 # #
145 # Empty lines to match FEniCS code #
146 # #
147 # #
148 ###

FEniCS code

def energy_density(u, v):
return inner(sigma(u), eps(v))

Inhomogeneous elastic variational problem
u_ = TestFunction(V2)
du = TrialFunction(V2)
a = inner(sigma(u_), eps(du))*dx
L = dot(f, u_)*ds(1)
def local_project(v, V):

dv = TrialFunction(V)
v_ = TestFunction(V)
a_proj = inner(dv , v_)*dx
b_proj = inner(v, v_)*dx
solver = LocalSolver(a_proj , b_proj)
solver.factorize ()
u = Function(V)
solver.solve_local_rhs (u)
return u

def update_theta ():
theta.assign(local_project(

(p*coeff*energy_density(u, u)
/lagrange)**(1/(p+1)), V0))

thetav = theta.vector (). get_local ()
theta.vector (). set_local(np.maximum(

np.minimum (1, thetav), thetamin))
theta.vector (). apply("insert")
avg_density = assemble(theta*dx)/ volume
return avg_density

We now define a function for finding the correct value
of the Lagrange multiplier λ.
def update_lagrange_multiplier(avg_density):

avg_density1 = avg_density
Initial bracketing of Lagrange multiplier
if (avg_density1 < avg_density_0):

lagmin = float(lagrange)
while (avg_density < avg_density_0):

lagrange.assign(Constant(lagrange /2))
avg_density = update_theta ()

lagmax = float(lagrange)
elif (avg_density1 > avg_density_0):

lagmax = float(lagrange)
while (avg_density > avg_density_0):

lagrange.assign(Constant(lagrange *2))
avg_density = update_theta ()

lagmin = float(lagrange)
else:

lagmin = float(lagrange)
lagmax = float(lagrange)

Dichotomy on Lagrange multiplier
inddico =0
while ((abs(1.- avg_density/avg_density_0)) > tol_mass):

lagrange.assign(Constant ((lagmax+lagmin)/2))
avg_density = update_theta ()
inddico += 1;
if (avg_density < avg_density_0):

lagmin = float(lagrange)
else:

lagmax = float(lagrange)
print("��� Dichotomy� iterations:", inddico)

Finally , the exponent update strategy is implemented:
def update_exponent (exponent_counter):

exponent_counter += 1
if (i < niternp):

p.assign(Constant (1))
elif (i >= niternp):

if i == niternp:
print("\n� Starting� penalized� iterations\n")

if ((abs(compliance -old_compliance) \
< 0.01* compliance_history [0]) and

(exponent_counter > exponent_update_frequency)):
average gray level
gray_level = assemble ((theta -thetamin) \

*(1.- theta)*dx)*4/ volume
p.assign(Constant(min(float(p) \

*(1+0.3**(1.+ gray_level /2)), pmax)))
exponent_counter = 0
print("��� Updated� SIMP� exponent�p�=�", float(p))

return exponent_counter
u = Function(V2 , name="Displacement")
old_compliance = 1e30
ffile = XDMFFile("topology_optimization .xdmf")
ffile.parameters["flush_output"]=True
ffile.parameters["functions_share_mesh "]=True
compliance_history = []
for i in range(niter):

solve(a == L, u, bc , solver_parameters ={
"linear_solver": "cg",
"preconditioner": "hypre_amg"})

ffile.write(thetaold , i)
ffile.write(u, i)
compliance = assemble(action(L, u))
compliance_history.append(compliance)
print("Iteration� {}:� compliance�=".format(i), compliance)
avg_density = update_theta ()
update_lagrange_multiplier(avg_density)
exponent_counter = update_exponent (exponent_counter)
Update theta field and compliance
thetaold.assign(theta)
old_compliance = compliance

123

146 Page 24 of 31 R. Xiang et al.

Appendix B: Implementation effort compari-
son of FEMO and Nastran for aeroelasticity

We compare the implementation efforts involved in using
FEMOandNastran for aeroelasticity analysis.Wepresent the
full FEMO runscript in Listing 7 for sensitivity analysis of an
eVTOLwing under static aeroelastic coupling. The FEniCS-
based dolfin-adjoint library is excluded from our comparison
due to its inability to interface with other non-FEniCS-based
solvers, such as low-/mid-fidelity aerodynamic solvers.

Given that Nastran primarily serves as a finite element
analysis solver for structural and thermal analysis, while
FEMO offers a generic PDE solver platform coupled with an
optimization environment, our comparison focuses on two
main aspects: the shell solver integrated with FEMO ver-
sus Nastran, and the respective workflows of using them in
aeroelasticity. It is worth noting that most source code using
Nastran for high-fidelity aeroelastic coupling are either inac-
cessible to public or challenging to reproduce because of
the lack of maintenance or license constraints (Kenway and
Martins 2014; Benaouali and Kachel 2019). For this reason,
discussions of implementation efforts are estimated based the
authors’ experience with these software tools and the litera-
ture.

The breakdown of implementation efforts is as follows:

– Learning curve we use the time required to master
the shell solver as the learning curve estimation. Nas-
tran, being a widely accepted finite element solver in
aerospace and other engineering fields, typically has a
lower learning curve for its pre-compiled commercial

software products. In contrast, FEMO’s FEA capabil-
ity relies on FEniCSx, necessitating the users to possess
basic knowledge of FEniCSx and Python programming.
Consequently, the learning curve for the FEMO shell
solver is slightly steeper

– Coupling we specifically consider the integration of
forward simulation for this aspect, as the coupling of
derivatives is addressed separately in the next item. In
contrast to FEMO’s automated coupling capability as
easy as model.add(submodel), as shown in Lines
302–309 in Listing 7, Nastran demands significant effort
as well as expertise in compiling multi-language code,
given that the original solver is written in Fortran.6 While
tools like pyNastran7 exist, they are primarily utilized for
pre/postprocessing of Nastran.

– Derivatives similar to coupling, derivative computation
for the coupled system is significantly easier in FEMO.
While Nastran does provide derivatives for the struc-
ture solver, computing derivatives for the coupled system
requires manual derivation and implementation, whereas
FEMO utilizes automatic adjoint methods for derivative
computation.

– Lines of code since FEMO automates coupling and
derivative computation, it can save hundreds to thousands
of lines of code for those processes.

– Code maintenance code maintenance is considerably
easier in FEMO. It is fully open-source and can be eas-
ily extended to other application scenarios by simply
changing the sub-model to be added to the full model.
Additionally, thanks to its utilization of dictionaries,
FEMO code is much easier to read.

6 https://github.com/nasa/NASTRAN-95.
7 https://pynastran-git.readthedocs.io/en/latest/

123

https://github.com/nasa/NASTRAN-95
https://pynastran-git.readthedocs.io/en/latest/

Automating adjoint sensitivity analysis... Page 25 of 31 146

Listing 7 FEMO runscript for sensitivity analysis of aeroelasticity

1 # FEMO import statements
2 from femo.fea.fea_dolfinx import *
3 from femo.csdl_opt.fea_model import FEAModel
4 from femo.csdl_opt.state_model import StateModel
5 from femo.csdl_opt.output_model import OutputModel
6 import csdl
7 from python_csdl_backend import Simulator
8
9 # Structure solver import statements
10 from shell_analysis_fenicsx import *
11 from shell_analysis_fenicsx.read_properties import readCLT , sortIndex
12
13 # Aerodynamic solver import statements
14 from FSI_coupling.VLM_sim_handling import *
15 from FSI_coupling.shellmodule_utils import *
16 from FSI_coupling.NodalMapping import *
17 from FSI_coupling.NodalMapping import *
18 from FSI_coupling.mesh_handling_utils import *
19 from FSI_coupling.array_handling_utils import *
20 from FSI_coupling.shellmodule_csdl_interface import (
21 DisplacementMappingImplicitModel ,
22 ForceMappingModel ,
23 VLMForceIOModel ,
24 VLMMeshUpdateModel
25)
26 ##
27 ######################## Structural inputs ###############################
28 ##
29
30 s_mesh_file_name = "eVTOL_wing_half_tri_107695_136686.xdmf"
31 f_mesh_file_name = 'vlm_mesh_nx2_ny10.npy'
32 path = "../../ evtol_wing_mesh/"
33 solid_mesh_file = path + s_mesh_file_name
34 vlm_mesh_file = path+ f_mesh_file_name
35
36 with XDMFFile(MPI.COMM_WORLD , solid_mesh_file , "r") as xdmf:
37 solid_mesh = xdmf.read_mesh(name="Grid")
38 nel = solid_mesh.topology.index_map(solid_mesh.topology.dim).size_local
39 nn = solid_mesh.topology.index_map (0).size_local
40
41 # define structural properties
42 E = 6.8E10 # unit: Pa (N/m^2)
43 nu = 0.35
44 h_val = 3E-3 # overall thickness (unit: m)
45 y_bc = 0.6
46 PENALTY_BC = True
47
48 element_type = "CG2CG1" # with quad/tri elements
49
50 element = ShellElement(solid_mesh ,element_type ,)
51 dx_inplane , dx_shear = element.dx_inplane , element.dx_shear
52
53 def pdeRes(h,w,E,f,CLT ,dx_inplane ,dx_shear ,dss=ds , dSS=dS ,
54 penalty=False , g=None):
55 elastic_model = ElasticModel(solid_mesh ,w,CLT)
56 elastic_energy = elastic_model.elasticEnergy(E, h, dx_inplane ,dx_shear)
57 return elastic_model.weakFormResidual(elastic_energy , f,
58 penalty=penalty , dss=dss , dSS=dSS , g=g)
59
60 def compliance(u_mid ,f,dxx):
61 return inner(u_mid ,f)*dxx
62
63 def volume(h):
64 return h*dx
65
66 def elastic_energy(w,CLT ,E,h,dx_inplane ,dx_shear):

123

146 Page 26 of 31 R. Xiang et al.

67 elastic_model = ElasticModel(solid_mesh ,w,CLT)
68 elastic_energy = elastic_model.elasticEnergy(E, h, dx_inplane ,dx_shear)
69 return elastic_energy
70
71 # Getting facets of the LEFT and the RIGHT edge
72 DOLFIN_EPS = 3E-16
73 def ClampedBoundary(x):
74 return np.less_equal(x[1], y_bc)
75 def rightChar(x):
76 return np.greater(x[1], 5.2) # measure deflection near wing tip
77 fdim = solid_mesh.topology.dim - 1
78 facets_1 = locate_entities_boundary(solid_mesh ,fdim ,ClampedBoundary)
79 facets_11 = locate_entities(solid_mesh ,fdim ,ClampedBoundary)
80 facets_2 = locate_entities_boundary(solid_mesh ,fdim ,rightChar)
81 # Defining measures
82 facet_tag_1 = meshtags(solid_mesh , fdim , facets_1 ,
83 np.full(len(facets_1) ,100,dtype=np.int32))
84 facet_tag_11 = meshtags(solid_mesh , fdim , facets_11 ,
85 np.full(len(facets_11) ,100,dtype=np.int32))
86 metadata = {"quadrature_degree":4}
87 ds_1 = ufl.Measure('ds',domain=solid_mesh ,subdomain_data=facet_tag_1 ,
88 metadata=metadata)
89 dS_1 = ufl.Measure('dS',domain=solid_mesh ,subdomain_data=facet_tag_11 ,
90 metadata=metadata)
91
92 area_2 = dolfinx.mesh.locate_entities(solid_mesh ,fdim+1,rightChar)
93 area_tag_2 = meshtags(solid_mesh , fdim+1, area_2 ,
94 np.full(len(area_2) ,10,dtype=np.int32))
95 dx_2 = ufl.Measure('dx',domain=solid_mesh ,subdomain_data=area_tag_2 ,
96 metadata=metadata)
97
98 fea = FEA(solid_mesh)
99 fea.PDE_SOLVER = "Newton"

100 fea.initialize = True
101 fea.record = False
102 fea.linear_problem = True
103 # Add input to the PDE problem:
104 input_name_1 = 'thickness '
105 input_function_space_1 = FunctionSpace(solid_mesh , ("CG", 1))
106 input_function_1 = Function(input_function_space_1)
107 # Add input to the PDE problem:
108 input_name_2 = 'F_solid '
109 input_function_space_2 = VectorFunctionSpace(solid_mesh , ("CG", 1))
110 input_function_2 = Function(input_function_space_2)
111
112 # Add state to the PDE problem:
113 state_name = 'disp_solid '
114 state_function_space = element.W
115 state_function = Function(state_function_space)
116 g = Function(state_function_space)
117 with g.vector.localForm () as uloc:
118 uloc.set (0.)
119 # Simple isotropic material
120 material_model = MaterialModel(E=E,nu=nu ,h=input_function_1)
121 residual_form = pdeRes(input_function_1 ,state_function ,E,input_function_2 ,
122 material_model.CLT ,dx_inplane ,dx_shear ,
123 penalty=PENALTY_BC , dss=ds_1 (100), dSS=dS_1 (100), g=g)
124
125 # Add output to the PDE problem:
126 output_name_1 = 'compliance '
127 u_mid , theta = split(state_function)
128 output_form_1 = compliance(u_mid ,input_function_2 , ufl.dx)
129 output_name_2 = 'volume'
130 output_form_2 = volume(input_function_1)
131 output_name_3 = 'elastic_energy '
132 output_form_3 = elastic_energy(state_function ,material_model.CLT ,E,

123

Automating adjoint sensitivity analysis... Page 27 of 31 146

133 input_function_1 ,dx_inplane ,dx_shear)
134
135 with input_function_1.vector.localForm () as uloc:
136 uloc.set(h_val)
137 V0 = assemble(output_form_2)
138
139 fea.add_input(input_name_1 , input_function_1)
140 fea.add_input(input_name_2 , input_function_2)
141 fea.add_state(name=state_name ,
142 function=state_function ,
143 residual_form=residual_form ,
144 arguments =[input_name_1 , input_name_2])
145 fea.add_output(name=output_name_1 ,
146 type='scalar',
147 form=output_form_1 ,
148 arguments =[state_name ,input_name_1])
149 fea.add_output(name=output_name_2 ,
150 type='scalar',
151 form=output_form_2 ,
152 arguments =[input_name_1])
153 fea.add_output(name=output_name_3 ,
154 type='scalar',
155 form=output_form_3 ,
156 arguments =[input_name_1 ,state_name])
157
158 # Set the BCs for the airplane model
159 locate_BC1 = locate_dofs_geometrical ((state_function_space.sub(0),
160 state_function_space.sub(0).collapse ()[0]),
161 lambda x: np.less(x[1], y_bc))
162 locate_BC2 = locate_dofs_geometrical ((state_function_space.sub(1),
163 state_function_space.sub(1).collapse ()[0]),
164 lambda x: np.less(x[1], y_bc))
165 ubc = Function(state_function_space)
166 with ubc.vector.localForm () as uloc:
167 uloc.set (0.)
168
169 # Strongly enforced boundary conditions
170 if not PENALTY_BC:
171 fea.add_strong_bc(ubc , [locate_BC1], state_function_space.sub(0))
172 fea.add_strong_bc(ubc , [locate_BC2], state_function_space.sub(1))
173
174 ###
175 ######################## Aerodynamic inputs ###############################
176 ###
177 # define vlm input parameters
178 V_inf = 50. # freestream velocity magnitude in m/s
179 AoA = 6. # Angle of Attack in degrees
180 AoA_rad = np.deg2rad(AoA) # Angle of Attack converted to radians
181 # International Standard Atmosphere air density at sea level
182 rho = 1.225 #unit: kg/m^3
183
184 conv_eps = 1e-6 # Convergence tolerance for iterative solution approach
185 iterating = True
186
187 # Construct Aerodynamic mesh
188 # Import a preconstructed vlm mesh
189 vlm_mesh = load_mesh(vlm_mesh_file , np.array ([4.28 , 0., 2.96]))
190 vlm_mesh_mirrored = mirror_mesh_around_y_axis(vlm_mesh)
191 vlm_mesh_baseline_2d = reshape_3D_array_to_2D(vlm_mesh)
192
193 vlm_mesh_baseline_2d_mirrored = reshape_3D_array_to_2D(
194 vlm_mesh_mirrored)
195
196 # Define force functions and aero -elastic coupling object
197 coupling_obj = FEniCSx_vortexmethod_coupling(solid_mesh , vlm_mesh ,
198 state_function_space , RBF_width_par =2.)

123

146 Page 28 of 31 R. Xiang et al.

199
200 vlm_mesh_displaced_2d_mirrored = deepcopy(vlm_mesh_baseline_2d_mirrored)
201 vlm_mesh_displaced_3d_mirrored = np.reshape(vlm_mesh_displaced_2d_mirrored ,
202 (vlm_mesh_mirrored.shape[0],
203 vlm_mesh_mirrored.shape[1], 3),
204 order='F')
205 vlm_mesh_transposed = construct_VLM_transposed_input_mesh(
206 vlm_mesh_displaced_3d_mirrored)
207
208 # Define CSDL mapping models for force and displacement input/output
209 # management
210 panel_forces_shape = ((vlm_mesh_mirrored.shape [0]-1) \
211 *(vlm_mesh_mirrored.shape [1]-1),
212 vlm_mesh_mirrored.shape [2])
213 panel_forces_3d_shape = ((vlm_mesh_mirrored.shape [0]-1),
214 (vlm_mesh_mirrored.shape [1]-1),
215 vlm_mesh_mirrored.shape [2])
216 starboard_panel_forces_3d_shape = ((vlm_mesh.shape [0]-1),
217 (vlm_mesh.shape [1]-1),
218 vlm_mesh.shape [2],)
219 starboard_panel_forces_shape = ((vlm_mesh.shape [0]-1)*
220 (vlm_mesh.shape [1]-1),
221 vlm_mesh.shape [2],)
222 panel_force_vector_shape = ((vlm_mesh.shape [0]-1)*(vlm_mesh.shape [1]-1) \
223 *vlm_mesh.shape [2],)
224
225 vlm_class = VLM_CADDEE ([vlm_mesh_transposed], AoA ,
226 V_inf*np.array([np.cos(AoA_rad), 0., np.sin(AoA_rad)]),
227 rho=rho)
228 vlm_model = vlm_class.model # A CSDL model contains VLM as the submodel
229
230 ###
231 ###################### The two -way couple problem #########################
232 ###
233 # Set up coupling models
234 vlm_force_reshape_model = VLMForceIOModel(input_name='panel_forces ',
235 output_name_2d_array='starboard_panel_force_array ',
236 output_name_vector='F_aero',
237 input_shape=panel_forces_shape ,
238 starboard_3d_shape=starboard_panel_forces_3d_shape ,
239 output_vector_length=panel_force_vector_shape ,
240 full_3d_shape=panel_forces_3d_shape)
241
242 force_map_model = ForceMappingModel(coupling=coupling_obj ,
243 input_name='F_aero',
244 state_name='F_solid ',
245 input_shape =(coupling_obj.P_map.shape [1]*3 ,),
246 output_shape =(coupling_obj.Mat_f_sp.shape [0],))
247
248 # Set up structure models
249 solid_model = StateModel(fea=fea , debug_mode=False , state_name=state_name ,
250 arg_name_list=fea.states_dict[state_name]['arguments '])
251 compliance_model = OutputModel(fea=fea , output_name=output_name_1 ,
252 arg_name_list=fea.outputs_dict[output_name_1]['arguments '])
253 volume_model = OutputModel(fea=fea , output_name=output_name_2 ,
254 arg_name_list=fea.outputs_dict[output_name_2]['arguments '])
255 elastic_energy_model = OutputModel(fea=fea , output_name=output_name_3 ,
256 arg_name_list=fea.outputs_dict[output_name_3]['arguments '])
257
258 disp_map_model = DisplacementMappingImplicitModel(coupling=coupling_obj ,
259 input_name='disp_solid ',
260 state_name='disp_fluid ',
261 output_name='r_disp_fluid ',
262 input_shape =(state_function.vector.size ,),
263 output_shape =(vlm_mesh.shape [0]* vlm_mesh.shape [1] \
264 *vlm_mesh.shape [2],))

123

Automating adjoint sensitivity analysis... Page 29 of 31 146

265
266 vlm_mesh_update_model = VLMMeshUpdateModel(
267 base_vlm_mesh_2d=vlm_mesh_baseline_2d ,
268 starboard_mesh_3d_shape=vlm_mesh.shape ,
269 input_name='disp_fluid ',
270 output_name_2d='vlm_disp_mat ',
271 output_name_3d = 'surf_0',
272 input_shape =(vlm_mesh.shape [0]* vlm_mesh.shape [1] \
273 *vlm_mesh.shape [2],),
274 output_shape=vlm_mesh_transposed.shape)
275
276 # Connect the models
277 disp_map_model.add(vlm_model , name='vlm_model ')
278 disp_map_model.add(vlm_force_reshape_model , name='vlm_force_reshape_model ')
279 disp_map_model.add(force_map_model , name='force_map_model ')
280 disp_map_model.add(solid_model , name='solid_model ')
281 disp_map_model.add(vlm_mesh_update_model , name='vlm_mesh_update_model ')
282 disp_map_model.declare_variable('thickness ',
283 shape=fea.inputs_dict[input_name_1]['shape'],
284 val=h_val)
285 model = csdl.Model()
286
287 # Set up Newton solver for the two -way coupled system
288 solve_fixed_point_iteration = model.create_implicit_operation(disp_map_model)
289 solve_fixed_point_iteration.declare_state('disp_fluid ',
290 residual='r_disp_fluid ')
291 solve_fixed_point_iteration.nonlinear_solver = csdl.NonlinearBlockGS(
292 maxiter =100, atol=1e-6, rtol=1e-6)
293 thickness = model.declare_variable('thickness ',
294 shape=fea.inputs_dict[input_name_1]['shape'],
295 val=h_val)
296 x = solve_fixed_point_iteration(thickness)
297
298 # Final assembly
299 model.add(vlm_mesh_update_model , name='vlm_mesh_update_model ')
300 model.add(vlm_model , name='vlm_model ')
301 model.add(vlm_force_reshape_model , name='vlm_force_reshape_model ')
302 model.add(force_map_model , name='force_map_model ')
303 model.add(solid_model , name='solid_model')
304 model.add(compliance_model , name='compliance_model ')
305 model.add(volume_model , name='volume_model ')
306 model.add(elastic_energy_model , name='elastic_energy_model')
307
308 # Test the forward solve
309 sim.run()
310
311 # Compute and output the total derivatives
312 path = "solutions"
313 totals = sim.compute_totals(of=['compliance '], wrt=['thickness '])
314 dCdT = totals[('compliance ', 'thickness ')]
315 dCdT_function = Function(input_function_space_1)
316 dCdT_function.vector.setArray(dCdT)
317 with XDMFFile(MPI.COMM_WORLD , path+"/gradient_dCdT.xdmf", "w") as xdmf:
318 xdmf.write_mesh(solid_mesh)
319 xdmf.write_function(dCdT_function)
320
321 # Check the total derivatives
322 # It takes too long to run finite difference gradients for this problem.
323 # Though it is easy to add once we reduce the number of design variables.
324
325 error_dict = sim.check_totals(of=['compliance '], wrt=['thickness ']
326 , compact_print=True)
327 dCdT = error_dict [('compliance ', 'thickness ')]['analytical_jac ']
328 dCdT_fd = error_dict [('compliance ', 'thickness ')]['fd_jac']
329 dCdT_error = error_dict [('compliance ', 'thickness ')]['error_jac ']

123

146 Page 30 of 31 R. Xiang et al.

Appendix C: Numerical experiments on finite
difference step size in the aeroelastic exam-
ple

For adjoint validation of the aeroelastic model, we use the
finite difference method to compare the gradients of com-
pliance with respect to thickness (dC/dt) at selected nodes.
Figure 18 shows the relative errors in dC/dt for various finite
difference step sizes h. The results show that smaller h gener-
ally reduces errors, but increases errors significantly for some
nodes. Specifically, h = 10−5 and h = 10−6 have smaller
errors for the first ten nodes but increase for node 11–13 due
to round-off error from lower magnitudes of the gradients
at these nodes. Therefore, h = 10−4 is optimal, balancing
low errors and stability. The accuracy of the adjoint method
in FEMO has been verified as the relative errors for the first
ten nodes (whose gradients’ magnitude exceeds 0.1) remain
reasonable across different step sizes.

Fig. 18 Relative errors for the gradients of compliance with respect to
thickness (dC/dt) using different finite difference step sizes h

Acknowledgements The work presented in this paper is supported
by National Aeronautics and Space Administration Award Number
80NSSC21M0070.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The source code of FEMO, and the example
problems discussed in thiswork are provided in our open-sourceGitHub
repository (http://github.com/RuruX/femo).

References

AlnæsMS, LoggA,ØlgaardKB,RognesME,Wells GN (2014)Unified
form language: a domain-specific language for weak formulations

of partial differential equations. ACM Trans Math Softw 40(2):1–
37

AlnæsMS, LoggA,ØlgaardKB,RognesME,Wells GN (2014)Unified
form language: a domain-specific language for weak formulations
of partial differential equations. ACM Trans Math Softw 40(2):1–
37

Anderson JD Jr (2010) Fundamentals of aerodynamics. Tata McGraw-
Hill Education, New York

Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s
formulation for interface problems. Comput Methods Appl Mech
Eng 225–228:44–54

Arada N, Casas E, Tröltzsch F (2002) Error estimates for the numerical
approximation of a semilinear elliptic control problem. Comput
Optim Appl 23:201–229

Ashuri T, Zaaijer M, Martins J, van Bussel G, van Kuik G (2014) Mul-
tidisciplinary design optimization of offshore wind turbines for
minimum levelized cost of energy. Renew Energy 68:893–905

Baratta IA, Dean JP, Dokken JS, Habera M, Hale JS, Richardson CN,
Rognes ME, Scroggs MW, Sime N, Wells GN (2023) DOLFINx:
the next generation FEniCS problem solving environment

Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric
fluid–structure interaction: theory, algorithms, and computations.
Comput Mech 43:3–37

Benaouali A, Kachel S (2019) Multidisciplinary design optimization of
aircraft wing using commercial software integration. Aerosp Sci
Technol 92:766–776

BendsøeMP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71(2):197–224

Bleyer J (2018) Numerical tours of computational mechanics with FEn-
iCS

Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite
shell element based on a fully nonlinear shell formulation. Comput
Mech 31:505–518

Christensen P, Klarbring A (2008) An introduction to structural
optimization. Solid mechanics and its applications. Springer, Dor-
drecht

Chung H, Hwang JT, Gray JS, Kim HA (2019) Topology optimization
in OpenMDAO. Struct Multidisc Optim 59(4):1385–1400

Cotter C, Shipton J (2012) Mixed finite elements for numerical weather
prediction. J Comput Phys 231(21):7076–7091

de Weck O, Agte J, Sobieszczanski-Sobieski J, Arendsen P, Morris A,
Spieck M (2007) State-of-the-art and future trends in multidisci-
plinary design optimization. In: Collection of technical papers—
AIAA/ASME/ASCE/AHS/ASC structures. Structural dynamics
and materials conference, 2007, vol 3, p 04

Gandarillas V, Joshy AJ, Sperry MZ, Ivanov AK, Hwang JT (2024) A
graph-based methodology for constructing computational models
that automates adjoint-based sensitivity analysis. Struct Multidisc
Optim 67:76

Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm
for large-scale constrained optimization. SIAM Rev 47:99–131

Gray JS,Hwang JT,Martins JRRA,MooreKT,NaylorBA (2019)Open-
MDAO: an open-source framework for multidisciplinary design,
analysis, and optimization. Struct Multidisc Optim 59:1075–1104

Jiang W, Annavarapu C, Dolbow J, Harari I (2015) A robust Nitsche’s
formulation for interface problems with spline-based finite ele-
ments. Int J Numer Methods Eng 104(7):676–696

Jilla C,Miller D (2002) Amultiobjective, multidisciplinary design opti-
mization methodology for the conceptual design of distributed
satellite systems. J Spacecr Rockets 41:09

Kamensky D (2021) Open-source immersogeometric analysis of fluid–
structure interaction using FEniCS and tiGAr. Comput Math Appl
81:634–648

Katz J, Plotkin A (2001) Low-speed aerodynamics, vol 13. Cambridge
University Press, Cambridge

123

http://github.com/RuruX/femo

Automating adjoint sensitivity analysis... Page 31 of 31 146

Kennedy GJ, Martins JR (2014) A parallel finite-element frame-
work for large-scale gradient-based design optimization of high-
performance structures. Finite Elem Anal Des 87:56–73

Kenway G, Martins J (2014) Multi-point high-fidelity aerostructural
optimization of a transport aircraft configuration. J Aircr 51:144–
160

Kenway G, Kennedy G, Martins J (2010) A CAD-free approach to
high-fidelity aerostructural optimization. In: 13th AIAA/ISSMO
multidisciplinary analysis optimization conference, 2010

Logg A, Wells GN (2010) DOLFIN: automated finite element comput-
ing. ACM Trans Math Softw 37(2):1–28

Logg A, Wells G, Mardal K.-A (2011) Automated solution of differ-
ential equations by the finite element method: the FEniCS book.
Lecture notes in computational science and engineering, vol 84.
Springer, Berlin

Martins JR, Lambe AB (2013) Multidisciplinary design optimization:
a survey of architectures. AIAA J 51:2049–2075

Mitusch SK, Funke SW, Dokken JS (2019) DOLFIN-adjoint 2018.1:
automated adjoints for FEniCS and Firedrake. J Open Source
Softw 4(38):1292

Neighbor GE, Zhao H, Saraeian M, Hsu M-C, Kamensky D (2023)
Leveraging code generation for transparent immersogeometric
fluid–structure interaction analysis on deforming domains. Eng
Comput 39:1019–1040

Nelson PA, Gallagher K, Bloom ID, Dees DW (2011) Modeling the
performance and cost of lithium-ion batteries for electric-drive
vehicles. Technical Report ANL-11/32. Argonne National Labo-
ratory, Lemont

Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbe-
dingungen unterworfen sind. Abhandlungen Math Semin Univ
Hamburg 36:9–15

ØlgaardKB,Wells GN (2010) Optimizations for quadrature representa-
tions of finite element tensors through automated code generation.
ACM Trans Math Softw 37(1):1–23

Pörner F, Wachsmuth D (2017) Tikhonov regularization of optimal
control problems governed by semi-linear partial differential equa-
tions. Math Control Relat Fields 8(1):315–335

Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, Mcrae ATT,
Bercea G-T, Markall GR, Kelly PHJ (2016) Firedrake: automating
the finite element method by composing abstractions. ACM Trans
Math Softw 43(3):1–27

SchillingerD,Harari I, HsuM-C,KamenskyD, Stoter SK,YuY,ZhaoY
(2016) The non-symmetric Nitsche method for the parameter-free
imposition ofweak boundary and coupling conditions in immersed
finite elements. Comput Methods Appl Mech Eng 309:625–652

Scotzniovsky L, Xiang R, Cheng Z, Rodriguez G, Kamensky D, Mi
C, Hwang JT (2024) Geometric design of electric motors using
adjoint-based shape optimization (Preprint). https://doi.org/10.
21203/rs.3.rs-3941981/v1

Scroggs MW, Dokken JS, Richardson CN, Wells GN (2022) Construc-
tion of arbitrary order finite element degree-of-freedom maps on
polygonal and polyhedral cell meshes. ACM Trans Math Softw
48(2):1–23

Sederberg T, Parry S (1986) Free-form deformation of solid geometric
models. ACM SIGGRAPH Comput Graph 20:151–160

Siemens (2014) NX Nastran 10: optimization user’s guide. Siemens.
https://docs.plm.automation.siemens.com/data_services/
resources/nxnastran/10/help/en_US/tdocExt/pdf/optimization.
pdf

Svanberg K, Svärd H (2013) Density filters for topology optimization
based on the Pythagorean means. Struct Multidisc Optim 48:859–
875

Taylor E (2000) Evaluation of multidisciplinary design optimiza-
tion techniques as applied to spacecraft design. In: 2000 IEEE
aerospace conference. Proceedings (cat. no. 00TH8484), 2000, vol
1, pp 371–384

VanSchie SPC,ZhaoH,Yan J,XiangR,Hwang JT,KamenskyD (2023)
Solver-independent aeroelastic coupling for large-scale multidis-
ciplinary design optimization. In: AIAA Scitech 2023 Forum

Yan J, Xiang R, Kamensky D, Tolley MT, Hwang JT (2022) Topology
optimization with automated derivative computation for multidis-
ciplinary design problems. Struct Multidisc Optim 65:151

Zhao H, Liu X, Fletcher AH, Xiang R, Hwang JT, Kamensky D (2022)
An open-source framework for coupling non-matching isogeomet-
ric shells with application to aerospace structures. Comput Math
Appl 111:109–123

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.21203/rs.3.rs-3941981/v1
https://doi.org/10.21203/rs.3.rs-3941981/v1
https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/optimization.pdf
https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/optimization.pdf
https://docs.plm.automation.siemens.com/data_services/resources/nxnastran/10/help/en_US/tdocExt/pdf/optimization.pdf

	Automating adjoint sensitivity analysis for multidisciplinary models involving partial differential equations
	Abstract
	1 Introduction
	2 Methodology
	2.1 A glimpse at a PDE-constrained MDO problem
	2.2 A model problem: optimal control of a nonlinear elliptic PDE
	2.3 Finite element solution of the model problem
	2.4 Automated derivative computation for gradient-based optimization

	3 Implementation
	3.1 System-level modeling construction using CSDL
	3.2 Automated finite element solutions and derivatives with FEniCSx
	3.3 Coupling of FEniCSx and CSDL through FEMO

	4 Numerical examples
	4.1 Optimal control of a nonlinear elliptic PDE
	4.1.1 Mathematical formulation
	4.1.2 Numerical results

	4.2 Topology optimization of a cantilever plate
	4.2.1 Mathematical formulation
	4.2.2 Numerical results

	4.3 Electric motor design
	4.3.1 Optimization problem definition
	4.3.2 Shape parametrization with free-form deformation
	4.3.3 Automated mesh movement
	4.3.4 Magnetostatic problem on the deformed mesh
	4.3.5 Numerical results

	4.4 Aeroelastic analysis on an eVTOL wing
	4.4.1 Aerodynamic solver with vortex lattice method
	4.4.2 Thin-shell structural solver with Reissner–Mindlin plate theory
	4.4.3 Work-conservative aeroelastic coupling
	4.4.4 Static aeroelastic simulation with constant wind velocity
	4.4.5 Dynamic aeroelastic simulation of wind gust response
	4.4.6 Sensitivity analysis and validation of compliance with respect to thickness

	5 Conclusion
	Appendix A: Code comparison of FEMO and FEniCS for topology optimization problem
	Appendix B: Implementation effort comparison of FEMO and Nastran for aeroelasticity
	Appendix C: Numerical experiments on finite difference step size in the aeroelastic example
	Acknowledgements
	References

